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Abstract: We prove the general validity of a formula conjectured by Levin and

Robbins (1981) to give a lower bound for the probability of correct selection in a

sequential elimination procedure designed to identify the best of c binomial pop-

ulations. The formula is elementary to calculate and simplifies the design of the

selection procedure.
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1. Introduction

Suppose we have c ≥ 2 coins, and for any coin i (1 ≤ i ≤ c), let pi be the
probability of coming up heads on a single toss. We wish to select a coin with
the highest such probability. Levin and Robbins (1981) introduced the following
sequential elimination procedure to accomplish that goal. Begin by tossing the
coins vector-at-a-time. For n = 1, 2, . . ., let X(n) = (X(n)

1 , . . . ,X
(n)
c ) be the vector

that reports the number of heads observed for each coin after n tosses, and let
X[n] = (X [n]

1 , . . . ,X
[n]
c ) be the ordered X(n) vector with X

[n]
1 ≥ X

[n]
2 ≥ · · · ≥ X

[n]
c .

Let r be a positive integer chosen in advance of all tosses. Define C to be the
set of coins under consideration at any given time, with the convention that
c = #(C). Define N

(C)
r to be the time of first elimination in a c coin game with

coins C,

N (C)
r = inf{n ≥ 1 : max

i,j∈C
{X(n)

i − X
(n)
j } = X

[n]
1 − X [n]

c = r}.

If N
(C)
r = n, we drop from further consideration, after toss n, any and all coins i

satisfying X
(n)
i = X

[n]
c , i.e. all coins that have fallen r heads behind the leader.

If more than one coin remains the procedure continues, starting from the current
tallies of the remaining subset of coins C ′ ⊂ C, and iterates with N

(C′)
r until

c − 1 coins have been eliminated. Thereupon we declare the remaining coin as
“best”. Define P

(C)
r [i] to be the probability that coin i is selected as best by this

procedure. (We also call this an “e-game” [e- for elimination] as if in a race that
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coin i wins with probability P
(C)
r [i].) The following inequalities were conjectured

by Levin and Robbins:

Conjecture. For any set of coins C with probabilities {p1, . . . , pc}, let wi =
pi/(1 − pi), and suppose, without loss of generality, that p1 ≥ p2 ≥ · · · ≥ pc.
Then for any positive integer r,

P (C)
r [1] ≥ wr

1/
c∑

i=1

wr
i and P (C)

r [c] ≤ wr
c/

c∑
i=1

wr
i . (1)

Inequality (1) allows determination of r to achieve any desired probability of
correct selection P †, given any specified odds w1, . . . , wc. In particular, if the
odds ratio w1/w2 ≥ δ, it suffices to choose r ≥ {log[(c − 1)P †/(1 − P †)]}/log δ.
In the context of medical trials, it is obviously desirable to eliminate the inferior
treatments while maintaining a high probability of correctly selecting the best
treatment.

The conjectured inequalities in (1) arose because of certain properties Levin
and Robbins (1981) proved for a related sequential procedure without elimination
of inferior coins. The stopping rule there was

M (C)
r = inf{n ≥ 1 : X

[n]
1 − X

[n]
2 = r},

with the obvious selection of the coin corresponding to X
[n]
1 at time M

(C)
r = n

as best. Let P ∗
r [i] denote the probability of selecting coin i as best with stopping

rule M
(C)
r . Levin and Robbins proved that (1) holds for P ∗

r [i] and that for i < j,

P ∗
r [i]/P ∗

r [j] ≥ (wi/wj)r. (2)

They conjectured that inequalities (2) and (1) should hold true for the e-game as
well, on the basis of a rigorous proof for r = 1 together with simulation studies
for “least favorable” parameter configurations of the form p1 > p2 = · · · = pc.

It turns out that the conjecture concerning inequality (2) is not generally
true. Zybert and Levin (1987) proved that the conjecture does hold for c = 3
coins for least favorable configurations, but, surprisingly, there exist p1 > p2 > p3

for which it does not hold. The violations of the inequalities in (2) for the e-game
are numerically small, and the expressions (wi/wj)r are quite good approxima-
tions to P ∗

r [i]/P ∗
r [j]. In fact, Zybert and Levin showed that, notwithstanding the

failure of (2) in the e-game, (1) with c = 3 coins does hold for any r and any
p1 ≥ p2 ≥ p3. This curious situation raises the following questions: if (2) is not
the general reason that (1) is true for c = 3 in the e-game, does (1) even hold for
c > 3, or is the case c = 3 somehow special? If (1) does hold for any c, what is
the fundamental reason?
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In this paper we prove that conjecture (1) does hold generally for any number
of coins c ≥ 2 and any positive integer r. The idea of the proof is to demon-
strate a somewhat stronger result than (1): the conditional probability that coin
1 (respectively coin c) wins given that the sample path (X(n)

1 , . . . ,X
(n)
c ) passes

through any symmetric subset of configurations (those left invariant under per-
mutations of the labels of the coins) still obeys the lower (respectively upper)
bound inequalities. Inequality (1) follows simply by choosing the subset contain-
ing the single configuration (0, . . . , 0). It is of interest to note that the proof
makes no use of the notion of least favorable configurations. This is similar to
other proofs utilizing fundamental symmetries (see Levin (1984)).

2. Definitions and Notations

In the Levin-Robbins elimination procedure, it is important to consider dif-
ferences of the form X

(n)
j − X

[n]
c (j = 1, . . . , c), and we define the vector of such

differences as the configuration of X(n). With a slight abuse of notation, we write
the configuration of X(n) as X(n) − X

[n]
c = (X(n)

1 − X
[n]
c , . . . ,X

(n)
c − X

[n]
c ). The

ordered configuration of X(n) is the configuration of X[n], i.e. X[n] − X
[n]
c . For

example, with c = 3, the configuration (120) indicates coin 1 has one fewer head
than coin 2, and one more than coin 3. The ordered configuration is (210).

In a c coin game, we define for s = 0, . . . , r the sets

B(C)
s = {b = (b1b2 · · · bc) | s = b1 ≥ b2 ≥ · · · ≥ bc = 0}.

B
(C)
r is the set of all possible ordered configurations of X(n) at the time of first

elimination, and the union of B
(C)
s for s < r comprise all ordered configurations

prior to that time. Before the time of first elimination, the coin tallies pass
through a sequence of configurations which are certain permutations of certain
ordered configurations in

⋃r−1
s=0 B

(C)
s . This observation suggests that we ana-

lyze P
(C)
r [1] in terms of conditional probabilities given that X[n] − X

[n]
c passes

through any one of the ordered configurations b ∈ B
(C)
s for some 0 < s < r.

For example, with r = 3, c = 3, and b = (210) ∈ B
(C)
2 , we might consider the

conditional probability of selecting coin 1 given that one of the configurations
{(210), (201), (120), (102), (021), (012)} is reached before the time of first elimi-
nation. Also, define S

(C)
v = { all distinct permutations of v} for any configuration

v. The above set is S
(C)
(210), while S

(C)
(110) = {(110), (101), (011)}.

Now let N
(C)
s be the first time any configuration with maximum component

s > 0 is reached by X(n) in a c coin game. In symbols,

N (C)
s = inf{n ≥ 1 : X

[n]
1 − X [n]

c = s}.
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Also, for b ∈ B
(C)
s and d ∈ Sb, let N

(C)
s (d) be the first time a given configuration

d is reached by X(n) (if ever; if d is never reached, set N
(C)
s (d) = ∞):

N (C)
s (d) = inf{n ≥ 1 : X(n) − X [n]

c = d}.
We define the stopping times N

(C)
0 and N

(C)
0 (0) to be identically zero. The

event [N (C)
s = N

(C)
s (d)] for 0 < s < r thus consists of all sequences of tosses

in which X(n) reaches configuration d before any other configuration d′ with
maxi d

′
i = s. For s = 0, [N (C)

0 = N
(C)
0 (0)] is the entire sample space. We note

that events of the form [N (C)
s = N

(C)
s (d)] and [N (C)

s = N
(C)
s (d) < N

(C)
r ] are

equivalent for 0 ≤ s < r, i.e., stopping time N
(C)
s must occur prior to the time of

first elimination N
(C)
r . For any b in B

(C)
s , we define W

(C)
d to be the conditional

probability that permutation d of b is the first to be reached, given that some
permutation of b is reached at time N

(C)
s ,

W
(C)
d = P [N (C)

s = N (C)
s (d)]

/ ∑
d′∈S

(C)
b

P [N (C)
s = N (C)

s (d′)]

For any configuration b and integers i and j in {1, . . . , c}, let bij be the con-
figuration that interchanges components i and j of b. Define wij = wi/wj =
[pi/(1 − pi)]/[pj/(1 − pj)], the odds ratio for coin i and j.

3. Proof of the conjecture

The following lemma and its corollaries apply Wald’s change of measure
argument to events that occur at time N

(C)
s .

Lemma 1. For any number of coins c, any b ∈ B
(C)
s and any i, j ∈ {1, . . . , c}

P [N (C)
s = N (C)

s (b)] = w
bi−bj

ij P [N (C)
s = N (C)

s (bij)].

Proof. By definition, P [N (C)
s = N

(C)
s (b)] =

∑
n≥1

∑
α P (n)(α), where P (n)(α) =∏c

k=1 w
X

(n)
k

(α)

k (1 − pk)n is the product-binomial probability function of the first
n tosses, and α represents any sequence of binary outcome vectors in the event
[N (C)

s = N
(C)
s (b) = n]. For any such α,

P (n)(α)

= w
[X

(n)
i (α)−X

(n)
j (α)]

i w
[X

(n)
j (α)−X

(n)
i (α)]

j (1 − pi)n(1 − pj)nw
X

(n)
i (α)

j w
X

(n)
j (α)

i

·
∏

k �=i,j

w
X

(n)
k

(α)

k (1 − pk)n

= w
[X

(n)
i (α)−X

(n)
j (α)]

ij P (n)(αij),
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where αij is a sequence of outcomes formed by transposing the outcomes of coins
i and j in the sequence α ∈ [N (C)

s = N
(C)
s (b) = n]. Note that, on this event,

X
(n)
i (α) − X

(n)
j (α) = bi − bj , and there is a one-one correspondence between

sequences in [N (C)
s = N

(C)
s (b) = n] and those in [N (C)

s = N
(C)
s (bij) = n].

Therefore

P [N (C)
s = N (C)

s (b) = n]/wbi−bj

ij

=
∑
n≥1

∑
α∈[N

(C)
s =N

(C)
s (b)=n]

P (n)(αij)

=
∑
n≥1

∑
α′∈[N

(C)
s =N

(C)
s (bij)=n]

P (n)(α′) = P [N (C)
s = N (C)

s (bij)].

In particular, Lemma 1 holds for configurations that occur at time of first elimi-
nation, which we state as

Corollary 1. For any number of coins c, any configuration a ∈ B
(C)
r at first

elimination, and i, j ∈ {1, . . . , c},
P [N (C)

r = N (C)
r (a)] = w

ai−aj

ij P [N (C)
r = N (C)

r (aij)].

Because any permutation d of b can be represented as a sequence of transpo-
sitions, by using Lemma 1, we can express P [N (C)

s = N
(C)
s (d)] as P [N (C)

s =
N

(C)
s (b)] times a permutation constant, defined as the product of the odds ratios

of the coins used in the transpositions raised to the power of the corresponding
differences between the number of heads. The permutation constant is uniquely
defined, because if λ and λ′ are two such permutation constants corresponding
to different sequences of transpositions leading to the same permutation d of b,
then P [N (C)

s = N
(C)
s (d)]= λP [N (C)

s = N
(C)
s (b)] = λ′P [N (C)

s = N
(C)
s (b)] implies

λ = λ′. Therefore, a unique constant K
(C)
b can be defined such that

W
(C)
bij

= P [N (C)
s = N (C)

s (bij)]
/ ∑

d′∈S
(C)
b

P [N (C)
s = N (C)

s (d′)] = w
−(bi−bj)
ij

/
K

(C)
b ,

where K
(C)
b is the summation of all appropriate permutation constants. For

example, in the illustration with (r = 3, c = 3) mentioned above,

P [N (C)
2 = N

(C)
2 ((120))] = w1−2

12 × P [N (C)
2 = N

(C)
2 ((210))],

P [N (C)
2 = N

(C)
2 ((012))] = w0−2

13 × P [N (C)
2 = N

(C)
2 ((210))],

P [N (C)
2 = N

(C)
2 ((201))] = w0−1

23 × P [N (C)
2 = N

(C)
2 ((210))], . . .

P [N (C)
2 = N

(C)
2 ((102))] = w0−1

23 w1−2
13 × P [N (C)

2 = N
(C)
2 ((210))],
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and therefore

W
(C)
(120) = P [N (C)

2 = N
(C)
2 ((120))]

/ ∑
d′∈S

(C)

(210)

P [N (C)
2 = N

(C)
2 (d′)]

=
w−1

12 × P [N (C)
2 = N

(C)
2 ((210))]

(1 + w−1
12 + w−2

13 + w−1
23 + w−1

23 w−2
12 + w−1

23 w−1
13 ) × P [N (C)

2 = N
(C)
2 ((210))]

= w−1
12 /(1 + w−1

12 + w−2
13 + w−1

23 + w−1
23 w−2

12 + w−1
23 w−1

13 ) = w−1
12 /K

(C)
(210).

That is, K
(C)
(210), in this case, equals the unique sum of permutation constants

1 + w−1
12 + w−2

13 + w−1
23 + w−1

23 w−2
12 + w−1

23 w−1
13 . In the last term above, if instead of

(210) → (201) → (102) we use (210) → (120) → (102), the permutation constant
w−1

12 w−2
23 equals w−1

23 w−1
13 . We can apply the same argument to arbitrary sequences

of transpositions, and get the following from Lemma 1.

Corollary 2. P [N (C)
s = N

(C)
s (d)] = K

(C)
b W

(C)
d P [N (C)

s = N
(C)
s (b)].

Now let a ∈ B
(C)
r be an ordered configuration at first elimination, and let

u ∈ Sa. The same change of measure argument as given in Lemma 1 shows that
P [N (C)

r = N
(C)
r (u) and N

(C)
s = N

(C)
s (d)] = w

ui−uj

ij × P [N (C)
r = N

(C)
r (uij) and

N
(C)
s = N

(C)
s (dij)]. Then Lemma 1 implies.

Corollary 3. For any a ∈ B
(C)
r , u ∈ S

(C)
a , b ∈ B

(C)
s for 0 ≤ s < r, and

d ∈ S
(C)
b , P [N (C)

r = N
(C)
r (u)|N (C)

s = N
(C)
s (d)] = w

(ui−uj)−(di−dj)
ij · P [N (C)

r =

N
(C)
r (uij)|N (C)

s = N
(C)
s (dij)].

Since w
ui−uj

ij = W
(C)
u /W

(C)
uij , and w

di−dj

ij = W
(C)
d /W

(C)
dij

, if now u′ is the same
permutation of u as d′ is of d, Corollary 3 could be written generally as follows.

Corollary 4. (W (C)
d /W

(C)
u )P [N (C)

r = N
(C)
r (u)|N (C)

s = N
(C)
s (d)] = (W (C)

d′ /W
(C)
u′ )

P [N (C)
r = N

(C)
r (u′)|N (C)

s = N
(C)
s (d′)].

We can now prove the main result. The case s = 0 yields the conjectured
inequalities (1).

Theorem 1. For any set of c ≥ 2 coins C with corresponding probabilities
p1 ≥ · · · ≥ pc, any integers s and r such that 0 ≤ s ≤ r, and any b ∈ B

(C)
s ,

P (C)
r [1|N (C)

s = N (C)
s (d) for some d ∈ S

(C)
b ]

=
∑

d∈S
(C)
b

W
(C)
d P (C)

r [1|N (C)
s = N (C)

s (d)] ≥ wr
1/

c∑
i=1

wr
i
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and

P (C)
r [c|N (C)

s = N (C)
s (d) for some d ∈ S

(C)
b ]

=
∑

d∈S
(C)
b

W
(C)
d P (C)

r [c|N (C)
s = N (C)

s (d)] ≤ wr
c/

c∑
i=1

wr
i .

Proof. We use mathematical induction on the number of coins c. Let c = 2
and consider any C = {i, j} for some coin j competing with a better coin i

(i < j). For s = 0, the classical gambler’s ruin problem (Feller (1957)) states
P

(C)
r [i|N (C)

0 = N
(C)
0 (0)] = P

(C)
r [i] = wr

i /(w
r
i + wr

j ) and P
(C)
r [j] = wr

j/(w
r
i + wr

j ).

For 0 < s ≤ r, the only b ∈ B
(C)
s is of the form (s0), and it can be seen

that any sample path leading to a correct selection must pass through (s0) or
(0s) for any s = 0, . . . , r − 1. Therefore P

(C)
r [i|N (C)

s = N
(C)
s (d) for d = (s0)

or (0s)] = P
(C)
r [i] = wr

i /(w
r
i + wr

j ), and P
(C)
r [j] = 1 − P

(C)
r [i] = wr

j/(w
r
i +

wr
j ), the classical gambler’s ruin probability, and conclude Theorem 1 is true

when c = 2. Assume, then, that for any k ∈ {2, . . . c − 1}, any subset K of C

with corresponding probabilities pi1 ≥ pi2 ≥ · · · ≥ pik , any s = 0, . . . , r, and
any b ∈ B

(K)
s ,

∑
d∈S

(K)
b

W
(K)
d P

(K)
r [i1|N (K)

s = N
(K)
s (d)] ≥ wr

i1/
∑k

j=1 wr
ij

and∑
d∈S

(K)
b

W
(K)
d P

(C)
r [ik|N (K)

s = N
(K)
s (d)] ≤ wr

ik
/
∑k

j=1 wr
ij
. We prove the theorem

for c coins with probabilities p1 ≥ · · · ≥ pc. First consider the case s < r. In
order to be precise in the enumeration of permutations of b in S

(C)
b , we define

Perm(c) to be the set of all c! permutation functions σ : (12 · · · c) → σ((12 · · · c))
on c items. For any configuration v, define ν(v) to be the number of permutations
σ ∈ Perm(c) such that σ(v) = v. Thus there are c!/ν(b) distinct permutations of
b ∈ S

(C)
b . Therefore, enumerating the permutations σ ∈ Perm(c) as σ1, . . . , σc!,

we have ∑
d∈S

(C)
b

W
(C)
d P (C)

r [1|N (C)
s = N (C)

s (d)]

=
c!∑

n=1

W
(C)
σn(b) · P (C)

r [1|N (C)
s = N (C)

s (σn(b))] · 1/ν(b). (3)

Now P
(C)
r [1|N (C)

s = N
(C)
s (σn(b))] =

∑
a∈B

(C)
r

∑c!
m=1 P [N (C)

r = N
(C)
r (σm(a))|

N
(C)
s = N

(C)
s (σn(b))]×P

(C)
r [1|N (C)

r = N
(C)
r (σm(a))]×1/ν(a) where we have used

the Markovian property P
(C)
r [1|N (C)

r = N
(C)
r (σm(a)), N

(C)
s = N

(C)
s (σn(b))] =

P
(C)
r [1| N

(C)
r = N

(C)
r (σm(a))]. This follows from the fact that the probability of

ultimately selecting coin 1 (or any other coin) in the e-game given that a specific
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configuration occurs at the time of first elimination does not depend on the path
leading up to that configuration prior to the time of first elimination. Thus (3)
becomes

c!∑
n=1

∑
a∈B

(C)
r

c!∑
m=1

W
(C)
σn(b)P [N (C)

r = N (C)
r (σm(a))|N (C)

s = N (C)
s (σn(b))]

×P (C)
r [1|N (C)

r = N (C)
r (σm(a))] · 1/ν(a) · 1/ν(b)

=
∑

a∈B
(C)
r

c!∑
n=1

c!∑
m=1

W
(C)
σn(b)P [N (C)

r = N (C)
r (σm(a))|N (C)

s = N (C)
s (σn(b))]

×P (C)
r [1|N (C)

r = N (C)
r (σm(a))] · 1/ν(a) · 1/ν(b) (4)

Since Sc! is a group under permutation multiplication, for any given σn and σm in
Sc!, there exists one and only one σk ∈ Sc! such that σ−1

n σm = σk. Using Corol-
lary 4, we have (W (C)

σm(a)/W
(C)
σk(a)) × P [N (C)

r = N
(C)
r (σk(a))|N (C)

s = N
(C)
s (b)] =

K
(C)
b W

(C)
σn(b) × P [N (C)

r = N
(C)
r (σm(a))|N (C)

s = N
(C)
s (σn(b))], and (4) becomes

∑
a∈B

(C)
r

c!∑
k=1

c!∑
m=1

1

K
(C)
b

·
W

(C)
σm(a)

W
(C)
σk(a)

P [N (C)
r = N (C)

r (σk(a))|N (C)
s = N (C)

s (b)]

×P (C)
r [1|N (C)

r = N (C)
r (σm(a))] · 1/ν(a) · 1/ν(b)

=
∑

a∈B
(C)
r

c!∑
k=1

1

K
(C)
b

· W (C)
σk(a)

−1
P [N (C)

r = N (C)
r (σk(a))|N (C)

s = N (C)
s (b)] · 1/ν(b)

· {
c!∑

m=1

W
(C)
σm(a)P

(C)
r [1|N (C)

r = N (C)
r (σm(a))] · 1/ν(a)}. (5)

It should be clear that expression (5) for P
(C)
r [1|N (C)

s = N
(C)
s (d) for some d ∈

S
(C)
b ] can be extended to P

(C)
r [i|N (C)

s = N
(C)
s (d) for some d ∈ S

(C)
b ] for any other

coin i simply by replacing 1 with i in the term in braces in (5). In particular,
the leading terms multiplying the expression in braces are the same for any such
i. We now argue that it suffices to show that the lower bound inequality holds
in the remaining case s = r, i.e., for any a ∈ B

(C)
r ,

c!∑
m=1

W
(C)
σm(a)P

(C)
r [1|N (C)

r = N (C)
r (σm(a))] · 1/ν(a) ≥ wr

1/
c∑

i=1

wr
i . (6)

Because
c∑

i=1

c!∑
m=1

W
(C)
σm(a)P

(C)
r [i|N (C)

r = N (C)
r (σm(a))] · 1/ν(a)
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= P [ some coin i wins|N (C)
r = N (C)

r (u) for some u ∈ S(C)
a ] = 1

(proof omitted), we have that (6) is equivalent to (7) below:∑c!
m=1 W

(C)
σm(a)P

(C)
r [1|N (C)

r = N
(C)
r (σm(a)) = N

(C)
r ] · 1

ν(a)∑c
i=2

∑c!
m=1 W

(C)
σm(a)P

(C)
r [i|N (C)

r = N
(C)
r (σm(a)) = N

(C)
r ] · 1

ν(a)

≥ wr
1∑c

j=2 wr
j

. (7)

Moving the denominator of the left hand side of (7) to the right hand side,
multiplying by all the leading terms of (5) before the braces, and summing over∑

a∈B
(C)
r

∑c!
k=1 implies that

P (C)
r [1|N (C)

s = N (C)
s (d) for some d ∈ S

(C)
b ]

≥ (wr
1/

c∑
j=2

wr
j )

c∑
i=2

P (C)
r [i|N (C)

s = N (C)
s (d) for some d ∈ S

(C)
b ],

which concludes the proof that (6) suffices.
To prove (6), for any u ∈ S

(C)
a , by definition, W

(C)
u = P [N (C)

r = N
(C)
r (u)]/∑

u′∈S
(C)
a

P [N (C)
r = N

(C)
r (u′)], and therefore the left hand side (lhs) of (6) is

∑
u∈S

(C)
a

W (C)
u × P (C)

r [1|N (C)
r = N (C)

r (u)]

=
∑

u∈S
(C)
a

P [N (C)
r = N

(C)
r (u)]∑

u′∈S
(C)
a

P [N (C)
r = N

(C)
r (u′)]

· P (C)
r [1|N (C)

r = N (C)
r (u)]. (8)

We must now consider the circumstances after the first elimination. Given that
a sequence of tosses reaches a configuration in S

(C)
a , there are

( c
n0(a)

)
different

subsets of coins that may still remain in the game, where n0(a) is defined as
the number of 0s appearing in a. Therefore, S

(C)
a can be divided into

( c
n0(a)

)
disjoint subsets that contain all the configurations in S

(C)
a with the same subset

of coins remaining in the game. Enumerate the subsets as F1, . . . , F( c
n0(a))

. Then

(8) becomes

( c
n0(a))∑
i=1

∑
u∈Fi

P [N (C)
r =N (C)

r (u)]P (C)
r [1|N (C)

r =N (C)
r (u)]/

∑
u′∈S

(C)
a

P [N (C)
r =N (C)

r (u′)]

=
( c

n0(a))∑
i=1

{
[

∑
u′∈Fi

P [N (C)
r =N (C)

r (u′)]] ·
∑
u∈Fi

P [N (C)
r =N

(C)
r (u)]∑

u′∈Fi
P [N (C)

r =N
(C)
r (u′)]

×P (C)
r [1|N (C)

r =N (C)
r (u)]

}
/

∑
u′∈S

(C)
a

P [N (C)
r =N (C)

r (u′)]. (9)
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We wish to re-express the term P [N (C)
r =N

(C)
r (u)]/

∑
u′∈Fi

P [N (C)
r =N

(C)
r (u′)]

as a weight in the reduced game that continues after the first elimination. To
do this, for every 1 ≤ i ≤ ( c

n0(a)

)
, choose the configuration u∗

i that is ordered
apart from the zero components fixed in Fi. For u ∈ Fi, represent probability
P [N (C)

r = N
(C)
r (u)] as P [N (C)

r = N
(C)
r (u∗

i )] times the appropriate permutation
constant. The weight that results after cancelling P [N (C)

r = N
(C)
r (u∗

i )] from

numerator and denominator is identical to the weight W
(C′

i)

d′(u), say, where d′(u)
is the reduced configuration from which the c − n0(a) coin game continues with
coins C ′

i = {j1, . . . , jc−n0(a)}, namely (uj1 −a0, . . . , ujc−n0(a)
−a0), ujk

�= 0, where
a0 = min1≤j≤c,uj �=0 uj . For example, with c = 4, r = 2, one of the subsets Fi is
{(2011), (1021), (1012)}. Choose u∗

i = (2011) and u = (1021). Then the term

P [N (C)
2 = N

(C)
2 (u)]/

∑
u′∈Fi

P [N (C)
2 = N

(C)
2 (u′)]

=
P [N (C)

2 = N
(C)
2 ((1021))]

P [N (C)
2 =N

(C)
2 ((2011))] + P [N (C)

2 =N
(C)
2 ((1021))] + P [N (C)

2 =N
(C)
2 ((1012))]

= P [N (C)
2 = N

(C)
2 ((2011))]w−1

13 /(P [N (C)
2 = N

(C)
2 ((2011))](1 + w−1

13 + w−1
14 ))

= w−1
13 /(1 + w−1

13 + w−1
14 ) = W

(C′
i)

(010) = W
(C′

i)

d′(u),

where C ′
i = {1, 3, 4} and d′(u) = (010) is the reduced configuration in the game

that continues. That is, W
(C′

i)

(010) is identical to the conditional probability that
d′(u)=(010) would be the first configuration to be reached among all permuta-
tions of (010), given some such permutation is reached at time N

(C′)
1 in a three

coin game with coins C ′
i ={1, 3, 4}. In general, then, writing P [N (C)

r =N
(C)
r (u)]/∑

u′∈Fi
P [N (C)

r = N
(C)
r (u′)] = W

(C′
i)

d′(u), left hand side of (6) = (8) = (9) becomes

( c
n0(a))∑
i=1

{
[

∑
u′∈Fi

P [N (C)
r =N (C)

r (u′)]]
∑

d′(u)∈F ′
i

W
(C)
d′(u)P

(C′)
r [1|N (C′)

s′ = N
(C′)
s′ (d′(u))]

}

/
∑

u′∈S
(C)
a

P [N (C)
r =N (C)

r (u′)]. (10)

where s′ = maxl (d′(u))l and F ′
i =

⋃
u∈Fi

{d′(u)} = S
(C′)
d′(a) comprises the set of all

permutations of reduced configurations from Fi. By the inductive hypotheses,

∑
d′(u)∈F ′

i

W
(C′)
d′(u)P

(C′)
r [1|N (C′)

s′ = N
(C′)
s′ (d′(u))] ≥ wr

1

c−n0(a)∑
l=1

wr
jl

=
1∑

j∈C′
i

w−r
1j

. (11)
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Consider next the leading factor in (10), which we rewrite without primes as
1/

∑
u∈S

(C)
a

P [N (C)
r = N

(C)
r (u)]. Define

E(C)
a = {u ∈ S(C)

a |u1 = r}

and

nr(a) =
c∑

j=1

I{aj=r} = #{aj = r}.

We can generate each u ∈ S
(C)
a as a u ∈ E

(C)
a followed by a transposition of

component 1 with j for j = 1, . . . , c. Then we have

∑
u∈S

(C)
a

P [N (C)
r = N (C)

r (u)] =
∑

u∈E
(C)
a

c∑
j=1

P [N (C)
r = N (C)

r (u1j)]
1

nr(a)

= P [N (C)
r = N (C)

r (a)]
( c

n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

c∑
j=1

K(C)
a W (C)

u

1
nr(a)

w
uj−u1

1j , (12)

by Corollaries 1 and 2. We want to put the remaining terms of (10) in similar
form. Thus (10) is

( c
n0(a))∑
i=1

∑
u∈Fi

P [N (C)
r = N (C)

r (u)] · {∗}
∑

u∈S
(C)
a

P [N (C)
r = N (C)

r (u)]

=

( c
n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

∑
j∈C′

i

P [N (C)
r = N

(C)
r (u1j)] · 1

nr(a) · {∗}
∑

u∈S
(C)
a

P [N (C)
r = N

(C)
r (u)]

, (13)

where {∗} is the left hand side of (11). Since for any u ∈ Fi ∩ E
(C)
a and j ∈ C ′

i,
P [N (C)

r = N
(C)
r (u1j)] = K

(C)
a W

(C)
u w

uj−u1

1j ×P [N (C)
r = N

(C)
r (a)] we have that the

left side of (6) is (10) and is

P [N (C)
r = N

(C)
r (a)]

( c
n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

K
(C)
a W

(C)
u

1
nr(a)

∑
j∈C′

i

w
uj−u1

1j · {∗}
∑

u∈S
(C)
a

P [N (C)
r = N

(C)
r (u)]

. (14)
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Combining (11) and (14), the left size of (6) is at least

P [N (C)
r = N

(C)
r (a)]

( c
n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

K
(C)
a W

(C)
u

1
nr(a)(

∑
j∈C′

i

w
uj−u1

1j )/(
∑

j∈C′
i

w−r
1j )

∑
u∈S

(C)
a

P [N (C)
r = N

(C)
r (u)]

=

( c
n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

K
(C)
a W

(C)
u

1
nr(a) ·

∑
j∈C′

i

w
uj−u1
1j∑

j∈C′
i

w−r
1j

( c
n0(a))∑
i=1

∑
u∈Fi∩E

(C)
a

K
(C)
a W

(C)
u

1
nr(a)

c∑
j=1

w
uj−u1

1j

using (12). It suffices, then, to show that

∑
j∈C′

i

w
uj−u1

1j

/ ∑
j∈C′

i

w−r
1j ≥

c∑
j=1

w
uj−u1

1j

/ c∑
j=1

w−r
1j

for any i and C ′
i, because then lhs(6) ≥ 1/

∑c
j=1 w−r

1j = wr
1/

∑c
j=1 wr

j . But for

u ∈ Fi ∩E
(C)
a , u1 = r, so uj −u1 ≥ −r, whence {∑j∈C′

i
w

uj−u1

1j /
∑

j∈C′
i
w−r

1j } ≥ 1.
Note also that j ∈ C ′

i means uj > 0 while j �∈ C ′
i implies uj = 0, because C ′

i are
the coins not eliminated when configuration u is reached at first elimination.

Therefore
∑

j �∈C′
i
w

uj−u1

1j =
∑

j �∈C′
i
w−r

1j ; thus

∑
j∈C′

i

w
uj−u1

1j

∑
j∈C′

i

w−r
1j

≥

∑
j∈C′

i

w
uj−u1

1j +
∑

j �∈C′
i

w
uj−u1

1j

∑
j∈C′

i

w−r
1j +

∑
j �∈C′

i

w−r
1j

=

c∑
j=1

w
uj−u1

1j

c∑
j=1

w−r
1j

.

This concludes the proof of the lower bound for P
(C)
r [1]. For the upper bound

inequality, the development is entirely analogous, and is omitted for brevity.

4. Discussion

It would be natural to attempt to prove the lower bound inequality in (1) by
proving only (6), instead of the stronger Theorem 1. As it sounds, (6) states that
the conditional probability of correct selection given that the sample path reaches
one of the symmetrical subsets of configurations Sa at the time of first elimina-
tion satisfies the lower bound formula, and since all paths must lead to some
such subset, the inequality follows. The stronger theorem is required, though,
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because the inductive step at (11) takes place in a reduced game where the
current configuration is no longer on an elimination boundary. This is the ap-
propriate generalization of the observation made for the two coin game, where
wr

1/(w
r
1 + wr

2) equalled the weighted average of gambler’s ruin probabilities start-
ing at any configuration of the form (s0) or (0s) inside the elimination boundary.
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