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Abstract: Uniform designs (UDs) have been widely used in various fields. Tradition-

ally they were generated by so-called good lattice point (glp) sets. In this paper, we

propose a new approach based on cyclic Latin squares (CLS). The UDs generated

have much smaller discrepancies than those proposed by Wang and Fang (1981).

A threshold accepting algorithm is employed for finding the CLS with smallest

L2-discrepancy.
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1. Introduction

The uniform designs (UD) proposed by Fang and Wang (Fang (1980), Wang
and Fang (1981)) scatter points uniformly over the experimental domain. They
have the advantage of providing a good representation of the experimental do-
main with fewer runs. In China, such designs have been successfully applied
to many experiments in diverse fields. Computer experiments (Sacks, Welch,
Mitchell and Wynn (1989)), which have attracted considerable attention in re-
cent years, also call for “space filling” designs which fill the experimental domain
in a uniform fashion (Bates, Buck, Riccomagno and Wynn (1996)).

Suppose there are s factors, and n runs are to be conducted. Without loss
of generality, assume that the experimental domain is the unit cube Cs = [0, 1]s;
then a design consists of n points in Cs. We want these points to be uniformly
scattered over Cs. A measure of uniformity called discrepancy (defined in Section
2) is adopted, and the goal is to choose n points with the smallest discrepancy.
The resulting design is called a uniform design (UD). Obviously it is impractical
to have a complete search, and we shall restrict the search to a subset of candidate
designs.

Definition 1. A U-type design of size n × s, denoted by Un,s = (uij), is an
n × s (s ≤ n) matrix with rank s such that each column is a permutation of
{1, . . . , n}. Its induced matrix is Xn,s = (xij), where xij = (uij − 0.5)/n, for
i = 1, . . . , n and j = 1, . . . , s.

There is a one-to-one correspondence between Un,s and Xn,s so that they
can be used interchangeably. The matrix Xn,s can be considered as n points in
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Cs. A Un,s with induced matrix Xn,s having the smallest discrepancy is called a
U-uniform design.

Two U-type designs are called equivalent if they can be obtained from each
other by permuting rows and/or columns. Clearly, any criterion of unifor-
mity should be invariant under permutations of rows or columns of a U-type
design. Therefore, the first column of a U-uniform design can always be taken as
(1, . . . , n)′. There are n!− 1 possible permutations for the second column, n!− 2
choices for the third column, and so on. Even for moderate n and s, the search
of the best s columns could lead to intolerable computing time.

To reduce computing cost, Wang and Fang (1981) suggested the use of good
lattice point (glp) sets. For given n, let {h1, . . . , hq} be the set of all positive
integers such that the greatest common divisor (n, hi) = 1 and hi ≤ n, i =
1, . . . , q, where q is the Euler function φ(n), i.e., q = φ(n) = n(1 − 1/p1) · · · (1 −
1/pr) where n = pt1

1 · · · ptr
r is the prime decomposition of n. Define Gn,q = (uij),

where uij ≡ ihj (mod n) for i = 1, . . . , n and j = 1, . . . , q, and multiplication
modulo n is modified such that 0 < uij ≤ n, i.e., uij = n if ihj = mn for some
integer m. A matrix of rank s formed by any s columns of Gn,q is called a UG-type
design and is denoted by UGn,s. A UG-type design with the smallest discrepancy
over all UGn,s’s is called a G-uniform design and is denoted by UGn(ns).

Despite the efficiency and convenience brought about by the use of glp sets,
there are some disadvantages: 1) q = φ(n) is much smaller than n in many cases;
2) The rank of the matrix Un(nq) is at most (q/2) + 1 (cf. Ding (1986)). These
two shortcomings imply that a) we cannot find a G-uniform design UGn(ns)
with s > (φ(n)/2)+1, nor can we obtain any UG-type saturated designs, and b)
G-uniform designs may have poor uniformity.

In this paper we shall propose another subset of U-type designs, called UL-
type designs, based on cyclic Latin squares. A UL-type design can be obtained
by choosing s linearly independent columns of a cyclic Latin square. A threshold
accepting algorithm is proposed for finding the “best” UL-type design. Such a
design is called an L-uniform design, and is denoted ULn(ns).

Section 2 introduces some measures of uniformity. In Section 3 we study
properties of UL-type designs that can be used to reduce the computing time.
The algorithm is discussed in Section 4, along with some numerical comparisons
between UGn(ns) and ULn(ns). Conclusions and additional discussion are given
in the last section.

2. Measures of Uniformity

We denote an n-run design over Cs by X = (x1, . . . ,xn)′ and let Pn,s be
the set of all such designs. Let Fn(x) be the empirical distribution function of
X, i.e., Fn(x) = 1

n

∑n
i=1 I{xi ≤ x}, where I{·} is the indicator function and all

inequalities are understood to be componentwise. The Lp-discrepancy of X is
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defined as Dp(X) =
[ ∫

Cs |Fn(x) − F (x)|p dx
] 1

p , where F (x) is the distribution
function of the uniform distribution over Cs. It is the most commonly used
measure of uniformity, especially when p = ∞ and 2. When p = ∞, D ≡ D∞
is also called the discrepancy (or star-discrepancy): D(X) = supx∈Cs |Fn(x) −
F (x)|. The calculation of the discrepancy in multidimensional situations is very
cumbersome, and there had been no general algorithm available until Bundschuh
and Zhu (1993) gave one for low-dimensions. In the current work we employ their
algorithm for evaluating discrepancy. Warnock (1972) gave an analytic formula
for calculating L2-discrepancy,

D2(X) = 3−s − 21−s

n

n∑
k=1

s∏
l=1

(1 − x2
kl) +

1
n2

n∑
k=1

n∑
j=1

s∏
i=1

[1 − max(xki, xji)], (2.1)

where xk = (xk1, . . . , xks). Obviously, the computing load of D2(X) is O(n2) and
is much lighter than that of D(X).

3. U-type Designs Based on Cyclic Latin Squares

Let x1, . . . , xn be the entries of a Latin square. Define the left shift operator
L by L(x1, . . . , xn) = (x2, x3, . . . , xn, x1).

Definition 2. A left cyclic Latin square (LCLS) of order n is a Latin square of
order n such that xi+1 = Lxi, i = 1, . . . , n − 1, where xi is the ith row of the
square.

Let Pn = {(x1, . . . , xn) : (x1, . . . , xn) is a permutation of {1, . . . , n} }. An
LCLS is uniquely determined by its first row. The LCLS with the first row
α ∈ Pn is denoted by LC(α). Any s columns of an LCLS form a U-type design,
and is called a UL-type design.

Definition 3. Let i1, . . . , is be s integers such that 1 ≤ i1 < · · · < is ≤ n+i1−1.
The sequence {i2 − i1, i3 − i2, . . . , is − is−1, i1 − is} (mod n) is called a difference
sequence, where the modulo operation is modified such that the sequence takes
values in {1, . . . , n}.

Note that if {d1, . . . , ds} is a difference sequence, then
∑s

i=1 di = n. For
K = LC(α), let K(i1, . . . , is) be the submatrix consisting of the i1th, . . . , isth

columns of K. Then we have the following results, useful for reducing computing
time in Section 4.

Theorem 1. If the indices of two submatrices K(i1, . . . , is) and K(j1, . . . , js) of
K = LC(α), α ∈ Pn, have the same difference sequence, then these two UL-type
designs are equivalent.
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Theorem 2. If A and B are two n × s submatrices of K = LC(α), α ∈ Pn,
with difference sequences {d1, . . . , ds} and {d2, . . . , ds, d1}, respectively. Then A
and B are equivalent.

The proofs are omitted. More details can be found in our technical report.

4. L-Uniform Designs, Threshold Accepting Algorithm and Numerical
Comparisons

To construct the “best” UL-type design, we use a two stage procedure. We
first choose an α∗ ∈ Pn such that

D2(LC(α∗)) = min
α∈Pn

D2(LC(α)), (4.1)

then for K = LC(α∗), we find (i∗1, . . . , i∗s) such that

D(K(i∗1, . . . , i
∗
s)) = min

1≤i1<···<is≤n
D(K(i1, . . . , is)).

The design K(i∗1, . . . , i∗s) is called an L-uniform design.
The L2-discrepancy is used in the first stage since it is easier to calculate

(see (2.1)). To search for the best α, we propose to use the threshold accepting
(TA) algorithm introduced by Dueck and Scheues (1990).

To minimize a certain function over a finite set X , the TA algorithm starts
with an arbitrary element in X . At each iteration an element is chosen randomly
from a predefined neighborhood of the current solution and the value of the
objective function is calculated for the new element. If it is not much worse
than the old value, the new element is accepted as the current solution. The TA
algorithm terminates when the increment of the objective function is more than
a given positive threshold value. Since the threshold value is positive, unwanted
local minima which might trap our search can be left again. The thresholds are
changed throughout the procedure so that a local minimum, with a good chance
of being the global minimum, can be reached.

In our application, X is Pn. In fact, since LC(α) and LC(Lmα) are obvi-
ously equivalent for m = 1, . . . , n − 1, the number of possible α that need to be
considered is reduced to (n − 1)!. Let α = (a1, . . . , an) ∈ X . A neighborhood
N(α) is defined as the set of permutations that exchange two components of α.
Therefore, there are n(n−1)/2 permutations in N(α). A part of the final results
are given in Table 1. The CPU time was from 0.001 second to 368.25 seconds
for n = 4 ∼ 50 with the program run on a PC486. It shows the power of the TA
algorithm. Figure 1 presents a plot of log(D2(LC(α))) against n. The curve is
linearly decreasing. It is known that

E([D2(X)]2) =
1
n

(
1
2s

− 1
3s

) (4.2)
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if the rows of X are i.i.d. random vectors from the uniform distribution over
Cs. It is easy to prove that D2(LC(α)) is much lower than the corresponding
expected value of D2 in (4.2).

Table 1. The “best” α by using TA algorithm.

n Best First Row of LCLS L2-Discrepancy

4 1 2 3 4 7.767E-02

5 1 5 3 4 2 4.965E-02

6 1 3 5 6 2 4 3.178E-02

7 1 3 2 7 4 5 6 1.922E-02

8 1 5 2 7 8 4 3 6 1.170E-02

9 1 8 9 4 2 5 6 3 7 7.043E-03

10 1 7 3 10 4 6 9 8 5 2 4.209E-03

11 1 4 6 8 9 11 5 3 10 2 7 2.500E-03

12 1 7 10 4 5 12 9 11 2 3 6 8 1.478E-03

13 1 12 4 6 5 7 9 10 3 2 8 13 11 8.707E-04

14 1 8 10 4 11 12 9 13 3 2 6 14 5 7 5.116E-04

15 1 7 12 6 9 10 13 8 15 5 3 2 4 14 11 3.000E-04

16 1 9 8 2 16 6 7 12 15 11 14 10 5 3 4 13 1.756E-04

17 1 10 2 5 14 6 7 9 12 11 3 4 16 8 13 17 15 1.027E-04

18 1 7 17 18 13 5 14 12 3 16 6 8 9 11 4 10 2 15 6.005E-05

19 1 19 18 13 9 6 11 5 16 15 3 14 4 12 10 8 2 17 7 3.508E-05

20 1 16 15 18 20 5 6 8 2 13 4 10 17 11 3 12 14 7 9 19 2.049E-05

21 1 21 19 12 11 17 13 6 10 8 2 3 5 14 15 20 4 9 16 7 18 1.197E-05

22 1 16 14 8 17 15 7 10 21 2 4 5 13 19 6 9 3 12 11 18 20 22 6.989E-06

23 1 5 14 6 19 11 17 7 8 12 2 21 9 10 4 16 20 18 3 23 22 13 15 4.086E-06

24 1 16 24 5 21 13 6 9 14 22 2 23 17 12 20 19 15 10 7 11 18 4 8 3 2.386E-06

25 1 20 3 25 12 22 23 2 9 5 11 8 15 13 4 24 17 14 7 6 21 10 19 18 16 1.395E-06

26 1 3 21 13 17 25 8 6 19 23 15 14 9 7 22 18 12 26 20 16 5 11 4 10 2 24 8.160E-07

27 1 9 8 4 3 18 26 10 20 23 25 22 14 19 2 11 27 21 13 6 16 12 7 15 24

5 17 4.776E-07

28 1 25 6 16 13 17 20 26 18 11 21 28 23 19 4 10 24 3 15 9 5 8 14 12 7

22 27 2.787E-07

29 1 12 27 5 20 4 17 2 15 6 14 25 21 28 29 10 22 16 13 8 25 9 11 23 18

7 26 19 3 1.639E-07

30 1 22 20 27 17 29 18 8 15 19 23 14 11 9 26 21 16 13 6 10 4 30 7 24 25

5 3 2 12 28 9.610E-08

31 1 7 28 29 9 13 6 19 2 15 25 10 4 23 11 20 21 18 12 26 5 30 14 16 31 8

24 3 27 17 22 5.639E-08

32 1 18 10 28 17 14 2 16 24 30 9 11 32 5 19 12 6 29 20 31 25 26 23 13 22

3 4 21 15 27 8 7 3.312E-08

In the second stage, Theorems 1 and 2 play an important role in reducing
the computational load. L-uniform designs for n ≤ 50 and s ≤ 7 are obtained.
We omit the detailed results here. Comparing the discrepancy of the G- and the
L-uniform designs we conclude that:
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1) When s = 2, the G-uniform design beats the L-uniform design for most n.
2) When s > 2 the L-uniform design beats the G-uniform design for many n.
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Figures 2 and 3 compare the two kinds of designs for s = 3 and 4, where the solid
line corresponds to the discrepancy of the L-uniform design obtained by our algorithm,
and the dashed line corresponds to the discrepancy of the G-uniform design. Let Dg

be the discrepancy of the G-uniform design and Dl the discrepancy of the L-uniform
design for given n and s. The relative improvement in discrepancy is given by I1 =
(Dg−Dl)/Dg or I2 = (Dg−Dl)/Dl. Our results show that I1 and I2 range from 0.01% to
60% for s ≥ 3, if Dg > Dl. For example, for n = 7 and s = 3, Dg = 0.3721, Dl = 0.2606,
I1 = 29.97% and I2 = 39.98%. For n = 13 and s = 7, Dg = 0.4992, Dl = 0.3145,
I1 = 37% and I2 = 58.73%.

5. Conclusion and Further Discussion

In many cases, the proposed L-uniform designs can significantly improve the unifor-
mity of the corresponding G-uniform designs. The TA algorithm is powerful in finding
the “best” LCLS. Note that an LCLS whose first row is given in Table 1 has full rank.
Therefore, we always have n linearly independent columns for constructing an L-uniform
design while there are fewer choices for G-uniform designs (at most q/2+1 columns where
q = φ(n) (cf. Section 1)). Perhaps this is why an L-uniform design can improve upon
G-uniform designs.

For further study, we may consider the following problems. 1) The convergence
rate of the discrepancy of L-uniform designs as n increases. 2) Hickernell (1995) gave a
detailed comparison of the Monte Carlo method, random orthogonal arrays, glp sets,
and Faure points and he listed advantages and disadvantages of the glp sets in multidi-
mensional quadrature. L-uniform designs are candidates for future comparisons.
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