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Abstract: Several test statistics for covariance structure models derived from the

normal theory likelihood ratio are studied. These statistics are robust to certain vi-

olations of the multivariate normality assumption underlying the classical method.

In order to explicitly model the behavior of these statistics, two new classes of

nonnormal distributions are defined and their fourth-order moment matrices are

obtained. These nonnormal distributions can be used as alternatives to elliptical

symmetric distributions in the study of the robustness of a multivariate statisti-

cal method. Conditions for the validity of the statistics under the two classes of

nonnormal distributions are given. Some commonly used models are considered as

examples to verify our conditions under each class of nonnormal distributions. It

is shown that these statistics are valid under much wider classes of distributions

than previously assumed. The theory also provides an explanation for previously

reported Monte-Carlo results on some of the statistics.
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1. Introduction

Classical methods for covariance structure analysis are developed under the
assumption of multivariate normality. In practice, however, data sets in behav-
ioral and biomedical sciences, in which covariance structure analysis is regularly
used, are seldom normal. Browne (1984) developed a generalized least squares
(GLS) method that does not require a specific distributional form. Since for most
practical models the GLS method requires an extremely large sample size to give
a reliable inference, this method is not commonly used in covariance structure
practice. Based on the GLS method, Yuan and Bentler (1997a) proposed a new
statistic which gives more reliable inference for small to moderate sample sizes.
However, for relatively large models and small sample sizes, there may exist prob-
lems of nonconvergence in getting the parameter estimator with the GLS method
(e.g., Hu, Bentler and Kano (1992), Yuan and Bentler (1997a)). For these rea-
sons, as reviewed by Bentler and Dudgeon (1996), people still prefer the classical
normal theory method in modeling covariance structures even if their data are
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not normal. In some exciting research on the robustness of the normal theory
method, Amemiya and Anderson (1990), Anderson (1989), Browne and Shapiro
(1988) and Satorra and Bentler (1990) found that some normal theory based
statistics for covariance structure models are still valid under some assumptions.
Unfortunately there is no effective way to verify these assumptions in practice.

Another direction of research has been to use a correction to the normal
theory likelihood ratio (LR) statistic to improve its performance under distri-
butional violation. When a sample is from an elliptical distribution (e.g., Fang,
Kotz and Ng (1990)), Muirhead and Waternaux (1980) first proposed a simple
correction to the LR statistic in canonical correlation and some specific covari-
ance structures. Tyler (1983) generalized this correction to test statistics based
on affine-invariant robust estimates of a scatter matrix. Based on Mardia’s multi-
variate kurtosis parameter (Mardia (1974)), Browne (1984) extended this correc-
tion and its application to general covariance structure analysis. The correction
for an elliptical distribution was further explored by Shapiro and Browne (1987).
Kano (1992) also gave a correction to the normal theory LR statistic for some
covariance structure models. Kano’s correction incorporated both the indepen-
dent variables case and the elliptical distribution case, thus is more general in
a sense. Satorra and Bentler (1988, 1994) gave another correction. As we shall
see, the rescaled statistic of Satorra and Bentler is very general. It is known that
these corrected statistics asymptotically follow the nominal chi-square distribu-
tion when the data are from an elliptical distribution. However, simulation by
Browne (1984) indicates that the statistic based on Mardia’s kurtosis parameter
performs robustly for skewed data; extensive simulation results of Curran, West
and Finch (1996) and Hu et al. (1992) indicate a surprising robustness of the
rescaled statistic of Satorra and Bentler. A comprehensive statistical explana-
tion is needed to understand these robust performances.

As an alternative to multivariate normal distributions, the class of elliptical
distributions plays an important role in the study of robustness of classical sta-
tistical procedures (e.g., Anderson and Fang (1987), Muirhead (1982)). However,
data sets in the real world are often characterized by skewness and highly dif-
ferent marginal kurtoses. Kano, Berkane and Bentler (1990) proposed a method
of modeling the fourth-order moment matrix by incorporating the marginal kur-
toses. However, it is not clear which nonnormal distributions fit this model.
Azzalini and Valle (1996), Olkin (1994) and Steyn (1993) proposed various non-
normal distributions, but these do not seem especially relevant to covariance
structure analysis. As we shall see, the fourth-order moment matrix plays a key
role in the study of covariance structure models. A convenient class of distribu-
tions for the study of test statistics should be one whose fourth-order moment
matrix is easy to calculate. Further, in order to model skewness and kurtosis
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in real data analysis, a useful class of nonnormal distributions should also pos-
sess the advantage of easy-to-specify marginal skewness and kurtosis. And from
the perspective of Monte-Carlo studies, these nonnormal distributions should be
easy to generate in simulations. Based on these considerations, we define two new
classes of nonnormal distributions which possess the above mentioned qualities.
These two classes of nonnormal distributions will be the basis for our study of
several different test statistics.

We aim to give explanations for the results of previous Monte-Carlo studies
and to give guidance to applications of these statistics in covariance structure
analysis. Formal definitions of the statistics will be introduced in Section 2.
By some generalizations of the class of elliptical distributions, two classes of
nonnormal distributions will be given in Section 3. The validity of the statistics
under these two classes of distributions will be discussed in Section 4. Some
specific models will be used as examples to verify the asymptotic robustness
conditions. This will be given in Section 5. A discussion and conclusion will be
given at the end of this paper.

2. Rescaled Normal Theory Test Statistics

We introduce the analytical form of the various statistics at issue in this
section. These statistics will be further studied in later sections.

Let X be a p-variate random vector with E(X) = µ and Cov(X) = Σ. For
a covariance structure Σ = Σ(θ), the normal theory log-likelihood leads to the
following function to be minimized

FML(θ) = tr{SΣ−1(θ)} − log |SΣ−1(θ)| − p, (2.1)

where S is the sample covariance matrix based on a sample from X with size
N = n + 1. We will assume that X has finite fourth-order moments, and that
the standard regularity conditions stated in Yuan and Bentler (1997a) hold for
Σ = Σ(θ). Let θ̂ be the estimator obtained by minimizing FML(θ). Under the
assumption of multivariate normality, the statistic

TML = nFML(θ̂)

is asymptotically χ2
p∗−q, where p∗ = p(p+ 1)/2 and q is the number of unknown

free parameters in θ. Generally, TML will approach a nonnegative random vari-
able T . Let vech(·) be an operator which transforms a symmetric matrix into
a vector by picking the nonduplicated elements of the matrix, σ = vech(Σ),
and Dp be the p2 × p∗ duplication matrix such that vec(Σ) = Dpσ (see Magnus
and Neudecker (1988, p.49), Schott (1997, p.283)). Also let σ̇ = ∂σ/∂θ′ and
V = 2−1D′

p(Σ
−1 ⊗ Σ−1)Dp; then

W = V − V σ̇(σ̇′V σ̇)−1σ̇′V (2.2)
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is the residual weight matrix, as it was called by Bentler and Dudgeon (1996).
Satorra and Bentler (1988) decompose T as

∑p∗−q
i=1 τiχ

2
1i, where the τi are the

nonzero eigenvalues of the matrix WΓ with Γ = Cov[vech{(X−µ)(X−µ)′}] and
the χ2

1i are independent chi-square variates, each having one degree of freedom.
When X follows an elliptical distribution with kurtosis β, then

Γ = 2βD+
p (Σ ⊗ Σ)D+′

p + (β − 1)σσ′, (2.3)

where D+
p is the Moore-Penrose inverse of Dp. In such a case all the τi’s are

equal and τ = tr(WΓ)/(p∗ − q) = β. Let Yi = vech{(Xi − X̄)(Xi − X̄)′} and SY
be the corresponding sample covariance of Yi. Then SY is a consistent estimator
of the matrix Γ, and τ̂ = tr(ŴSY )/(p∗ − q) is a consistent estimator of τ , where
Ŵ is obtained by substituting θ̂ for θ in Σ = Σ(θ) and σ̇ = σ̇(θ). Based on these,
Satorra and Bentler (1988) proposed a rescaled statistic

TSB = τ̂−1TML.

For a p-variate random vector X, the relative Mardia’s multivariate kurtosis
parameter of X is

η = E{(X − µ)′Σ−1(X − µ)}2/{p(p + 2)}. (2.4)

Since η = β within the class of elliptical distributions, Browne (1984) proposed
a rescaled statistic

TB = η̂−1TML,

where

η̂ =
N + 1

N(N − 1)

N∑
i=1

{(Xi − X̄)′S−1(Xi − X̄)}2/{p(p + 2)}

is a consistent estimator of η, and is unbiased when data are normal.
Let the covariance structure Σ = Σ(θ) be specified by a linear latent variable

model

X = µ+
J∑
j=1

Λj(θ)zj , (2.5)

where the Λj(θ) are p×kj matrix valued functions of θ, the zj are kj-dimensional
latent vectors which are uncorrelated with each other, and E(zj) = 0, Cov(zj) =
Φj(θ). This generates a covariance structure

Σ(θ) =
J∑
j=1

Λj(θ)Φj(θ)Λ′
j(θ). (2.6)
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Suppose there exist two matrices P and Q with sizes p×m1 and p×m2 respec-
tively such that

P ′Λj = 0 or Q′Λj = 0 (2.7)

for every j. This will result in

P ′ΣQ = 0. (2.8)

Kano (1992) proposed a correction factor

ν = E{(X − µ)′P (P ′ΣP )−1P ′(X − µ)(X − µ)′Q(Q′ΣQ)−1Q′(X − µ)}/(m1m2).
(2.9)

For consistent estimators P̂ and Q̂ of P and Q, respectively,

ν̂ =
1
N

N∑
i=1

{(Xi − X̄)′P̂ (P̂ ′SP̂ )−1P̂ ′(Xi − X̄)(Xi − X̄)′Q̂(Q̂′SQ̂)−1

Q̂′(Xi − X̄)}/(m1m2)

is a consistent estimator of ν. Kano’s (1992) test statistic is given by

TK = ν̂−1TML.

Kano established the validity of TK for model (2.6) when either the zj in (2.5) are
independent or the X in (2.5) follows an elliptical distribution. As noted by Kano
(1992), for a general linear latent variable model, the validity of correction (2.9)
depends on whether P andQ satisfying (2.7) exist. One such choice is to choose P
andQ in (2.7) to be orthogonal to the matrices (Λ1, . . . ,ΛJ1) and (ΛJ1+1, . . . ,ΛJ),
respectively for an appropriate J1; or to choose P to be orthogonal to some
columns of Σ and Q to be orthogonal to the other columns in (2.8). Note that
(2.7) implies (2.8), but not the reverse. Since we do not relate every covariance
structure to a specific latent variable model, unless explicitly stated, we will only
assume (2.8) in the rest of the paper.

We will explore the validity of these statistics in larger classes of distributions
in Sections 4 and 5. Since the population mean µ is not restricted, it is estimated
at its sample mean X̄ . Thus, without loss of generality we will assume µ = 0 in
the rest of this paper.

3. Two Classes of Nonnormal Distributions

Two classes of nonnormal distributions will be introduced in this section.
We first give their definitions and discuss some of their interesting properties,
then we will obtain their fourth-order moment matrices. These matrices will be
used to study various statistics in later sections.
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Let Z ∼ N(0, Ip) and r be a nonnegative random variable which is indepen-
dent of Z; then

X = rΣ
1
2Z (3.1)

follows an elliptical distribution (e.g., Fang, Kotz and Ng (1990)). Since real
data sets often exhibit skewness and different marginal kurtoses, we have no
real interest in the nonnormal distribution represented by (3.1), which has no
skewness and the same marginal kurtosis for all variables. However, it should
be noticed that there are two factors which make the distribution of X in (3.1)
elliptical. One is that the distribution of Z is symmetric, the other is that each

component of Σ
1
2Z is multiplied by the same random variable r. Changing any

one of these two factors will result in a nonelliptical distribution.

Data Model I. Let ξ1, . . . , ξm be independent random variables with E(ξi) = 0,
E(ξ2i ) = 1, E(ξ3i ) = ζi, E(ξ4i ) = κi, and ξ = (ξ1, . . . , ξm)′. Let r be a random
variable which is independent of ξ, E(r2) = 1, E(r3) = γ, and E(r4) = β. Also,
let m ≥ p and A = (aij) be a p×m matrix of rank p such that AA′ = Σ. Then
the random vector

X = rAξ (3.2)

will generally follow a nonelliptical distribution. Since the distribution of ξ is
not necessarily symmetric, we do not restrict the r in (3.2) to be a nonnegative
random variable. It is easily seen that the population covariance matrix of X is
given by Σ. The skewness and kurtosis of xi are given respectively by

skew(xi) = γ
m∑
j=1

a3
ijζj/σ

3
2
ii and kurt(xi) = β{

m∑
j=1

a4
ij(κj − 3)/σ2

ii + 3}. (3.3)

The constants γ and β are scaling factors which change the marginal skewness
and kurtosis proportionally. Discrepancies among the marginal skewnesses and
kurtoses can be achieved by changing m, aij , ζj and κj . Generating X through
(3.2) has two advantages. First, it is easy to implement, and second, the popu-
lation fourth-order moment matrix is easy to calculate.

When κ1 = · · · = κm = 3, all the marginal kurtoses of X are equal to 3β. In
this case, comparing (3.2) with (3.1), we may call the corresponding distribution
of X in (3.2) a pseudo elliptical distribution, since its distribution is not elliptical
anymore even though the marginal kurtoses are the same. Similarly, we may call
the distribution of X in (3.2) a pseudo normal distribution if β = 1 in addition
to κi = 3 for i = 1, . . . ,m.

Data Model II. Let ξ1, . . ., ξm be independent random variables with E(ξi) = 0,
E(ξ2i ) = 1, E(ξ3i ) = ζi, E(ξ4i ) = 3, and ξ = (ξ1, . . . , ξm)′. Let r1, . . . , rp be
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independent random variables with E(ri) = α, E(r2i ) = 1, E(r3i ) = γi, E(r4i ) =
βi, R = diag(r1, . . . , rp), and R and ξ be independent. Let A = (aij) be a p×m

nonstochastic matrix of rank p and AA′ = G = (gij). Another simple generating
scheme is

X = RAξ. (3.4)

Since the distribution of ξ in (3.4) is not necessarily symmetric, we will not
restrict the ri to be nonnegative random variables. The covariance matrix of
X in (3.4) is given by Σ = α2G + (1 − α2)DG, where DG = diag(g11, . . . , gpp).
Obviously, σii = gii and σij = α2gij for i �= j. For a given positive definite matrix
Σ, we need to choose a constant α. Since gii = σii and gij = σij/α

2 for i �= j,
α can not be too small in order for G to be positive definite. As Σ is positive
definite, standard analysis shows that there exists an α0 such that 0 < α0 < 1
and for all α0 ≤ α ≤ 1 the corresponding G = α−2Σ + (1 − α−2)DΣ is positive
definite. The marginal skewnesses and kurtoses of X in (3.4) are given by

skew(xi) = γi

m∑
j=1

a3
ijζj/σ

3
2
ii and kurt(xi) = 3βi, (3.5)

respectively. For a given matrix A, differing marginal skewness in X can be

achieved by adjusting the γi in (3.5), so we can let m = p and A = A′ = G
1
2 for

convenience. The kurtosis of xi is controlled by βi. The advantage of generating
X through (3.4) is that marginal skewness and kurtosis are easy to control.

It follows from (3.3) and (3.5) that when κ1 = · · · = κm = 3, γ1 = · · · = γp =
γ and β1 = · · · = βp = β the marginal skewness and kurtosis of xi in (3.2) are the
same as those of the xi in (3.4). However, the distributions of the two data models
are totally different. This is because the ri in Data Model II are independent.
Comparing (3.2) or (3.4) with (2.5), we may relate the columns of A to the Λj ’s
in (2.5), and r, R and ξj are then latent variables that appear in product, instead
of linear, forms. However, our emphasis is more on the observed distributions
and their effects on test statistics, rather than on the physical interpretation of
the two data models.

The above two generation techniques have been described in more detail in
Yuan and Bentler (1997b). They also gave guidelines on how to achieve desired
marginal skewness and kurtosis by using existing techniques for generating uni-
variate nonnormal random numbers. In the rest of this section, we give the form
of the fourth-order moment matrices Γ that correspond to the two classes of
distributions given by Data Models I and II. Proofs are given in an appendix.

Theorem 3.1. Let X = rAξ be generated through (3.2), and r, A and ξ

satisfy the conditions for Data Model I. Then the fourth-order moment matrix
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Cov{vech(xx′)} is

Γ = 2βD+
p (Σ ⊗ Σ)D+′

p + (β − 1)σσ′ + β
m∑
i=1

(κi − 3)vech(aia′i)vech
′(aia′i). (3.6)

Notice that the first two terms on the RHS of (3.6) correspond to the fourth-
order moment matrix from an elliptical distribution with kurtosis β. The last
term is contributed by the excess kurtosis that exists in the distribution of ξi,
which is further inflated by the factor β. Comparing (3.6) with (2.3), we also
notice that the Γ matrices corresponding to a pseudo elliptical distribution and
an elliptical distribution are the same if they share the same population covari-
ance matrix and marginal kurtosis. Similarly, the Γ matrices corresponding to a
pseudo normal distribution and a normal distribution are the same if they have
the same population covariance matrix. These observations will facilitate our
ability to generalize many of the results in covariance structure analysis within
the class of elliptical distributions to much wider classes of distributions.

Let ei be the ith unit vector of dimension p with unity for its ith element
and zeros elsewhere, and Eij = eie

′
j.

Theorem 3.2. Let X = RAξ be generated through (3.4), and R, A and ξ satisfy
the conditions of Data Model II. Then

Γ = 2D+
p (Σ ⊗ Σ)D+′

p + (α−2 − 1)
p∑
i=1

{2vech(Eii)vech′(σiσ′i)

+2vech(σiσ′i)vech
′(Eii) + 3vech(σie′i)vech

′(eiσ′i) + 3vech(eiσi)vech′(σie′i)
+vech(eiσ′i)vech

′(eiσ′i) + vech(σie′i)vech
′(σie′i)}

+3
p∑
i=1

(α−1γi − 2α−2 + 1)σii{vech(Eii)vech′(eiσ′i) + vech(Eii)vech′(σie′i)

+vech(σie′i)vech
′(Eii) + vech(eiσ′i)vech

′(Eii)}

+3
p∑
i=1

(βi − 4α−1γi + 8α−2 − 2α−4 − 3)σ2
iivech(Eii)vech′(Eii)

+(α−4 − 2α−2 + 1)
∑
ij

σ2
ij{2vech(Eii)vech′(Ejj) + 3vech(Eij)vech′(Eji)

+vech(Eij)vech′(Eij)}. (3.7)

When α = γi = βi = 1, only the first term on the RHS of (3.7) is left. This
corresponds to the fourth-order moment matrix of a pseudo normal distribution.
For general α, γi, and βi, the terms besides the first term on the RHS of (3.7) come
from different marginal kurtoses. Note that even if we let κ1 = · · · = κm = 3,
γ1 = · · · = γp = γ and β1 = · · · = βp = β, (3.7) does not equal (3.6). This
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reflects the different distributions of (3.2) and (3.4) as we observed earlier. The
RHS of (3.7) can be further simplified for specific models. For example, when
Σ = diag(σ11, . . . , σpp), then

Γ = 2D+
p (Σ ⊗ Σ)D+′

p + 3
p∑
i=1

(βi − 1)σ2
iivech(Eii)vech′(Eii). (3.8)

When βi = 1 and X follows a pseudo normal distribution, the xi may not be
independent even though Σ is diagonal. This result will be used in a study of
the uncorrelated variables model in Sections 4 and 5.

Notice that the ζj and γ in (3.3) do not appear in (3.6), and the ζj in (3.5)
do not enter into (3.7) either. This implies that in both Data Model I and Data
Model II, the marginal skewnesses of X have no asymptotic effect on the rescaled
test statistics in covariance structure analysis. However, we may observe an effect
of skewnesses in any given finite sample. Although we do not deal with mean
structures in this paper, we would like to note that skewness will be involved in
the corresponding test statistics when a mean structure is also of interest.

4. Asymptotic Robustness of Four Statistics

In this section, we will study the asymptotic robustness of the test statistics
when samples come from the two classes of nonnormal distributions given in
Section 3. Several conditions are relevant to the development of the rescaled
statistics. For a covariance structure Σ(θ), if for any parameter vector θ and
positive constant α there exists a parameter vector θ∗ such that Σ(θ∗) = αΣ(θ),
then Σ(θ) is invariant with respect to a constant scaling factor (ICSF). As noted
by Browne (1984), nearly all structural models in current use are ICSF. Let R(σ̇)
represent the range space spanned by the column vectors of σ̇. If σ ∈ R(σ̇), then
the model is said to be quasi-linear (QL). It is easily seen that ICSF implies QL
(Satorra and Bentler (1986)). So condition QL is also satisfied by almost all of
the models in current use. Since the robustness conditions for Data Model I and
Data Model II are different, we need to study them separately. The following
lemma will be used in several places in this section.

Lemma 4.1. Let C be a p× p matrix. If vech(C) ∈ R(σ̇), then Wvech(C) = 0,
where W is the residual weight matrix given in (2.2).

Proof. There exists a vector a such that vech(C) = σ̇a, so Wvech(C) = Wσ̇a =
0.

Let A = (a1, . . . , am) be the matrix in (3.2). The following condition is used
for the study of the test statistics under Data Model I.

Condition 4.1. For each of the i = 1, . . . ,m, vech(aia′i) ∈ R(σ̇).



840 KE-HAI YUAN AND PETER M. BENTLER

Notice that condition ICSF is implied by Condition 4.1. Unlike the con-
ditions ICSF or QL, Condition 4.1 generally depends on the data generation
method and the model structure, as will be further discussed for specific models
in the next section. The following lemma characterizes the eigenvalues of WΓ
with the Γ in (3.6).

Lemma 4.2. Let Γ be given as in (3.6) and W be given as in (2.2). Then under
Condition 4.1 the p∗ − q nonzero eigenvalues of WΓ are equal and are given by
β.

Proof. Let Γ1 = 2D+
p (Σ ⊗ Σ)D+′

p , Γ2 = σσ′, and Γ3i = vech(aia′i)vech
′(aia′i).

Since Γ1 corresponds to the fourth-order moment matrix from a normal distri-
bution, it is obvious that the eigenvalues of WΓ1 are either 0 or 1 for the matrix
W in (2.2). Using (3.6), we need to show that WΓ2 = 0 and WΓ3i = 0 for
i = 1, . . . ,m, and this follows from Lemma 4.1.

The following lemma gives the scaling factors τ , η, and ν for Data Model I.

Lemma 4.3. Let X be given as in Data Model I. Under Condition 4.1 the scaling
factors for TSB, TB and TK are given, respectively, by τ = β,

η = β +
β

p(p+ 2)

m∑
i=1

(κi − 3)(a′iΣ
−1ai)2, (4.1)

and

ν = β +
β

m1m2

m∑
i=1

(κi − 3){a′iP (P ′ΣP )−1P ′ai}{a′iQ(Q′ΣQ)−1Q′ai}. (4.2)

Proof. That τ = β follows from Lemma 4.2. Let Γ1 = 2D+
p (Σ ⊗ Σ)D+′

p ,
Γ2 = σσ′, and Γ3i = vech(aia′i)vech

′(aia′i). Then

tr[{D′
p(Σ

−1 ⊗ Σ−1)Dp}Γ1] = 2p∗, tr[{D′
p(Σ

−1 ⊗ Σ−1)Dp}Γ2] = p,

tr[{D′
p(Σ

−1 ⊗ Σ−1)Dp}Γ3i] = (a′iΣ
−1ai)2,

and (4.1) follows from (2.4) and (3.6). Similarly, the ν in (4.2) follows from (2.8),
(2.9) and (3.6).

If A = Σ
1
2 , then Σ

− 1
2 ai = ei. In such a case

η = β +
β

p(p+ 2)

m∑
i=1

(κi − 3).

Under the condition in Lemma 4.3, the only possibility for τ , η and ν to be equal
is that the second terms on the RHS of (4.1) and (4.2) are zero. If X follows a



ON NORMAL THEORY AND ASSOCIATED TEST STATISTICS 841

pseudo elliptical distribution, then η = ν = τ . So the rescaled statistics TB and
TK originating from elliptical distributions are also valid in the much larger class
of pseudo elliptical distributions. If ai = Λi and (2.7) holds, then ν = τ even if
X does not follow a pseudo elliptical distribution.

Lemmas 4.2 and 4.3 lead to the following theorem.

Theorem 4.1. Let X be given as in Data Model I. Then under Condition 4.1
the statistic TSB is asymptotically robust, TB and TK are asymptotically robust
if X follows a pseudo elliptical distribution, TML is asymptotically robust only if
β = 1. Furthermore, if (2.7) holds and Λi = ai, TK is also asymptotically robust.

Note that even if (2.7) holds with Λi = ai, and comparing (3.2) with (2.5),
the zi = rξi in (3.2) are not independent as are the zi in (2.5). So Theorem 4.1
generalizes the validity of TK to a much larger class of distributions than those
stated in Kano (1992). When β = 1 and P (r = 1) = 1, the result on TML in
Theorem 4.1 is essentially the same as that in Amemiya and Anderson (1990),
Anderson (1989) and Browne and Shapiro (1988).

Now we turn to Data Model II. To obtain further results, we need more
assumptions.

Condition 4.2. For each i, j = 1, . . . , p, vech(eie′i), vech(σiσ′i), vech(eiσ′i),
vech(eie′j) ∈ R(σ̇).

Condition 4.2 implies ICSF. Similarly as Condition 4.1, Condition 4.2 also
depends on the model structure as well as on the data generation method. How-
ever, few currently used models satisfy Condition 4.2 with Data Model II. This
condition is stated for a general covariance structure, but specific covariance mod-
els can be based on a much simpler assumption. When Σ = diag(σ11, . . . , σpp)
for example, the following condition can replace Condition 4.2.

Condition 4.2a. For i = 1, . . . , p, vech(Eii) ∈ R(σ̇).

Notice that ∂Σ(θ)/∂θj is symmetric. Applying Lemma 4.1 to the individual
terms on the RHS of (3.7), we have the following lemma.

Lemma 4.4. Let Γ be given as in (3.7) and W be given as in (2.2). Then under
Condition 4.2, the p∗ − q nonzero eigenvalues of WΓ are all equal to 1.

The following lemma gives the scaling factors τ , η and ν for Data Model II.

Lemma 4.5. Let X be given as in Data Model II. Then under Condition 4.2 the
scaling factors for TSB, TB and TK are given, respectively, by τ = 1,

η = 1 + [(α−2 − 1)(10p + 2
p∑
i=1

σiiσ
ii) + 12

p∑
i=1

(α−1γi − 2α−2 + 1)σiiσii
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+3
p∑
i=1

(βi − 4α−1γi + 8α−2 − 2α−4 − 3)(σiiσii)2

+(α−4 − 2α−2 + 1)
∑
ij

{5(σijσij)2 + σ2
ijσ

iiσjj}]/{p(p + 2)}, (4.3)

where σij is an element of the matrix Σ−1 = (σij), and

ν = 1 + {(α−2 − 1)
p∑
i=1

(P1iiQ2ii + P2iiQ1ii + 10P3iiQ3ii)

+6
p∑
i=1

(α−1γi − 2α−2 + 1)σii(P1iiQ3ii + P3iiQ1ii)

+3
p∑
i=1

(βi − 4α−1γi + 8α−2 − 2α−4 − 3)σ2
iiP1iiQ1ii

+(α−4 − 2α−2 + 1)
∑
ij

σ2
ij(5P1ijQ1ij + P1jjQ1ii)}/(m1m2), (4.4)

where

P1ii = e′iP (P ′ΣP )−1P ′ei, P1ij = e′iP (P ′ΣP )−1P ′ej,

P2ii = σ′iP (P ′ΣP )−1P ′σi, P3ii = e′iP (P ′ΣP )−1P ′σi,

Q1ii = e′iQ(Q′ΣQ)−1Q′ei, Q1ij = e′iQ(Q′ΣQ)−1Q′ej,

Q2ii = σ′iQ(Q′ΣQ)−1Q′σi, Q3ii = e′iQ(Q′ΣQ)−1Q′σi.

Proof. That τ = 1 follows from Lemma 4.4. For p-dimensional vectors b1, b2,
b3, b4, it follows that

tr[{D′
p(Σ

−1 ⊗ Σ−1)Dp}vech(b1b′2)vech(b3b′4)] = (b′1Σ
−1b3)(b′2Σ

−1b4). (4.5)

Using Σ−1σi = ei, (4.3) follows from (2.4), (3.7) and (4.5). Similarly, the ν in
(4.4) follows from (2.8), (2.9), (3.7) and (4.5).

Lemmas 4.4 and 4.5 lead to the following theorem.

Theorem 4.2. Let X be given as in Data Model II. Then under Condition 4.2
the statistics TML and TSB are asymptotically robust, TB is asymptotically robust
only if the second term on the RHS of (4.3) is zero, TK is asymptotically robust
only if the second term on the RHS of (4.4) is zero.

Theorem 4.2 is on the validity of the four test statistics for a general co-
variance structure. When variables are uncorrelated, the fourth-order moment
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matrix Γ is given by (3.8). Correspondingly, (4.3) and (4.4) can be much simpli-
fied. When Σ = diag(σ11, . . . , σpp), σi = σiiei. It follows from (4.3) that

η = 1 +
3

p(p+ 2)

p∑
i=1

(βi − 1). (4.6)

Using σi = σiiei and (4.4),

ν = 1 +
3

m1m2

p∑
i=1

(βi − 1)σ2
iiP1iiQ1ii. (4.7)

Obviously, η = ν = 1 when βi = 1. This corresponds to a pseudo normal
distribution. We have the following corollary.

Corollary 4.1. Let Σ = diag(σ11, . . . , σpp) and suppose a sample is drawn ac-
cording to Data Model II. Then under Condition 4.2a the statistics TML and
TSB are asymptotically robust, while TB and TK are asymptotically robust if the
sample is from a pseudo normal distribution.

In a similar way as the result on TK in Theorem 4.1, the asymptotic robust-
ness of TK in Corollary 4.1 is different from that stated by Kano (1992), since the
marginal xi of X may not be independent. When the marginal variables of X are

independent, e.g., G = diag(σ
1
2

11, . . . , σ
1
2

pp) in Data Model II, and (2.7) holds with
Λi = ei, then ν = 1. This is one of the results of Kano (1992). Muirhead and
Waternaux (1980) dealt with the uncorrelated variables model when X follows
an elliptical distribution. Since even if all the βi are equal, Data Model II will
not generate an elliptical distribution, the result about TB in Corollary 4.1 is not
in conflict with that of Muirhead and Waternaux.

5. Specific Structural Models

In this section, we will consider three popular covariance structure mod-
els. One is a confirmatory factor model which is commonly used in psychology,
biomedical research, education, and social sciences. The other two models are
the classical intra-class model and uncorrelated variables model. Each model can
be fitted to a sample generated by either of the data models in Section 3. It will
be assumed that the population covariance structure is correctly specified for a
given data set.

A confirmatory factor model is given by

X = Λf + ε, (5.1)

where Λ is the factor loading matrix, f = (f1, . . . , fs)′ is a vector of common
factors with Cov(f) = Φ, and ε = (ε1, . . . , εp)′ is a vector of unique factors
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or errors with Cov(ε) = Ψ. Also, f and ε are uncorrelated. This leads to a
covariance structure

Σ = ΛΦΛ′ + Ψ. (5.2)

One popular structure for Λ is

Λ =



λ1 0 0

0
. . . 0

0 0 λs


 ,

where λj = (λ1j , . . . , λsjj)
′. That is, each observed variable only depends on one

common factor. Φ is an s × s symmetric matrix, and Ψ = diag(ψ1, . . . , ψp) is a
diagonal matrix. In order for model (5.2) to be identifiable, it is necessary to fix
the scale of each factor fj. This can be obtained by fixing the last element λsjj

in each λj at 1.0. Under these conditions, we have

Σ̇λij
= (0p×(j−1), ek, 0p×(s−j))ΦΛ′ + ΛΦ(0p×(j−1), ek, 0p×(s−j))′ (5.3a)

for i = 1, . . . , sj − 1, j = 1, . . . , s, where ek is a p-dimensional unit vector with
k =

∑j−1
l=1 sl + i, 0p×(j−1) is a matrix of 0’s;

Σ̇φii
= Λeie′iΛ

′, Σ̇φij
= Λ(eie′j + eje

′
i)Λ

′, (5.3b)

for i, j = 1, . . . , s, where ei and ej are of s-dimension; and

Σ̇ψi
= eie

′
i, i = 1, . . . , p, (5.3c)

where ei is of p-dimension.
The intra-class model is given by

Σ = θ1Ip + θ21p1′p and Σ̇θ1 = Ip, Σ̇θ2 = 1p1′p. (5.4)

The uncorrelated variables model is

Σ = diag(θ1, . . . , θp) and Σ̇θi
= Eii, i = 1, . . . , p. (5.5)

Consider Data Model I first. Suppose we choose the matrix A as

A = (a1, . . . , as, as+1, . . . , as+p) = (ΛΦ
1
2 ,Ψ

1
2 )

in the confirmatory factor model. Then it is obvious that aia′i can be expressed
as a linear combination of those in (5.3b) for i = 1 to s, and a linear combination
of those in (5.3c) for i = s + 1 to s + p. In such a case, the statistic TSB is
asymptotically robust regardless of any departure of the observed variables from
normality. The statistics TB and TK are asymptotically robust if X follows a
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pseudo elliptical distribution. TK is also valid if (2.7) holds with Λi = ai even
if X does not follow a pseudo elliptical distribution. TML is asymptotically

robust only if β = 1. If we choose A = (a1, . . . , ap) = Σ
1
2 , then the ai will not

satisfy Condition 4.1, and none of the four statistics are generally asymptotically
robust in such a case. For example, for p = 15 with the covariance structure
and the population parameters as given in Hu, Bentler and Kano (1992), if
we generate ξi in (3.2) from standardized independent lognormal variates and

r = {3/χ2
5}

1
2 , the coefficient of variation (CV) of the 87 nonzero eigenvalues τi

of WΓ is CV(τ) ≈ .089.
For the intra-class model (5.4) with θ2 > 0, if we choose the p × (p + 1)

matrix
A = (a1, . . . , ap+1) = (θ

1
2

1 Ip, θ
1
2

2 1p),

then it is obvious that ai will not satisfy Condition 4.1. In such a case, none

of the statistics will be asymptotically χ2
p∗−2. Similarly, if we choose A = Σ

1
2 ,

then Condition 4.1 will not be satisfied, and none of the four statistics will be
asymptotically χ2

p∗−2. For example, using p = 15 and θ1 = θ2 = .5, the ξi in (3.2)

from standardized independent lognormal variates and r = {3/χ2
5}

1
2 , the CV of

the 118 nonzero τi is CV(τ) ≈ 2.38.
For the uncorrelated variables model, if we choose A = (a1, . . . , ap) with ai =

θ
1
2

i ei, then Condition 4.1 is obviously met. So the statistic TSB is asymptotically
robust. The other three statistics will also be valid if the relevant assumptions
in Theorem 4.1 are satisfied. If we choose other forms of A that do not satisfy
Condition 4.1, then none of the four statistics is asymptotically robust. For
example, using p = 15, θ1 = · · · = θ15 = 1, a random orthogonal matrix A,
and the ξi in (3.2) from standardized independent lognormal variates and r =

{3/χ2
5}

1
2 , we obtain a CV(τ) ≈ 2.24 of the 105 nonzero eigenvalues τi of the WΓ

matrix.
For Data Model II, the four test statistics will not be asymptotically robust

in general for the confirmatory factor model and the intra-class model. For
example let p = 15. For the factor model with the covariance structure and the
population parameters as given in Hu, Bentler and Kano (1992), and for the
intra-class model in (5.4) with θ1 = θ2 = .5, we generate ri from ri = α+ εi with
α = .95 and εi is given by

εi =
√

(1 − α2)(yi − E(yi))/{var(yi)}
1
2 .

For r1 to r15, we generate each three of the corresponding yi, i = 1, . . . , 15,
respectively, by independent variates of lognormal(0,1), lognormal(0,1.5), log-
normal(0,2), and the gamma distributions Γ(1, 1), and Γ(.1, 1). This leads to



846 KE-HAI YUAN AND PETER M. BENTLER

CV(τ) ≈ .014 for the factor model and CV(τ) ≈ 4.44 for the intra-class model.
As for the uncorrelated variables model (5.5), it is obvious that Condition 4.2a is
satisfied. So the statistics TML and TSB are asymptotically robust for the uncor-
related variables model, TB and TK are valid when X follows a pseudo normal

distribution. If G = diag(σ
1
2

11, . . . , σ
1
2
pp) in Data Model II and (2.7) holds with

Λi = ei, then TK is also asymptotically robust even if X does not follow a pseudo
normal distribution.

6. Discussion

As one of the major tools for understanding the relationship among multi-
variate variables and for dimension reduction, covariance structure analysis has
been used extensively in many different areas including econometrics, psychology,
education, social sciences, biology and medicine. Since commonly used covari-
ance structures are often based on latent variable models, which are basically
hypothetical, test statistics play an important role in judging the quality of a
proposed model. The normal theory likelihood ratio statistic is the classical test
statistic. It is the default option in almost all software packages in this area
(e.g., Bentler (1995), Jöreskog and Sörbom (1993)). Unfortunately, this statistic
is asymptotically robust only under very special circumstances. Alternative sim-
ple statistics such as TSB , TB , TK have existed for some time. But for a general
covariance structure model, they were believed to be valid only for data from
an elliptical distribution. This research generalizes their application to a much
wider class of nonnormal distributions than previously known. This is especially
true for TSB , which can be applied to a data set whose distribution is far from
elliptical. Various simulation results have been reported on the performance of
the statistics TML, TB and TSB. The results in this paper characterize various
mathematical conditions under which these different statistics are valid. One
implication of this study is that marginal skewness of a data set will not have
much influence on these test statistics when a sample size is relatively large. An-
other implication is that efforts need not be made on generating variables with
specific marginal skewnesses in future simulation studies of these statistics. Since
real data in practice can come from an arbitrary mechanism, the third implica-
tion is that caution is still needed when using TSB as a fit index of a proposed
model, even though previous simulations support this statistic in various ways.
For covariance structures generated by latent variable models, the distribution
conditions under which the statistic TK can be applied are almost as wide as
those of TSB , as demonstrated in Section 5. But for a general covariance struc-
ture, the distributions for which TK is applicable is still not as wide as that of
TSB. Of course, this paper is only concerned with covariance structure analysis.
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In situations under which both mean and covariance structures are of interest,
the skewnesses of the observed variables will play a role.

Two classes of nonnormal distributions are proposed for the study of test
statistics in covariance structure analysis. These represent much wider classes of
nonnormal distributions than the class of elliptical symmetric distributions. For
example, by letting m = p, r = 1, (z1, . . . , zp)′ ∼ Np(0, I), and ξ1 = |z1|, ξj = zj,
j = 2, . . . , p, then the X defined in (3.2) will follow the skew-normal distribution
as defined by Azzalini and Valle (1996). Similarly, with proper restrictions, the
X defined in (3.4) can also lead to the skew-normal distribution. Since a random
vector from either of the two classes can have various marginal skewnesses and
kurtoses, these distributions should match more closely with the distribution
of a practical data set. Here we have been concerned with up to fourth-order
moments of the distributions, since higher-order results were not needed to study
the various scaled test statistics. In some applications, the analytical forms of
these distributions may be of special interest; this needs further study. Obviously,
these distributions can also be used to study the properties of other multivariate
methods, especially those in which skewness and kurtosis are involved, e.g., when
a mean structure is also of interest as with repeated measures. It also would be
interesting to know if some of the results in Muirhead and Waternaux (1980) and
Tyler (1983) still hold for the two classes of nonelliptical distributions. These
questions are under further investigation.

Now we give an explanation for some results of published simulation studies.
In a simulation study with a factor model as in (5.1) and (5.2), using A =

(ΛΦ
1
2 ,Ψ

1
2 ) is the most natural choice in generating different nonnormal common

factors and errors through Data Model I. From the examples in Section 5, this
makes TSB valid as a chi-square statistic, regardless of how large the observed
marginal skewness and kurtosis may be. In the previously reported Monte-Carlo
studies, the CV(τ) has typically not been reported. Even if CV(τ) is not exactly
zero, TSB should still perform well if CV(τ) is a small number. This was the
case in a simulation study conducted by Yuan and Bentler (1998). Conceivably,
many of the previous simulation results on TSB were based on a zero or small
CV(τ), leading to a conclusion of robust behavior of this statistic. The situations
under which TB is applicable are very limited. Yet, it is still possible for TB to
be valid for some skewed nonelliptical data. This gives an explanation of some
of the simulation results obtained by Browne (1984).
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Appendix

This appendix contains the proofs of Theorems 3.1 and 3.2. This will be
facilitated by several lemmas. Let ei be the ith column unit vector of dimension
m, Eij = eie

′
j , and Km be the commutation matrix as introduced by Magnus

and Neudecker (1979) (see also Schott (1997, p.276)). The following lemma is a
generalization of the result (i) in Theorem 4.1 of Magnus and Neudecker (1979).

Lemma A.1. Let ξ1, . . . , ξm be independent random variables with E(ξi) = 0,
E(ξ2i ) = 1, E(ξ4i ) = κi, and ξ = (ξ1, . . . , ξm)′. Then

E{vec(ξξ′)vec′(ξξ′)} = Km+Im2 +vec(Im)vec′(Im)+
m∑
i=1

(κi−3)vec(Eii)vec′(Eii).

Proof. Since vec(ξξ′) = ξ ⊗ ξ, we have

vec(ξξ′)vec′(ξξ′) = (ξξ′) ⊗ (ξξ′) =
m∑
i=1

m∑
j=1

Eij ⊗Bij, (A.1)

where Bij = ξiξj(ξξ′) is an m×m matrix. Direct calculation leads to

E(Bii) = Im + (κi − 1)Eii, and E(Bij) = Eij + Eji, i �= j. (A.2)

It follows from (A.2) that

E(Bij) = Eij + Eji + δij{Im +
1
2
(κi − 3)(Eij + Eji)}, (A.3)

where δij is the Kronecker number with δij = 1 if i = j and zero otherwise. Using
(A.1) and (A.3), it follows

E{vec(ξξ′)vec′(ξξ′)}=
m∑
i=1

m∑
j=1

{Eij⊗Eij+Eij⊗Eji}+Im⊗Im+
m∑
i=1

(κi−3)(Eii⊗Eii).

(A.4)
Since Eii⊗Eii=vec(Eii)vec′(Eii), using equation (2.11) of Magnus and Neudecker
(1979) and the definition for Km, the lemma follows from (A.4).

When each ξi has no excess kurtosis, all the κi equal 3, Lemma 1 is still a
little more general than the result in (i) of Theorem 4.1 of Magnus and Neudecker
(1979), as here the ξi can be skewed instead of normal. From Lemma 1, we obtain

Cov{vec(ξξ′)} = Km + Im2 +
m∑
i=1

(κi − 3)vec(eie′i)vec
′(eie′i). (A.5)
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Let Y = Aξ, AA′ = Σ, and A = (a1, . . . , am) with ai being the ith column
vector of A. For the vector Y , we have the following lemma.

Lemma A.2. Let ξ = (ξ1, . . . , ξm)′ satisfy the condition as in Lemma A.1. Then

E{vech(Y Y ′)vech′(Y Y )}=2D+
p (Σ⊗Σ)D+′

p +σσ′+
m∑
i=1

(κi−3)vech(aia′i)vech
′(aia′i).

Proof. Since Y Y ′ = Aξξ′A′ and vech(Y Y ′) = D+
p vec(Y Y ′), it follows that

vech(Y Y ′) = D+
p (A⊗A)vec(ξξ′). (A.6)

Using Lemma A.1 and (A.6) we have

E{vech(Y Y ′)vech′(Y Y ′)} =D+
p (A⊗A)(Km + Im2)(A′ ⊗A′)D+′

p + σσ′

+
m∑
i=1

(κi − 3)vech(aia′i)vech
′(aia′i). (A.7)

Note that since D+
p = (D′

pDp)−1D′
p, it follows from Theorem 9 and Theorem 12

of Magnus and Neudecker (1988, pp.47-49) that

D+
p (A⊗A)(Km + Im2)(A′ ⊗A′)D+′

p = 2D+
p (Σ ⊗ Σ)D+′

p . (A.8)

The lemma follows from (A.7) and (A.8).

Proof of Theorem 3.1. Let Y = Aξ and X = rY . Since r and Y are
independent, we have

Γ = E(r4)E{vech(Y Y ′)vech′(Y Y ′)} − σσ′. (A.9)

The theorem follows from (A.9) and Lemma A.2.

The next lemma will be used to prove Theorem 3.2. In the following, ei will
be the ith unit vector of dimension p and Eij = eie

′
j .

Lemma A.3. Let X = RAξ be generated through (3.4), and R, A and ξ satisfy
the conditions in Data Model II. Then

E{vech(XX ′)vech′(XX ′)} = 2D+
p E{(RGR) ⊗ (RGR)}D+′

p

+E{vech(RGR)vech′(RGR)}. (A.10)

Proof. Since vech(XX ′) = D+
p {(RA) ⊗ (RA)}vec(ξξ′) and κi = 3, the lemma

follows from using conditional expectation given R, and the results of Theorem
9 and Theorem 12 of Magnus and Neudecker (1988, pp.47-49) together with
Lemma A.1.
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Proof of Theorem 3.2. Since E{vech(XX ′)} = σ and

Γ = E{vech(XX ′)vech′(XX ′)} −E{vech(XX ′)}E{vech′(XX ′)}, (A.11)

we only need to calculate the first term on the RHS of (A.11). According to
(A.10), we need to calculate Π1 = E{(RGR)⊗ (RGR)} and Π2 = E{vech(RGR)
vech′(RGR)}. First we work on Π1. Noting that RGR = (gijrirj), we have

(RGR) ⊗ (RGR) =
p∑
i=1

p∑
j=1

gijEij ⊗ {rirj(RGR)}. (A.12)

Let
Bij = rirj(RGR) = G�Hij , (A.13)

where � is the notation of a Hadamard product (e.g., Magnus and Neudecker
(1988, p.45)), and Hij = rirjρρ

′ with ρ = (r1, . . . , rp)′. Then direct but tedious
calculation leads to

E(Hii) = α21p1′p + (αγi−α2)(1pe′i+ ei1′p)+ (1−α2)Ip + (βi+ 2α2 − 2αγi− 1)Eii
(A.14)

and

E(Hij) = (α2 − α4)(1pe′i + 1pe′j + ei1′p + ej1′p + Ip) + (αγi + 2α4 − 3α2)Eii
+α41p1′p + (αγj + 2α4 − 3α2)Ejj + (1 − 2α2 + α4)(Eij + Eji). (A.15)

Let σi be the ith column vector of Σ = (σ1, . . . , σp). Using G = α−2Σ + (1 −
α−2)DΣ and the properties of Hadamard products, it follows from (A.13) and
(A.14) that

E(Bii) = Σ + (α−1γi − 1)(σie′i + eiσ
′
i) + (βi − 2α−1γi + 1)σiiEii, (A.16)

and from (A.13) and (A.15) for i �= j, that

E(Bij) = α2Σ + (1 − α2)(σie′i + eiσ
′
i + σje

′
j + ejσ

′
j) + (αγi − 2 + α2)σiiEii

+(αγj − 2 + α2)σjjEjj + (α−2 − 2 + α2)(σijEij + σjiEji). (A.17)

Noting that gii = σii and gij = α−2σij for i �= j, it follows from (A.12), (A.13),
(A.16) and (A.17) that

Π1 = Σ ⊗ Σ + (α−2 − 1)
p∑
i=1

{vec(Eii)vec′(σiσ′i) + vec(σiσ′i)vec
′(Eii)

+vec(eiσ′i)vec
′(σie′i) + vec(σie′i)vec

′(eiσ′i)}

+
p∑
i=1

(α−1γi − 2α−2 + 1)σii{vec(Eii)vec′(eiσ′i) + vec(Eii)vec′(σie′i)
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+vec(σie′i)vec
′(Eii) + vec(eiσ′i)vec

′(Eii)}

+
p∑
i=1

(βi − 4α−1γi + 8α−2 − 2α−4 − 3)σ2
iivec(Eii)vec

′(Eii)

+(α−4 − 2α−2 + 1)
∑
ij

σ2
ij{vec(Eii)vec′(Ejj) + vec(Eji)vec′(Eij)}.(A.18)

Now we turn to Π2. Since

vech(RGR)vech′(RGR) =
p∑
i=1

p∑
j=1

gijvech(Eij)vech′(Bij),

it follows from (A.16) and (A.17) that

Π2 = vech(Σ)vech′(Σ) + (α−2 − 1)
p∑
i=1

{vech(eiσ′i)vech
′(eiσ′i)

+vech(eiσ′i)vech
′(σie′i) + vech(σie′i)vech

′(eiσ′i) + vech(σie′i)vech
′(σie′i)}

+
p∑
i=1

(α−1γi − 2α−2 + 1)σii{vech(Eii)vech′(eiσ′i) + vech(Eii)vech′(σie′i)

+vech(σie′i)vech
′(Eii) + vech(eiσ′i)vech

′(Eii)}

+
p∑
i=1

(βi − 4α−1γi + 8α−2 − 2α−4 − 3)σ2
iivech(Eii)vech′(Eii)

+(α−4 − 2α−2 + 1)
∑
ij

σ2
ij{vech(Eij)vech′(Eij) + vech(Eij)vech′(Eji)}.

(A.19)

Theorem 3.2 follows from Lemma A.3, (A.11), (A.18) and (A.19).
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