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Abstract: We develop statistical inference procedures in assessing product relia-

bility based on a nonlinear mixed-effect degradation model and the least squares

method. With today’s high technology, some life tests result in no or very few fail-

ures by the end of test. Thus, it is hard to use the traditional reliability analysis to

analyze lifetime data. Since product performance degrades over time, we analyze

the degradation data and use the analytical results to estimate percentiles of the

failure time distribution. The nonlinear mixed-effect degradation model provides

us a way to build the relationship between degradation measurements and time.

We establish asymptotic properties of the ordinary and weighted least squares es-

timators under the nonlinear mixed-effect model. We use these asymptotic results

to obtain point estimates and approximate confidence intervals for percentiles of

the failure time distribution. Two real data sets are analyzed. Performances of the

proposed method are studied by simulation.
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1. Introduction

Censoring is very common in life tests. Censoring usually applies when exact
lifetimes are known for only a portion of the products and the remainder of the
lifetimes are known only to exceed certain values under a life test. With today’s
high technology, however, many products are designed to work without failure for
years. Thus, some life tests result in few or no failures in a short life testing time.
In such cases, it is difficult to analyze lifetime data with traditional reliability
studies. This circumstance applies to a variety of materials and products such as
metals, insulations, semiconductors, building materials, nuclear reactor materi-
als, electrical devices, food and drugs. One approach to solve this problem is to
accelerate the life of products by increasing the levels of stress via manipulating
use-rate, temperature, voltage, or humidity. Lifetime data obtained under accel-
erated conditions is used to assess product reliability under normal conditions.
A model on the relationship between the lifetime under normal conditions and
those under accelerated life conditions is required for this approach.
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An alternative approach developed recently is to assess product reliability
using degradation measurements of product performance over time. Product per-
formance is usually measured in terms of physical properties. We call these kinds
of physical properties, “degradation mechanisms”. From an engineering point of
view, the common degradation mechanisms include fatigue, creep, cracks, wear,
corrosion, oxidation, and weathering. Examples are loss of tread on rubber tires
and degradation of the active ingredient of a drug as a result of chemical reac-
tions with oxygen and water, and by microbial growth, etc. For some products,
it is possible to obtain degradation measurements over time and these measure-
ments may provide useful information to assess reliability. In a degradation test,
one obtains measurements of degradation at various time periods, prespecifies a
threshold level of degradation, and identifies failure as the time when the amount
of actual degradation for a product unit exceeds the threshold level. Some mo-
tivation can be found, for example, in Nelson (1981), Lu and Meeker (1993),
Tseng, Hamada and Chiao (1995) and Lu, Park and Yang (1997).

Although DT is better than ALT in analyzing highly reliable products, the
literature on DT is not abundant. Nelson ((1990), Chap. 11) reviewed the degra-
dation literature, provided general background on degradation models, and dis-
cussed some simple linear degradation models. See also Carey and Koenig (1991),
Doksum (1991), Lu and Meeker (1993), Boulanger and Escobar (1994), Shao and
Chow (1994), Tseng, Hamada and Chiao (1995) and Lu, Park and Yang (1997).

The main purposes of our study are to describe how the data from degrada-
tion tests can be used to assess reliability using the least squares method, and to
study theoretical properties of our estimation method.

In Section 2, we describe a nonlinear mixed-effect model for degradation data.
Estimators of percentiles of the failure time distribution are obtained using the
relation between the failure time distribution and the degradation distribution.
Section 3 is devoted to the study of the ordinary least squares estimators of the
parameters in the proposed nonlinear mixed-effect degradation model. Under
some regularity conditions, we show that the ordinary least squares estimators
are consistent and asymptotically normal. Based on the asymptotic results, we
construct approximate confidence intervals for percentiles of the failure time dis-
tribution. In Section 4, we consider the weighted least squares method, which
may provide more accurate results than the ordinary least squares method. In
Section 5, the proposed methods are applied to two different data sets. Some
simulation results are also presented. Some discussions are in Section 6.

2. Degradation Models

In a degradation test, product performance is obtained as it degrades over
time and different product units may have different performance. Thus, a statisti-
cal model for a degradation test consists of (1) a relationship between degradation
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measurement and time, and (2) a distribution that describes an individual prod-
uct unit’s characteristics. The general approach is to model the degradation of
the individual components using the same functional form, and the differences be-
tween individual components using random effects. Carey and Koenig (1991) con-
sidered the following sigmodial growth model: yi(t) = αi[1−exp(−(βit)γ)]+εi(t),
where yi(t) is the degradation of the ith unit up to time t, αi and βi are both
random effects, γ is fixed, εi(t) is the measurement error. Lu, Meeker and Esco-
bar (1996) used the following simple path model to describe this phenomenon:
y = θ + t + ε. Here y = log(observed degradation), t = log(time), θ is random
effect, and ε is the measurement error. Meeker, Escobar and Lu (1998) described
degradation reliability models that correspond to physical-failure mechanisms.
They proposed that the observed sample degradation path for a unit is a unit’s
actual degradation path plus error.

In this paper, we will focus on the following nonlinear random effects model
considered by Lu and Meeker (1993):

yij = η(tij ;α,βi) + εij, i = 1, . . . , n, j = 1, . . . ,mi ≤ s, (1)

where η is the actual level of degradation of the component under study and is a
given function nonlinear in (α,βi); tij is the time of the jth measurement for the
ith unit; yij represents the level of degradation actually observed at time tij; α

denotes the vector of fixed-effect parameters; βi represents the vector of the ith
unit random effects; εij ’s are i.i.d. measurement errors with mean 0 and variance
σ2

ε ; s is the prespecified largest number of measurements for all units. We assume
that {εij} and {βi} are independent and E[η(tij ;α,βi)η(ti′j′;α,βi′)] < ∞ for
all i, i′ = 1, . . . , n, j, j′ = 1, . . . ,mi or mi′ .

In general, there are three kinds of data in degradation tests:
1. No failure occurs in a test.
2. Some failures occur in a test and the degradation amounts of these failed

units can be observed, even if they have already reached the critical value
(the example in Lu and Meeker (1993) motivates this).

3. Some failures occur in a test, but the degradation amounts of these failed
units cannot be observed. In this case, the sample sizes mi are random due
to the occurrence of failures.

Since degradation tests are designed for products with long lives, the first case
occurs most frequently in degradation tests. There is no real difference in our
analysis between the first and the second case. For the third case, if the number
of failures is small, we consider analysis conditional on the random sample sizes
mi. However, if the number of failures is large, we need to use a model that
can accommodate information provided by the failures. Such a model is different
from model (1) and will not be discussed in this paper.
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Suppose that η in (1) is a continuous and differentiable function for any
fixed α and β. We assume that the degradation is not reversible. Hence, with-
out loss of generality, we assume that η(t;α,β) is a strictly increasing func-
tion of t. The component degrades over time and, when actual degradation η

reaches a prespecified critical value ηc, failure occurs (e.g., see Nelson (1990),
Doksum (1991), Lu and Meeker (1993), Tseng, Hamada and Chiao (1995) and
Lu, Meeker and Escobar (1996)). Therefore, the failure time of a product, de-
noted by T = T (ηc), is equal to the solution of η(t;α,β) = ηc. Furthermore, we
assume that there exist constants η1 and η2 satisfying η2 < ηc < η1 such that
P [ limt→0 η(t;α,β) < η2] = 1 and P [ limt→∞ η(t;α,β) > η1] = 1; that is, no
failure occurs before the test starts and the lifetime of a unit is finite. Under
these assumptions, η(t;α,β) = ηc has a unique and finite solution for any given
α and β.

There is an important relation between the failure time distribution and the
degradation distribution that is useful for estimating percentiles of the failure
time distribution.

Lemma 1. Let Fη(x|t) be the degradation distribution of η given time t, and
FT (t|x) be the failure time distribution of T = T (x) given degradation value x.
Under the previously described assumptions, FT (t|x) = 1 − Fη(x|t).

The percentiles of the failure time distribution are basic to reliability analysis.
Let tp be the 100pth percentile of the failure time distribution. One can obtain
percentiles of the failure time distribution using Lemma 1, i.e., tp can be obtained
by solving 1−Fη(ηc|t) = p in t. Suppose that the solution is tp = g(ηc,θ), where
g is a known function and θ is a vector of unknown parameters. If θ is estimated
by θ̂n based on yij’s, then tp is estimated by t̂p = g(ηc, θ̂n). In some cases (see
Example 1), g is an explicit function of ηc and θ, and thus t̂p has a closed form.
Otherwise, the problem has to be solved numerically.

Example 1. Consider the exponential growth curve η(t;α0, α1, β) = α0−α1e
−βt,

where α0 > 0 and α1 > 0 are fixed effect parameters, β is a random effect
distributed as N(µ, σ2) with σ � µ so that P [β ≤ 0] is negligible, t is the
measurement time. Then

Fη(ηc|t) = P

[
β ≤ −1

t
ln

(
α0 − ηc

α1

)]
= Φ


 −1

t ln
[

α0−ηc

α1

]
− µ

σ


 ,

where Φ(·) is the distribution function of the standard normal distribution.
Setting Φ((−t−1 ln[(α0 − ηc)/α1] − µ)/σ) = 1 − p, we find

tp =
ln

(
α1

α0−ηc

)
µ + zpσ

,
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where zp is the upper p percentile of the standard normal distribution. Thus,
one can estimate tp following estimation of α0, α1, µ and σ.

It is essential to estimate θ. In the next two sections, we show how this can
be done through fitting model (1), using the least squares method.

3. The Ordinary Least Squares Estimators

If the distributions of βi and εij in (1) are in parametric families, then
we may apply likelihood-based methods. Under model (1), however, likelihood-
based methods involve difficult computations. We consider the least squares
method, assuming that the distribution of β is in a parametric family but without
imposing any distributional assumption on εij . Suppose that the distribution of
β is π(β|φ), where π is a known function and φ is an unknown q × 1 parameter
vector. Let θ = (α,φ)′ and h(tij ;θ) = Eβ[η(tij ;α,β)]. Define yi = (yi1, . . . ,

yimi)
′, hi(θ) = (h(ti1;θ), . . . , h(timi ;θ))′ and ei = (ei1, . . . , eimi)

′. Then, model
(1) can be written as the following heteroscedastic nonlinear model:

yi = hi(θ) + ei, i = 1, . . . , n. (2)

Denote the parameter space by Θ and the unknown true parameter by θ0.
The ordinary least squares estimator (OLSE) of θ0 based on data {yi}n

i=1 is a
vector θ̂n ∈ Θ minimizing

Qn(θ) =
1
n

n∑
i=1

(yi − hi(θ))′(yi − hi(θ)). (3)

Example 1. (continued). Under the exponential growth curve η(t;α0, α1, β) =
α0 − α1e

−βt, we have h(t;θ) = Eβ(α0 − α1e
−βt) = α0 − α1e

−µt+ 1
2
σ2t2 .

Theorem 1.
(i) Under conditions (C1)-(C5) stated in Appendix A, θ̂n −→ θ0 a.s. as n →

∞.
(ii) Under conditions (C1)-(C9) stated in Appendix A,

D−1/2
n (θ0)(θ̂n − θ0) −→ N(0, Ip+q) in distribution, (4)

where Dn(θ) = A−1
n (θ)(

∑n
i=1 H i(θ)Σi(θ)H ′

i(θ))A−1
n (θ), H i(θ)=∂h′

i(θ)/
∂θ, An(θ) =

∑n
i=1 H i(θ)H ′

i(θ), and Σi(θ) is the covariance matrix of ei.

Proof. The proof of (i) is given in Appendix B. We now show (4). Note that

∂Qn(θ)
∂θ

=
2
n

n∑
i=1

Hi(θ)(hi(θ) − hi(θ0) − ei),
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and
∂2Qn(θ)
∂θ∂θ′ =

2
n

n∑
i=1

(H i(θ)H ′
i(θ) + Gi(θ)),

where Gi(θ) =
∑mi

j=1[h(tij ;θ) − yij]Kij(θ) and Kij(θ) = ∂2h(tij ;θ)/∂θ∂θ′. By
(i), θ̂n is a consistent estimator of θ0. Hence, ∂Qn(θ̂n)/∂θ = 0 on {‖θ̂n−θ0‖ ≤ δ}
with some δ > 0. By the Mean-Value Theorem,

∂Qn(θ0)
∂θ

=
∂2Qn(θ∗

n)
∂θ∂θ′ (θ0 − θ̂n), (5)

where θ∗
n is a point on the line segment between θ0 and θ̂n. Thus, substituting the

first two derivatives of Qn(θ) into (5), we have
∑n

i=1 H i(θ0)ei = BnAn(θ0)(θ̂n−
θ0), where Bn = An(θ∗

n)A−1
n (θ0) +

∑n
i=1 Gi(θ∗

n)A−1
n (θ0). Under (C7) and the

consistency of θ̂n, the first term of Bn converges to Ip+q in probability. The
second term of Bn is equal to

n∑
i=1

mi∑
j=1

[h(tij ;θ∗
n) − h(tij ;θ0)]K ij(θ∗

n)A−1
n (θ0) −

n∑
i=1

mi∑
j=1

eijKij(θ∗
n)A−1

n (θ0). (6)

The first term of (6) converges to 0 in probability by (C7), (C8), the Cauchy-
Schwarz inequality, and the fact that θ∗

n → θ0 in probability. The second term of
(6) is a (p+ q)× (p+ q) matrix, whose (r, s)th entry converges to 0 in probability
uniformly on C = {‖θ−θ0‖ ≤ δ}, by (C7), (C8), and Corollary A of Wu (1981).
Hence, we showed that Bn → Ip+q in probability.

To complete the proof, we need to show that

D−1/2
n (θ0)A−1

n (θ0)
n∑

i=1

H i(θ0)ei −→ N(0, Ip+q) in distribution. (7)

Let � be a fixed (p + q)-vector. It suffices to show that

�′D−1/2
n (θ0)A−1

n (θ0)
n∑

i=1

H i(θ0)ei −→ N(0, �′�) in distribution.

Let �′i =�′D−1/2
n (θ0)A−1

n (θ0)H i(θ0). We have �′i�i =�′D−1/2
n (θ0)A−1

n (θ0)H i(θ0)
H ′

i(θ0) A−1
n (θ0)D−1/2

n (θ0)�, and
∑n

i=1 �′i�i = �′D−1/2
n (θ0)A−1

n (θ0)D−1/2
n (θ0)�.

By Courant’s Theorem (see Graybill (1983), Theorem 12.4.14) and Theorem 3.2.4
in Graybill (1983), we have

max
i

�′i�i∑n
i=1 �′i�i

≤ max
i

ch1[A−1
n (θ0)H i(θ0)H ′

i(θ0)].
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This last converges to 0 because of (C9). Thus Lindberg’s condition holds and
(7) follows, completing the proof.

The matrix Dn(θ0) in Theorem 1 is the asymptotic covariance matrix of θ̂n.
For inference, we need to estimate this matrix. Consider the following estimator
of Dn(θ0):

D̂n = A−1
n (θ̂n)

n∑
i=1

H i(θ̂n)Σ̂iH
′
i(θ̂n)A−1

n (θ̂n), (8)

where Σ̂i = rir
′
i and ri = yi − hi(θ̂n) is the ith residual vector.

Theorem 2. Under conditions (C1)-(C5), (C10) and (C11) stated in Appendix
A,

n(D̂n − Dn(θ0)) −→ 0 a.s.

The proof of Theorem 2 is given in Appendix C.
We now return to degradation analysis, i.e., using degradation data to make

inference about percentiles of the failure time distribution. From Lemma 1, tp is
a solution of 1 − Fη(ηc|t) = p and is a function of ηc and θ = (α,φ)′, say tp =
g(ηc,θ). Substituting the OLSE θ̂n for θ, we obtain an estimate t̂p = g(ηc, θ̂n).

We now consider the problem of constructing a confidence interval for tp.
Since tp is a function of θ, the asymptotic normality of t̂p can be derived by the
Taylor expansion and the asymptotic normality of θ̂n. Hence, an approximate
100(1 − α)% confidence interval for tp is

(
t̂p − zα

2
D̂1/2

n,g , t̂p + zα
2
D̂1/2

n,g

)
, (9)

where

D̂n,g =

[
∂g(ηc, θ̂n)

∂θ

]′
D̂n

[
∂g(ηc, θ̂n)

∂θ

]

and D̂n is defined in (8).
When Fη(ηc|t) has no closed form, we still can use numerical calculation to

compute t̂p = g(ηc, θ̂n) and the confidence interval (9).

4. The Weighted Least Squares Estimators

Consider the model at (2). Let Σi(θ) denote the covariance matrix of ei.
The (j, k)th entry of Σi(θ) is

σijk(θ) =




ση(tij ;θ) + σ2
ε if j = k

ση(tij , tik;θ) if j �= k,
(10)
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where ση(tij ;θ) = Var βi
[η(tij ;α,βi)] and ση(tij , tik;θ) = Cov βi

[η(tij ;α,βi),
η(tik;α,βi)].

Example 1. (continued). Recall that η(tij ;α0, α1, βi) = α0 − α1e
−βitij . Then

ση(tij , tik;θ) = Cov βi
(α0 − α1e

−βitij , α0 − α1e
−βitik)

= α2
1e

−µ(tij+tik)+ 1
2
σ2(t2ij+t2ik)(eσ2tij tik − 1).

Therefore,

σijk(θ) =




α2
1e

−2µtij+σ2t2ij (eσ2t2ij − 1) + σ2
ε , if j = k

α2
1e

−µ(tij+tik)+ 1
2
σ2(t2ij+t2

ik
)(eσ2tijtik − 1), if j �= k.

Note that the ordinary least squares criterion (3) weights each observation
equally. However, (10) indicates that the data do not have equal variances. Under
such a case, the OLSE may be improved by a weighted least squares estimator
(WLSE) of θ0. The weighted least squares method involves choosing adequate
weights. Suppose we have consistent estimators Σ̂i of the covariance matrices
Σi(θ0). Then one can obtain the WLSE θ̂

w

n of θ0 by minimizing

Q̂n(θ) =
1
n

n∑
i=1

(yi − hi(θ))′Σ̂
−1
i (yi − hi(θ)) (11)

over θ ∈ Θ.
Davidian and Giltinan (1993) reviewed some existing methods for estimat-

ing parameters in the nonlinear random coefficient model. A simple extension of
generalized least squares procedure is also proposed. However, there is no theo-
retical result discussed in their paper. In this section, we propose two WLSE’s
and discuss their asymptotic properties.

We first consider a special case. Model (2) is said to be balanced if all test
units have the same number of measurements and the measurement times of all
units are the same. That is, mi = m and tij = tj for all i = 1, . . . , n. For a
balanced model, Σi(θ) = Σ(θ) and hi(θ) = h(θ) for all i = 1, . . . , n. Using the
ideas in Gallant (1975, 1987) and Phillips (1976), we consider the estimator of
Σ(θ0) as follows: Σ̂ = n−1 ∑n

i=1 rir
′
i, where ri = yi −h(θ̂n) and θ̂n is the OLSE

of θ0. Using the law of large numbers and the continuity of h(θ), one can easily
show that Σ̂ is consistent for Σ(θ0). The weighted least squares estimator θ̂

w
n is

obtained by minimizing

Q̂n(θ) =
1
n

n∑
i=1

(yi − h(θ))′Σ̂
−1

(yi − h(θ)).
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We have the following result.

Theorem 3.
(i) Under conditions (C1)-(C5) and (C12) stated in Appendix A, θ̂

w
n −→ θ0 a.s.

(ii) (Dw
n (θ0))

−1/2 (θ̂
w

n − θ0) −→ N(0, Ip+q) in distribution, where Dw
n (θ) =

n−1[H(θ) Σ−1(θ)H ′(θ)]−1 and H(θ) = ∂h′(θ)/∂θ.
(iii) Let D̂

w
n = n−1[H(θ̂

w
n )Σ̂

−1
w H ′(θ̂

w
n )]−1, where Σ̂w = n−1 ∑n

i=1(r
w
i )(rw

i )′ and
rw

i = yi − h(θ̂
w
n ). Then n(D̂

w
n − Dw

n (θ0)) −→ 0 a.s.

The proof of Theorem 3 can be found in Wu (1996).
We now consider the unbalanced case. The main difficulty is to obtain a

consistent estimator of Σi(θ0). As the method we used for the balanced case
cannot be applied.

Let V i(θ), i = 1, . . . , n, be the mi×mi covariance matrices where the (j, k)th
entry of V i(θ) is ση(tij , tik;θ). Then Σi(θ) = σ2

εImi + V i(θ), i = 1, . . . , n. We
consider the following estimator of Σi(θ):

Σ̂i = σ̂2
εImi + V i(θ̂n), (12)

where σ̂2
ε = m−1n−1 ∑n

i=1

[
r′

iri − tr
(
V i(θ̂n)

)]
, m = n−1 ∑n

i=1 mi, θ̂n is the

OLSE, and ri = yi − hi(θ̂n). Under some weak conditions we can show that
Σ̂i → Σi(θ0) a.s. uniformly in i (details are given in Wu (1996)).

We propose the weighted least squares estimate θ̂
w
n of θ0 obtained by mini-

mizing (11) using Σ̂i in (12). We have the following theorem.

Theorem 4.
(i) Under conditions (C5) and (C13)-(C16) stated in Appendix A, θ̂

w
n −→ θ0

a.s.
(ii) Under conditions (C5), (C13)-(C15) and (C17)-(C20), we have (Dw

n (θ0))−1/2

(θ̂
w
n−θ0)−→N(0, Ip+q) in distribution, where Dw

n (θ)=[
∑n

i=1 Hi(θ)Σ−1
i (θ)

H ′
i(θ)]−1.

(iii) Let D̂
w
n = [

∑n
i=1 H i(θ̂

w
n )(Σ̂

w
i )−1H ′

i(θ̂
w
n )]−1, where Σ̂

w
i = σ̂2

ε,wImi +V i(θ̂
w
n ).

Then n(D̂
w
n − Dw

n (θ0)) −→ 0 a.s.

The proof of Theorem 4 can be found in Wu (1996).
For the percentiles of the failure time distribution, we can estimate tp by

t̂wp = g(ηc, θ̂
w
n ) and obtain the following approximate 100(1 − α)% confidence

interval for tp: (
t̂wp − zα

2
(D̂w

n,g)
1/2 , t̂wp + zα

2
(D̂w

n,g)
1/2

)
,

where

D̂w
n,g =

[
∂g(ηc, θ̂

w
n )

∂θ

]′
D̂

w
n

[
∂g(ηc, θ̂

w
n )

∂θ

]
.
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5. Examples and Simulations

We apply the proposed methods to two degradation data sets. For each data
set, we also carry out simulations to examine the performance of the proposed
methods.

5.1. Data analysis for metal film resistor example

Our first example is the resistance degradation data of metal film resistor
from Zhuang (1994). There are 200 resistors in this experiment and each has
repeated measurements of resistance taken at five different times: 0, 500, 1000,
2000, and 4600 hours. Figure 1 shows the sample paths of these test units.

time (hour)

re
si

st
a
n
ce

2
3
8

2
3
9

2
4
0

2
4
1

2
4
2

2
4
3

0 500 1000 2000 4600

Figure 1. The sample degradation paths of metal film resistors.

Because the resistance of metal film resistor is increasing over time, we say a
failure occurs when the ratio of resistance at time t to initial resistance is beyond
1.02, as did Zhuang. We notice that the resistance of metal film resistor degrades
very slowly. The maximum observed ratio of y(t)/y(0) in this data set is only
1.0066 after a 4600-hour experiment, where y(0) is the observed initial resistance
and y(t) is the observed resistance at time t. There is no failure in this test. But
since all resistors were observed at five different times and there are no missing
values, we are dealing with a balanced degradation data analysis.

We consider the ratios y(tij)/y(ti1), i = 1, . . . , 200, j = 1, . . . , 5, where ti1 =
0. Note that the ratios are always equal to 1 when j = 1. Figure 2 is a plot
of the ratios versus time, connected by straight lines. We found that the ratios
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of all test units look like concave functions of time, except the 41st resistor. In
addition, the ratio of the 47th resistor decreases between 500 and 1000 hours.
This may be a mistake when data were collected. We decided to delete the data
on these two test units from our analysis leaving 198 resistors.

We consider the following model, similar to that in Zhuang (1994):

yij =

{
0, i = 1, . . . , 198, j = 1,
βit

α
j + εij , i = 1, . . . , 198, j = 2, . . . , 5,

(13)

where yij = (y(tij)/y(ti1)) − 1, tj is the measurement time, α is a fixed effect

parameter, and εij
iid∼ N(0, σ2

ε ). The random effects βi’s are independently dis-
tributed as an exponential distribution with mean λ. We can get an explicit form
of h(t;θ):

h(tj ;θ) = Eβi
[η(tj ;βi, α)] = λtαj .

Therefore, tp also has an explicit form:

tp =
( −ηc

λ log(p)

)1/α

.
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Figure 2. The sample degradation paths of metal film resistors after taking
ratios y(t)/y(0).

Following Section 3, the OLSE of λ and α, and the corresponding estimated
asymptotic covariance matrix are[

λ̂

α̂

]
=

[
0.0021
0.4626

]
, and D̂n =

[
0.012 −1.233

−1.233 272.860

]
× 10−7,
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respectively. Table 1 lists point estimates and 90% confidence intervals for some
percentiles of the failure time distribution. Figure 3 is the plot of these point
estimates and confidence intervals, connected by straight lines. The confidence
intervals are narrow when p is close to 0. As p goes to 1, the confidence intervals
become wide. This can be explained by the fact that degradation data provide
more information about the lower tail of the failure time distribution than the
upper tail.

Table 1. Point estimates and 90% confidence intervals for percentiles of the
failure time distribution (based on OLSE).

p t̂p lower limits upper limits
(thousands) (thousands) (thousands)

0.05 12.51 11.95 13.07
0.10 22.10 21.05 23.15
0.20 47.94 45.33 50.55
0.30 89.79 84.23 95.34
0.40 162.01 150.68 173.35
0.50 296.19 272.80 319.57
0.60 572.92 521.74 624.10
0.70 1245.39 1118.24 1372.54
0.80 3432.42 3022.83 3842.01
0.90 17381.29 14813.75 19948.83
0.95 82382.92 67925.09 96840.75
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Figure 3. Point estimates and 90% confidence intervals for percentiles of
the failure time distribution (based on OLSE). The solid line is the point
estimate. The dotted lines are the 90% confidence intervals.
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We also analyzed the data by using the weighted least squares method discussed in
Section 4. The results are almost the same and are omitted.

5.2. Simulation results for metal film resistor example

It is important to examine how well our proposed methods work for assess-
ing reliability. We simulated 1000 samples from the model at (13). The true
parameters (λ, α) are equal to (0.0021, 0.4626), our OLSE in the example. The
degradation data of an individual test unit was simulated by generating a random
exponential variable with mean 0.0021 and calculating the amount of degrada-
tion, at specified times, using this variable. A random normal error was then
generated with mean zero and standard deviation 0.0001 (the estimate of stan-
dard deviation in our example is smaller than 10−5). The former is then added to
the latter to yield the simulation data. The simulation samples were generated
by using the UNI and RNOR subroutines in the FORTRAN Library CMLIB.

Table 2. Simulation results for percentiles of the failure time distribution.

OLSE

p true tp
means of

t̂p
bias

relative

bias

means of the

confidence lengths
coverage

0.05 12.18 12.43 0.24 0.0204 6.21 0.896

0.10 21.52 21.96 0.43 0.0204 10.98 0.897

0.20 46.67 47.62 0.94 0.0203 23.85 0.897

0.30 87.42 89.20 1.77 0.0203 44.73 0.897

0.40 157.74 160.95 3.21 0.0203 80.83 0.900

0.50 288.38 294.25 5.87 0.0204 148.02 0.901

0.60 557.84 569.21 11.36 0.0204 286.94 0.902

0.70 1212.66 1237.40 24.73 0.0204 625.53 0.901

0.80 3342.34 3410.69 68.34 0.0204 1731.45 0.900

0.90 16926.30 17274.25 347.95 0.0206 8839.44 0.898

0.95 80231.56 81892.21 1660.65 0.0207 42284.28 0.899

WLSE

p true tp
means of

t̂p
bias

relative

bias

means of the

confidence lengths
coverage

0.05 12.18 12.43 0.24 0.0204 6.18 0.894

0.10 21.52 21.96 0.43 0.0204 10.92 0.895

0.20 46.67 47.62 0.94 0.0203 23.73 0.895

0.30 87.42 89.20 1.77 0.0203 44.50 0.895

0.40 157.74 160.95 3.21 0.0203 80.42 0.895

0.50 288.38 294.25 5.87 0.0204 147.28 0.899

0.60 557.84 569.21 11.36 0.0204 285.49 0.899

0.70 1212.66 1237.40 24.73 0.0204 622.38 0.898

0.80 3342.34 3410.69 68.34 0.0204 1722.72 0.898

0.90 16926.30 17274.25 347.95 0.0206 8794.90 0.894

0.95 80231.56 81892.21 1660.65 0.0207 42071.31 0.898
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Table 2 presents the simulation results for some percentiles of the failure
time distribution using the ordinary least squares and weighted least squares
methods. The means of the confidence lengths of percentiles using the weighted
least squares method are slightly smaller than those using the ordinary least
squares method. The coverage probabilities of both methods are close to their
desired level of 0.9.

5.3. Data analysis for a metal fatigue example

In this section, we will discuss the example of fatigue-crack-growth data from
Lu and Meeker (1993), see Figure 4. There are 21 test units in this experiment,
each with the same initial crack length of 0.9 inches. We say a failure occurs
when the crack length is beyond 1.6 inches as did Lu and Meeker (1993). There
are 13 measurement times in this test. However, only 13 units have complete
records of crack lengths at 13 different times, an unbalanced case.
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Figure 4. The fatigue crack length data from Lu and Meeker (1993).

Lu and Meeker (1993) suggested the nonlinear mixed-effect model

yij = − 1
θ2i

log(1 − 0.9θ2iθ1iθ2itj) + εij , i = 1, . . . , 21, j = 1, . . . ,mi, (14)

where yij = log(observed crack length at time tj/0.9), tj is the measurement
time (in million cycles), the coefficients (θ1i, θ2i)′ are random effects. This model
was derived from the Paris Law in material science. In the following analy-
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sis, we suppose that θ1i and θ2i are independently distributed as N(µ1, σ
2) and

N(µ2, σ
2), respectively.

Note that h(tj ;θ) = E[η(tj ; θ1i, θ2i)], where θ = (µ1, σ, µ2)′, does not have
a closed form and numerical integration is required to compute the OLSE and
WLSE. We used Monte Carlo integration method to compute h(tj ;θ). It re-
quired about 35 minutes computer-time to get the following results on a DEC-
workstation.

The OLSE of the unknown parameters µ1, σ and µ2 and the corresponding
estimated asymptotic covariance matrix are
 µ̂1

σ̂

µ̂2


 =


3.6572

1.0771
1.5875


 , and D̂n =


 22.2862 −3.3097 −11.3650

−3.3097 73.035 144.2751
−11.3650 144.2751 367.2063


 × 10−3,

respectively. Table 3 shows point estimates and 90% confidence intervals for some
percentiles of the failure time distribution. Figure 5 is the plot of these estimates
and confidence intervals. The median of failure time distribution is about 0.1245
million cycles which is close to the median of 0.12 in Lu and Meeker (1993).

Table 3. Point estimates and 90% confidence intervals for percentiles of the
failure time distribution (based on OLSE).

p t̂p lower limits upper limits
0.139 0.09 0.0812 0.0988
0.238 0.10 0.0897 0.1103
0.348 0.11 0.0972 0.1228
0.456 0.12 0.1041 0.1359
0.554 0.13 0.1105 0.1495
0.638 0.14 0.1167 0.1633
0.708 0.15 0.1229 0.1771
0.764 0.16 0.1293 0.1907
0.809 0.17 0.1360 0.2040
0.843 0.18 0.1432 0.2168
0.870 0.19 0.1507 0.2293
0.891 0.20 0.1587 0.2413
0.908 0.21 0.1670 0.2530
0.920 0.22 0.1755 0.2645

Since this is an unbalanced case, we use the weights described in (12) to
obtain the WLSE and the estimated covariance matrix:

 µ̂w
1

σ̂w

µ̂w
2


 =


3.6712

0.9818
1.5680


 , and D̂

w
n =


47.8279 8.0744 1.7516

8.0744 80.5848 3.4615
1.7516 3.4615 61.5018


 × 10−3.
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From Table 4 and Figure 6, the median of the failure time distribution is
about 0.1240 million cycles. It is very close to the median of 0.1245 obtained by
using the ordinary least squares method. However, the confidence intervals for
percentiles of the failure time distribution based on the ordinary least squares
method are wider than those based on the weighted least squares method.

Table 4. Point estimates and 90% confidence intervals for percentiles of the
failure time distribution (based on WLSE).

p t̂p lower limits upper limits
0.120 0.09 0.0812 0.0988
0.222 0.10 0.0896 0.1104
0.339 0.11 0.0983 0.1217
0.457 0.12 0.1066 0.1334
0.564 0.13 0.1142 0.1458
0.656 0.14 0.1212 0.1588
0.731 0.15 0.1280 0.1720
0.790 0.16 0.1348 0.1852
0.836 0.17 0.1420 0.1980
0.870 0.18 0.1497 0.2103
0.897 0.19 0.1579 0.2221
0.916 0.20 0.1663 0.2337
0.931 0.21 0.1750 0.2450
0.942 0.22 0.1837 0.2563
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Figure 5. Point estimates and 90% confidence intervals for percentiles of
the failure time distribution (based on OLSE). The solid line is the point
estimate. The dotted lines are the 90% confidence intervals.
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5.4. Simulation results for metal fatigue example

To study the performance of our approach in this example, we simulated 500
samples from (14) with the values of parameters (µ1, σ, µ2)′ = (3.6572, 1.0771,
1.5875)′. The samples were simulated by using the same method described in Sec-
tion 5.2, with random exponential variables replaced by independently random
normal variables.

The simulation results are shown in Table 5. The coverage probabilities of
percentiles of the failure time distribution are close to the desired level of 0.9.
Since tp does not have a closed form, we could get t̂p by solving

∫ t̂p
0

∫ ∞
−∞ fθ1,θ2

(v(u, t), u)|J |dudt = p, where v(u, t) = (1 − e−uηc)/(0.9utu) and J = (1 −
e−uηc)/(0.9ut2u). We acquired t̂p first and obtained the p by using numerical
integration. Thus, we can get the point estimates and confidence intervals for
the tp. However, the computed p’s for a given t̂p are not the same in these 500
simulated samples, since the estimates of θ are different. Lengths of confidence
intervals are not computed due to complexity of computation.
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Figure 6. Point estimates and 90% confidence intervals for percentiles of
the failure time distribution (based on WLSE). The solid line is the point
estimate. The dotted lines are the 90% confidence intervals.

6. Discussion

We use degradation analysis to estimate the failure time distribution and
its percentiles in the case where no or very few failures occur in a life test. We
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mainly cover three basic elements — the nonlinear mixed-effect model, least
squares methods, and the asymptotic properties of the least squares estimators.

The nonlinear functional form gives us a flexible way to build the relationship
between degradation measurements and times, and the random effects describe
individual units’ characteristics in a test. The sensitivity of the functional form
of η in (1) and the random effects distribution π are not addressed in this paper
but will be in a future study.

We adopt ordinary and weighted least squares methods, which are compu-
tationally much simpler than likelihood-based methods. The WLSE is asymp-
totically more efficient than the OLSE but is sensitive to the choice of weights,
and its efficiency may be affected by the error in estimating Σi(θ0) especially in
unbalanced cases. Thus, it is a good practice to apply both methods in a given
problem.

Table 5. Simulation results for percentiles of the failure time distribution.

p true tp
OLSE

coverage
WLSE

coverage
0.2383 0.10 0.878 0.864
0.3480 0.11 0.894 0.886
0.4559 0.12 0.900 0.894
0.5539 0.13 0.906 0.904
0.6381 0.14 0.920 0.906
0.7078 0.15 0.920 0.910
0.7640 0.16 0.910 0.904
0.8085 0.17 0.902 0.898
0.8433 0.18 0.894 0.882
0.8703 0.19 0.890 0.878

Two real data sets are analyzed in Section 5 to illustrate our approach. From
the simulation results in Section 5, the coverage probabilities of our confidence
intervals are close to the desired level. This suggests that our method works well
if model assumptions are reasonable.

Appendix A. Regularity Conditions

(C1) Θ is a compact subset of 	p+q.
(C2) The h(tij ;θ) are continuous functions in θ ∈ Θ.
(C3) The Σi(θ) are positive definite matrices.
(C4) limn→∞ n−1 ∑n

i=1 h′
i(t)hi(s) exists uniformly for all t and s in Θ, and

Q(θ) = limn→∞ n−1 ∑n
i=1(hi(θ) − hi(θ0))′(hi(θ) − hi(θ0)) has a unique

minimum at θ = θ0.
(C5) supi E‖ei‖2+δ < ∞ for some δ > 0.
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(C6) Hi(θ) and Kij(θ) are continuous functions for all i and j.
(C7) (i) For sufficiently large n, the inverse of An(θ0) exists, A−1

n (θ0) =
O(n−1), and An(θ0) = O(n).

(ii) An(θ)A−1
n (θ0) converges to the identity matrix Ip+q as n → ∞ and

θ → θ0.
(C8) (i) There exists δ > 0 such that

lim sup
n→∞

1
n

n∑
i=1

sup
‖θ−θ0‖≤δ

(
∂2hi(θ)
∂θr∂θs

)′ (
∂2hi(θ)
∂θr∂θs

)
< ∞,

for r, s = 1, . . . , p + q.
(ii) If for a pair (r, s), r, s = 1, . . . , p + q,

∞∑
i=1

sup
‖θ−θ0‖≥δ

(
∂2hi(θ)
∂θr∂θs

)′ (
∂2hi(θ)
∂θr∂θs

)
= ∞,

then there exists an M independent of i such that

sup
v �=u, u,v∈C

∥∥∥∥∂2hi(u)
∂θr∂θs

− ∂2hi(v)
∂θr∂θs

∥∥∥∥
‖u − v‖ ≤ M sup

u∈C

∥∥∥∥∥∂2hi(u)
∂θr∂θs

∥∥∥∥∥ ,

for all i, where C = {θ ∈ Θ, ‖θ − θ0‖ ≤ δ}, δ > 0.
(C9) maxi ch1(A−1

n (θ0)H i(θ0)H ′
i(θ0)) → 0 as n → ∞, where ch1(·) denotes

the largest eigenvalue of a square matrix.
(C10) supi

∑p+q
r=1 ‖∂hi(θ0)/∂θr‖ ≤ c < ∞, where c is a positive constant.

(C11) {∂hi(θ)/∂θr}∞i=1, r = 1, . . . , p + q, are equicontinuous in θ ∈ C = {‖θ −
θ0‖ ≤ δ}, where δ > 0.

(C12) Q(θ,θ0) = (h(θ0) − h(θ))′Σ−1(θ0)(h(θ0) − h(θ)) has a unique minimum
at θ = θ0.

(C13) The ση(tij, tik;θ) are continuous functions in T × T ×Θ, where T and Θ
are compact sets.

(C14) The hi(θ) = (h(ti1;θ), . . . , h(timi ;θ))′ are continuous function in T × Θ.
(C15) Σ−1

i (θ), i = 1, . . . , n, are continuous functions in a compact set T ×T ×Θ.
(C16) limn→∞ n−1 ∑n

i=1 h′
i(t)Σ

−1
i (θ0)hi(s) exist uniformly for all t, s and θ0 in

Θ, and

Q(θ,θ0) = lim
n→∞

1
n

n∑
i=1

(hi(θ0) − hi(θ))′Σ−1
i (θ0)(hi(θ0) − hi(θ))

has a unique minimum at θ = θ0.
(C17) The first two derivatives of hi(θ) exist and are continuous in (t,θ) ∈ T×Θ.
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(C18) (i) For sufficiently large n, the inverse of Dw
n (θ0) exists, Dw

n (θ0) =
O(n−1) and (Dw

n (θ0))
−1 = O(n).

(ii) Dw
n (θ) (Dw

n (θ0))
−1 converges to the identity matrix Ip+q as n → ∞

and θ → θ0.
(C19) There exist positive constants ν and ρ such that, for all i,

ν ≤ ( eigenvalues of Σi(θ0)) ≤ ρ.

(C20) maxi tr[H ′
i(θ0)Dw

n (θ0)H i(θ0)] → 0 as n → ∞, where tr(·) is the trace of
a square matrix.

Appendix B. Proof of Theorem 1 (i)

It follows from (C5) and the strong law of large numbers that

1
n

n∑
i=1

(e′
iei − tr(Σi(θ0))) −→ 0 a.s.

Let ω = {ei}∞i=1 be fixed such that n−1 ∑n
i=1(e

′
iei − tr(Σi(θ0))) → 0, and let

θn = θ̂n(ω) be the ordinary least squares estimator. Suppose θ̃ is a limit point
of {θn}∞n=1. Then, by the compactness of Θ, there exists a subsequence {nk}∞k=1

such that limk→∞ θnk
= θ̃. Let ∆n = n−1 ∑n

i=1 tr(Σi(θ0)). Then, by (C5),
{∆n}∞n=1 is bounded. Thus, there exists a subsequence {nj}∞j=1 ⊂ {nk}∞k=1 such
that ∆ = limj→∞ ∆nj exists. By extending Theorem 4 of Jennrich (1969), we
have n−1

j

∑nj

i=1(hi(θ0) − hi(θ))′ei −→ 0 uniformly for all θ ∈ Θ. Then

Qnj(θ) =
1
nj

nj∑
i=1

(hi(θ0) − hi(θ))′(hi(θ0) − hi(θ))

+
2
nj

nj∑
i=1

(hi(θ0) − hi(θ))′ei +
1
nj

nj∑
i=1

e′
iei

−→ Q(θ) + ∆

uniformly for all θ ∈ Θ as j → ∞. Hence, limj→∞ Qnj (θnj) = Q(θ̃) + ∆.
Since θnj is an ordinary least squares estimator, we have Qnj(θnj ) ≤ Qnj (θ0) =
1
nj

∑nj

i=1 e′
iei. Let j → ∞ to find Q(θ̃) + ∆ ≤ ∆. Thus, Q(θ̃) = 0. Since Q has

a unique minimum at θ0, θ̃ = θ0. Hence, θn → θ0 as n → ∞. This result holds
for almost every {ei}∞i=1. Therefore, θ̂n → θ0 a.s.

Appendix C. Proof of Theorem 2

It suffices to show

nA−1
n (θ̂n)

n∑
i=1

Hi(θ̂n)(rir
′
i − Σi(θ0))H ′

i(θ̂n)A−1
n (θ̂n) −→ 0 a.s., (C.1)
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nA−1
n (θ̂n)

n∑
i=1

[H i(θ̂n)Σi(θ0)H ′
i(θ̂n)−H i(θ0)Σi(θ0)H ′

i(θ0)]A−1
n (θ̂n) −→ 0 a.s.,

(C.2)
and

nA−1
n (θ̂n)

n∑
i=1

H i(θ0)Σi(θ0)H ′
i(θ0)A−1

n (θ̂n) − nDn(θ0) −→ 0 a.s. (C.3)

Proof of (C.1). First, we prove that

1
n

n∑
i=1

H i(θ̂n)(eie
′
i −Σi(θ0))H ′

i(θ̂n) −→ 0 a.s. (C.4)

It suffices to show that the (r, s)th entry of this (p + q) × (p + q) matrix,

1
n

n∑
i=1

mi∑
j=1

mi∑
k=1

(eijeik − σijk(θ0))
∂h(tij ; θ̂n)

∂θr

∂h(tik; θ̂n)
∂θs

−→ 0 a.s.

Under (C5),

1
n

n∑
i=1

mi∑
j=1

mi∑
k=1

(eijeik − σijk(θ0))
∂h(tij ; θ̂n)

∂θr

∂h(tik; θ̂n)
∂θs

− 1
n

n∑
i=1

mi∑
j=1

mi∑
k=1

(eijeik − σijk(θ0))
∂h(tij ;θ0)

∂θr

∂h(tik;θ0)
∂θs

−→ 0 a.s.,

by strong consistency of θ̂n and the Cauchy-Schwarz inequality. Moreover, by
(C5), (C10), and the Strong Law of Large Numbers,

1
n

n∑
i=1

mi∑
j=1

mi∑
k=1

(eijeik − σijk(θ0))
∂h(tij ;θ0)

∂θr

∂h(tik;θ0)
∂θs

−→ 0 a.s.

Hence, (C.4) holds uniformly for θ in Θ by (C11). Under (C7), we have

nA−1
n (θ̂n)

n∑
i=1

H i(θ̂n)(eie
′
i − Σi(θ0))H ′

i(θ̂n)A−1
n (θ̂n) −→ 0 a.s. (C.5)

Second, from the Mean Value Theorem, ui = hi(θ0)−hi(θ̂n) = H ′
i(θ

∗
n)(θ0−θ̂n),

where θ∗
n is a point on the line segment between θ0 and θ̂n. Thus, the (r, s)th

entry of the mi × mi matrix uiu
′
i is

uiruis =
p+q∑
j=1

p+q∑
k=1

(θ0j − θ̂nj)(θ0k − θ̂nk)

[
∂h(tir;θ∗

n)
∂θj

∂h(tis;θ∗
n)

∂θk

]

≤ ‖θ0 − θ̂n‖2


p+q∑

j=1

(
∂h(tir;θ∗

n)
∂θj

)2 p+q∑
k=1

(
∂h(tis;θ∗

n)
∂θk

)2



1/2

,
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by the Cauchy-Schwarz inequality. Thus, under (C10), there is a constant M

such that
max
i≤n

uiruis ≤ M‖θ0 − θ̂n‖2 −→ 0 a.s.

Hence,

max
i≤n

H i(θ̂n)uiu
′
iH

′
i(θ̂n) ≤ M‖θ0 − θ̂n‖2H i(θ̂n)J iH

′
i(θ̂n) −→ 0 a.s.,

where J i is an mi × mi matrix with all entries equal to 1, and therefore, under
(C7),

nA−1
n (θ̂n)

n∑
i=1

Hi(θ̂n)uiu
′
iH

′
i(θ̂n)A−1

n (θ̂n) −→ 0 a.s. (C.6)

Thus, (C.1) follows from (C.5), (C.6) and the Cauchy-Schwarz inequality.

Proof of (C.2). Under (C10), for any pair (r, s), r, s = 1, . . . , p + q,

max
i

mi∑
j=1

mi∑
k=1

∣∣∣∣∣∂h(tij ; θ̂n)
∂θr

∂h(tik; θ̂n)
∂θs

− ∂h(tij ;θ0)
∂θr

∂h(tik;θ0)
∂θs

∣∣∣∣∣ −→ 0 a.s.

Thus, the (r, s) entry of n−1 ∑n
i=1[H i(θ̂n)Σi(θ0)H ′

i(θ̂n)−H i(θ0)Σi(θ0)H ′
i(θ0)],

1
n

n∑
i=1

mi∑
j=1

mi∑
k=1

σijk(θ0)

[
∂h(tij ; θ̂n)

∂θr

∂h(tik; θ̂n)
∂θs

− ∂h(tij ;θ0)
∂θr

∂h(tik;θ0)
∂θs

]
,

converges to 0 since {|σijk(θ)|}∞i=1 is bounded under (C5). This proves (C.2)
under (C7).

Proof of (C.3). (C.3) follows from (C7) and θ̂n −→ θ0 a.s.
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