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MODEL SELECTION FOR NONPARAMETRIC REGRESSION
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Abstract: Risk bounds are derived for regression estimation based on model selec-

tion over an unrestricted number of models. While a large list of models provides

more flexibility, significant selection bias may occur with model selection criteria

like AIC. We incorporate a model complexity penalty term in AIC to handle selec-

tion bias. Resulting estimators are shown to achieve a trade-off among approxima-

tion error, estimation error and model complexity without prior knowledge about

the true regression function. We demonstrate the adaptability of these estimators

over full and sparse approximation function classes with different smoothness. For

high-dimensional function estimation by tensor product splines we show that with

number of knots and spline order adaptively selected, the least squares estima-

tor converges at anticipated rates simultaneously for Sobolev classes with different

interaction orders and smoothness parameters.
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1. Introduction

Consider the nonparametric regression model

Yi = f(Xi) + εi, i = 1, . . . , n,

where Xi = (Xi1, . . . ,Xid) ∈ X ⊂ Rd and the errors are i.i.d. with mean 0 and
variance σ2. We intend to estimate the underlying regression function f based on
the observations (Xi, Yi)ni=1. To that end, a list of approximating linear models
are considered. For instance, one may use finite dimensional polynomial, trigono-
metric, spline or wavelet models because of their good approximation capabilities
to functions in various nonparametric classes and/or because of computational
advantages. Let I be the model index and let Γ be the collection of the indices of
the approximating models being considered. Unless stated otherwise, the model
list Γ is fixed and does not depend on the sample size n.

For an estimator f̂ of f , the discrepancy is measured by the average squared
error ASE(f̂) = 1

n

∑n
i=1(f(Xi) − f̂(Xi))2. The finite-dimensional family of re-

gression functions in model I is denoted by fI(x, θ), θ ∈ RmI with mI being the
model dimension (for simplicity, we use θ instead of θI to denote the parameters
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in model I). In general, no relationship between the parameters in two different
models in Γ is assumed.

For each model, we consider the least squares estimator for the parameters.
Let MI = MI,n be the projection matrix corresponding to the design matrix of
model I.

Example. X = [0, 1]d. Let ϕ1(x), ϕ2(x), . . . be a collection of basis functions.
Examples are a tensor product splines basis of different orders and varying num-
ber and locations of knots, or a wavelet basis with different resolutions. Let Γ be
a collection of some finite subsets of N = {1, 2, . . .}. For I = {i1, . . . , im} ∈ Γ,
let the corresponding approximating model be

Y =
m∑

j=1

θijϕij (x) + ε.

Let

ΦI =


ϕi1(x1) · · · ϕim(x1)

...
...

...
ϕi1(xn) · · · ϕim(xn)


be the design matrix, so the projection matrix is MI = ΦI

(
Φ

′
IΦI

)−1
Φ

′
I (here

(·)−1 denotes the generalized inverse when the matrix is not invertible). The
estimator of f based on model I is f̂I(x) =

∑m
j=1 θ̂ijϕij (x), where θ̂ij , 1 ≤ j ≤ m

are the least squares estimators. Including more basis functions generally reduces
the approximation error but increases the variability of the estimator due to
estimating more parameters. A good trade-off between the approximation error
and the number of parameters is desired. Another important issue is the choice of
Γ. The more models we include in Γ, the better the model with the best trade-off
between the approximation error and estimation error among all models being
considered, but the harder it is in general to identify it (or other good ones)
based on a finite sample.

AIC (Akaike (1972)) is a model selection criterion widely used in practice.
The AIC-type criteria, including AIC, Cp (Mallows (1973)), and FPE (Akaike
(1970)) add a bias-correction term (penalty) to the residual sum of squares.
Shibata (1983) and Li (1987) showed that these criteria share an asymptotic
optimality property which says roughly that the accuracy of the estimator based
on the selected model is asymptotically the same as that based on the best model
in the list (which is, of course, unknown). Similar conclusions were also obtained
by Polyak and Tsybakov (1990). These results require certain constraints on the
number of models to be considered. In fact, to satisfy a summability condition
for Theorem 2.1 in Shibata (1983) and condition A.3 in Li (1987), the number
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of models with dimension m can only increase at a polynomial rate in m. When
there are exponentially many, or more, models in competition as in the subset
selection case, the chance of selecting a bad model can be substantial. The
probability that the empirical behavior of at least one model in the list is very
much different from expected may be large because of the addition of small
errors over a large number of models. The consequence is that comparison of the
criterion values might be dramatically different from comparison of risks of the
models, based on which the AIC-type criteria are derived. Significant selection
bias then occurs. In this work, we provide criteria which select good models even
when there are exponentially many, or more, models.

Advantages of consideration of a large number of models have been shown in
statistical theory. Research results in that direction include, for example, func-
tion estimation by minimum description length criterion by Barron and Cover
(1991), wavelet estimation for Besov classes by Donoho and Johnstone (1998)
and Donoho, Johnstone, Kerkyacharian and Picard (1996), neural network es-
timation by Barron (1993) and (1994), penalized likelihood estimation by Yang
and Barron (1998). A general theory of model selection for function estimation
was proposed by Barron, Birgé, and Massart (1997).

In this paper, we propose model selection criteria related to AIC and derive
general performance bounds. We show the resulting estimators automatically
achieve a trade-off among approximation error, estimation error and model com-
plexity. Consequences on adaptive estimation are provided as applications. It is
demonstrated that with suitable subset selection, a rich collection of functions
characterized by sparse approximation can be adaptively estimated nearly opti-
mally, yet essentially no price is paid in terms of risk for the much more extensive
search when there is in fact no need to do subset selection. It is also shown that
when spline orders, numbers of knots, and explanatory variables are selected, a
tensor product spline estimator converges at the anticipated rate without know-
ing the interaction order and smoothness of the true regression function.

The paper is organized as follows. In Section 2, model complexity is defined,
followed by examples in Section 3. Model selection criteria are proposed in Sec-
tion 4 and main results about performance bounds are presented in Section 5.
Some implications on adaptive estimation are studied in Section 6. Proofs of the
results are deferred to an appendix.

2. Model Complexity

The criteria we consider incorporate a model complexity with the residual
sum of squares and a bias-correction term. The addition of the model complex-
ity term was suggested by Barron. The ideas of using complexity in statistical
estimation have been explored in Rissanen (e.g., in (1983), (1984) and (1987)),
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Barron (e.g., in (1985) and (1994)), Wallace and Boulton (1987), Hall and Han-
nan (1988), Barron and Cover (1991), Yu and Speed (1992), and others. The
model complexity here does not refer directly to the complication of a specific
model (e.g., the number of parameters in the model, which is already accounted
for with the bias-correction term), rather it characterizes our view on the models.
As seen in the proof of the results, addition of the complexity penalty term regu-
lates the competition among the models to ensure good behavior of the selected
model.

Definition. The complexity of a model I in a list Γ is a positive number CI

satisfying the condition: ∑
I∈Γ

2−CI ≤ 1. (1)

There are two interpretations of the model complexity. Based on information
theory, CI can be viewed as the codelength of a prefix-free code to describe
the model index. The code can be naturally designed to reflect organization
of the models. In the definition we do not require CI to be integers. If they
are, then there exists a uniquely decodable code with CI as the codelength (see
e.g., Cover and Thomas (1991), Chapter 5). We may also interpret 2−CI as
a prior probability on model I. However, the criteria we give will not lead in
general to Bayes procedures (in particular, there is no averaging with respect to
distributions for the parameters).

3. Examples of Models and Complexity Assignments

We consider two types of models in this section. They will be studied further
in Section 6 to illustrate our main results.

Usually models of interest can be indexed in terms of a few non-negative
integers. Then description of the model index boils down to description of inte-
gers. To describe an integer with a known upper bound L, we may use log2 L

bits (ignoring rounding up). If there is no known upper bound, it is sufficient
to use log∗(m) = log2(m) + 2 log2 log2(m + 1) bits to describe integer m for this
case (cf. Elias (1975) and Rissanen (1983)).

Let Φ = {φ1, . . . , φk, . . .} be a fixed choice of basis functions in L2[0, 1]d.
(I) Nested models (complete models). Only one model is considered for each

dimension. For m ≥ 1, the family is

fm(x, θ) =
m∑

i=1

θiφi(x), θ = (θ1, . . . , θm) ∈ Rm.

For this case, the model dimension is naturally an index for the model. Thus
one may use log∗(m) bits to describe integer m, leading to the choice of Cm =
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log∗(m). Note that for this case, the model complexity Cm is asymptotically
negligible compared to model dimension m as m increases.

(II) Subset models. Alternatively, one can consider sparse subset models for
more flexibility. Let Nk (k ≥ 1) be an increasing sequence with Nk/k → ∞ as
k → ∞. It is used to control sparsity of the subset models. Let I = (k, l), where
l = (l1, . . . , lk) satisfies 1 ≤ lj ≤ Nj for 1 ≤ j ≤ k. Given I, the family is

fI(x, θ) =
∑

1≤j≤k

θjϕlj (x).

Clearly when Nj/j is big, the jth term in the models is chosen with large freedom
(from {ϕ1(x), . . . , ϕNj (x)}). To describe the model index I, we first describe k

using log∗ k bits, then describe l using log N1 + log N2 + · · · + log Nk bits. Thus
we assign complexity CI = log∗ k+

∑k
i=1 log Ni. Using Stirling’s formula, with

Nk � kτ (τ > 1), CI is seen to be of order k log k.

4. Model Selection Criteria

Let Y n = (Y1, . . . , Yn)T , and let ŶI be the projection of Y n into the space
spanned by the columns of the design matrix of model I. Let rI = rI,n be the
rank of the design matrix MI .

(I) σ2 is known. We propose the criterion ABC:

ABC(I) = ‖Y n−ŶI‖2
+ 2rIσ

2 + λσ2CI , (2)

where λ is a positive constant. The difference between ABC and AIC (Cp) is
the addition of the model complexity penalty term.

(II) When σ2 is unknown, one may replace σ2 in ABC by a consistent
estimator σ̂2 independent of the models in Γ. For instance, σ2 can be estimated
using a nearest neighbor method (see, e.g., Stone (1977)).

(III) σ2 is unknown but an upper bound on σ2 (say σ2
0) is available. The

criterion is

ABC
′
(I) =

(
1 +

2rI

n − rI

)(
‖Y n−Ŷ I‖2 + λσ2

0CI

)
. (3)

Note that without the model complexity term λσ2
0CI , the criterion is FPE

(Akaike (1970)), which is derived based on individual estimation of σ2 in each
model.

5. Main Results

In applications, the explanatory variables can be either random or fixed, an



480 YUHONG YANG

equally spaced design for example. We give results conditioned on the explana-
tory variables as well as unconditional ones.

We assume that εi are i.i.d. ∼ N(0, σ2), and for the random design case, they
are independent of {Xi, i = 1, . . . , n}. The normality assumption is essential in
our analysis to derive risk (or in probability) bounds valid for every regression
function and without any restriction on the list of operating linear models (see the
remark after the proof of Theorem 1). Let En denote the expectation with respect
to the randomness of the error εi, i = 1, . . . , n, conditioned on the explanatory
variables Xi, i = 1, . . . , n.

Let fn = (f(X1), . . . , f(Xn))T , and let f̄I = M Ifn be the projection of fn

into the column space of the design matrix. Let

Rn(f ; I) =
1
n
‖fn − f̄I‖2 +

rIσ
2

n
+

λσ2CI

n
,

R∗
n(f ; Γ) = min

I∈Γ
Rn(f ; I), I∗n = arg min Rn(f ; I).

The meanings of these important quantities are as follows. The first term
‖fn − f̄I‖2

/n in Rn(f ; I) is the approximation error of fn by model I; the
second term rIσ

2/n is the estimation error. The sum of these two terms is
the overall risk of the estimator based on model I, i.e., En

(
‖fn − ŶI‖2

/n
)

=

‖fn − f̄I‖2
/n+rIσ

2/n. Thus R∗
n(f ; Γ) characterizes the best trade-off among ap-

proximation error, estimation error and model complexity over all models in Γ.
We call R∗

n(f,Γ) the index of resolvability of the unknown function f by models
in Γ, following a terminology of Barron and Cover (1991). Ideally, model I∗n
should be used. But, unfortunately, it is known only if the true function f is
known exactly at the sites Xi, i = 1, . . . , n. Hence the need for model selection
criteria. We will compare the performance of estimators based on model selection
to the index of resolvability.

Let ASE(I) = ‖fn − ŶI‖2
/n denote the average square error of the estimator

f̂I = fI(·, θ̂) from model I.

(I) σ2 is known. Let În be the model selected by minimizing ABC over I in
Γ.

Theorem 1. When λ ≥ 5.1, we have

En

(
ASE(În)

)
≤ ξR∗

n(f ; Γ), (4)

where ξ is a constant depending only on λ. If in addition nR∗
n(f ; Γ) → ∞, then

with probability tending to 1, we have

ASE(În)≤B0R
∗
n(f ; Γ), (5)
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for some constant B0 depending only on λ.

Remarks.
1. There is no restriction on the size of the list Γ and the risk bound is still valid

if Γ is chosen to depend on n.

2. For (4), there is no requirement on the underlying function f.

3. In fact, a stronger inequality than (4) holds, namely

En

(
ASE(În) +

λσ2CÎn

n

)
≤ξR∗

n(f ; Γ). (6)

Thus the complexity of the selected model is also well controlled.
Theorem 1 characterizes the criterion ABC with good performance bounds

on ASE of the selected model in terms of the index of resolvability. Under
smoothness conditions on the function f , R∗

n(f ; Γ) can be easily evaluated
through approximation theory for various choices of basis functions. Then upper
bounds on the convergence rates of ASE are determined.

The condition nR∗
n(f ; Γ) → ∞ is satisfied for a typical function in a non-

parametric class. It can fail only when there exists a subsequence nj such that
I∗nj

stays the same and ‖fn−f I∗nj
‖2 stays bounded. Thus nR∗

n(f ; Γ) → ∞ if for

each I ∈ Γ, ‖fn−f I‖2 → ∞ (note that there is no division of n for ‖fn−f I‖2).
For the random design case, the accuracy with respect to the randomness

from both errors {εi} and independent variables {Xi} is of interest. Let mI

denote the number of free parameters in model I. Let

R∗
n(f ; Γ) = min

I∈Γ

(
inf

θ∈RmI
E (f(X) − f I,θ(X))2 +

mIσ
2

n
+

λσ2CI

n

)
,

be an index of (unconditional) resolvability. From now on, λ is assumed to be at
least 5.1 unless stated otherwise.

Corollary 1. If {Xi}n
i=1 are i.i.d. then E(ASE(În)) ≤ ξR∗

n(f ; Γ).
Note again that the (integrated) approximation error infθ∈RmI E(f(X) −

fI,θ(X))2 is known for f in various nonparametric function classes using famil-
iar bases, including polynomial, trigonometric, spline and wavelet. Then by
balancing the approximation error bound, estimation error mIσ

2/n, and model
complexity λσ2CI/n, upper bounds on convergence rates of the mean average
squared error are obtained.

If f is actually well approximated by simple models in the model list Γ, we
have the following result. For a constant A > 0, let Kn,A = {I : I ∈ Γ, Rn(f ; I) ≤
AR∗

n(f ;Γ)} be the collection of all the models that produce index Rn(f ; I) within
a multiple of the ideal index R∗

n(f ;Γ).
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Theorem 2.
1. If for every A > 0, limn→∞ supI∈Kn,A

CI/rI = 0, then

ASE(În)
1
n‖fn−f I∗n‖2 +

rI∗nσ2

n

−→ 1 in probability. (7)

2. If the model list Γ = Γn depends on n and supI∈Γn
CI/rI → 0, then

En

(
ASE(În)

)
infI∈Γn

(
1
n‖fn − f I‖2 + rIσ2

n

) = 1 + o(1). (8)

Remark. If for each I ∈ Γ, ‖fn−f I‖2 → ∞, then for (7) to hold it suffices to
check the condition with A = B0 (B0 is the same constant as in (5)).

This theorem says that if the models with good trade-off between complexity
and accuracy have small complexities compared to model dimensions, then with
the ABC criterion we can do asymptotically as well as if we knew I∗n in advance.
The result will be illustrated in the next section. There it is seen that when some
sparse subset models are considered in addition to complete models, functions
characterized by sparse approximation can be more easily estimated. Moreover,
no essential price in terms of risk is paid for selection among the much larger list
of models when there happens to be no need for subset selection.

(II) σ2 is unknown and is replaced by a consistent estimator σ̂2 in ABC.
Let Î

′
n be the selected model.

Theorem 3. When λ ≥ 5.1, we have

ASE(Î
′
n) = Op (R∗

n(f ; Γ))

and (7) still holds under the corresponding condition.

(III) σ2 is unknown but an upper bound σ2
0 on σ2 is known.

Theorem 4. Let În be the model selected by minimizing ABC
′
over Γ. Assume

for each I ∈ Γ, ‖fn−f I‖2 → ∞ and R∗
n(f ; Γ) → 0. Then when λ ≥ 40, with

probability tending to 1, we have

ASE(În) ≤
(
B1σ

2
0/σ

2
)

R∗
n(f ; Γ),

where B1 is a constant depending only on λ.
A result similar to Theorem 2 also holds for ABC

′
. As mentioned before, the

condition ‖fn−f I‖2 → ∞ is satisfied for a typical nonparametric function. The
condition R∗

n(f ; Γ) → 0 holds if the true function f can be well approximated by
some not-too-complex models in Γ.
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6. Application to Adaptive Estimation

In recent years, adaptive estimation has become a main topic in nonpara-
metric curve estimation (see, e.g., Efroimovich and Pinsker (1984), Efroimovich
(1985), Härdle and Marron (1985), Barron and Cover (1991), Lepskii (e.g., 1991),
Donoho and Johnstone (1994), Donoho, Johnstone, Kerkyacharian and Picard
(1996), Birgé and Massart (1996), Brown and Low (1996), Yang and Barron
(1998), and Yang (1997)). Model selection provides a practical way to obtain
estimators that are adaptive to many possible different characteristics of the un-
known underlying function (see, e.g., Barron and Cover (1991), Barron, Birgè
and Massart (1997), and Yang and Barron (1998)). The results in the preceding
section provide risk bounds in terms of approximation capability, model dimen-
sion, and model complexity of the operating models. In Theorem 1, no condition
on the function to be estimated is required for (4), hence the risk bounds hold
for all regression functions. To provide estimators that are adaptive over mul-
tiple target function classes, one can construct different kinds of approximating
models, each suitable for one or more classes, and then use the model selection
criterion to choose a good one based on data. To prove adaptation, one just
needs to examine the index of resolvability for each class and show it converges
at an appropriate rate.

In this section, we demonstrate the above point by showing adaptation with
respect to interaction order and smoothness, and adaptation with respect to both
full and sparse approximation sets of functions. We concentrate on criterion
ABC with σ2 known. When σ2 is unknown, with the criterion in Section 4.II
or 4.III and based on Theorems 3 and 4, analogous results hold on the average
squared error of the selected model though the conclusions are weaker, in terms
of convergence in probability instead of convergence in risk. The explanatory
variables {Xi}n

i=1 are assumed to be independent and uniformly distributed on
[0, 1]d in this section.

6.1. Adaptation with respect to interaction order and smoothness

For high-dimensional function estimation with series expansion methods,
complete models with terms up to certain orders in the expansion usually do
not produce satisfactory estimators due to curse of dimensionality. In contrast,
parsimonious subset models may significantly increase estimation accuracy. In
this subsection, we consider adaptation by model selection over Sobolev classes
with different interaction orders and smoothness.

For r ≥ 1, let zr = (z1, . . . , zr) ∈ [0, 1]r . For k = (k1, . . . , kr) with nonnega-
tive integer components ki, let |k| =

∑r
i=1 ki. Let Dk denote the differentiation

operator Dk = ∂|k|/∂zk1
1 · · · ∂zkr

r . For an integer α, define the Sobolev norm
‖ g ‖W α,r

2
=‖ g ‖2 +

∑
|k|=α

∫
[0,1]r |Dkg|2dzr. Let W α,r

2 (C) denote the set of all
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functions g on [0, 1]r with ‖ g ‖W α,r
2

≤ C. It is an r-dimensional Sobolev class.
Now consider the following function classes on [0, 1]d:

S1(α;C) = {
d∑

i=1

gi(xi) : gi ∈ W α,1
2 (C), 1 ≤ i ≤ d}

S2(α;C) = {
∑

1≤i<j≤d

gi,j(xi, xj) : gi,j ∈ W α,2
2 (C), 1 ≤ i < j ≤ d}

...

Sd(α;C) = W α,d
2 (C)

with α ≥ 1 and C > 0. The simplest class S1(α;C) contains additive functions
(no interaction) and, as r increases, functions in Sr(α;C) have higher order
interactions. The L2 metric entropies of these classes are of the same orders as
are W α,1

2 (C), . . . ,Wα,d
2 (C), respectively. Then by a result of Yang and Barron

(1997), Theorem 10, the minimax rate of convergence under squared L2 loss for
estimating a regression function in Sr(α;C) is n−2α/(2α+r) for 1 ≤ r ≤ d (As
suggested by the heuristic dimensionality reduction principle of Stone (1985)).
Note that the convergence rate does not depend on the input dimension d. Thus
low order interaction classes are worth exploring for better accuracy.

Suppose the true regression function is in one of the classes in {Sr(α;C) : 1 ≤
r ≤ d, α ≥ 1, C > 0}. Stone (1994) proposed tensor product spline models for
estimating such a high-dimensional function (or more generally its components of
different interaction orders in a functional ANOVA decomposition) in a general
context including density estimation, nonparametric regression, and conditional
density estimation. He demonstrated that suitable spline models can result in
estimators converging at expected rates. However, his results require knowledge
of smoothness parameters and interaction order and therefore are not adaptive.
For regression, a similar non-adaptive result was obtained earlier by Chen (1991)
under more restrictive condition with fixed balanced design. Here we show that
by model selection, an adaptive estimator can be obtained based only on data in
the regression setting. Previously, adaptation results with respect to smoothness
in the context of generalized additive modeling were obtained by Burman (1990)
using cross-validation.

Let ϕm,q,1(x), ϕm,q,2(x), . . .,ϕm,q,m(x) be the B-spline basis of order q (piece-
wise polynomial of order less than q) on [0, 1], with m − q + 2 (m ≥ q) equally
spaced knots. For 1 ≤ r ≤ d, let Jr = (j1, . . . , jr) (j1 < j2 < · · · < jr) be an
ordered vector of elements from {1, . . . , d} and let Jr denote the set of all possi-
ble such choices. Let xJr = (xj1 , . . . , xjr) be the subvector of x with subscripts
in Jr. Let mr = (m1, . . . ,mr) and qr = (q1, . . . , qr) be vectors of integers. Let
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ir = (i1, . . . , ir) with 1 ≤ il ≤ ml, 1 ≤ l ≤ r. Then given the spline order qr and
mr, the tensor products

{ϕir(xJr) = Πr
l=1ϕml,ql,il(xjl

) : Jr ∈ Jr; 1 ≤ il ≤ mj for 1 ≤ l ≤ r} (9)

have interaction order r.
Given r,qr,mr, consider the linear combinations of the functions in (9). Let

I = (r,qr,mr) be the model index. When r < d, the functions in (9) are not
all linearly independent. We choose an independent subset and the coefficients
are estimated by least squares method based on the observations (Xi, Yi)ni=1. Let
f̂I = f̂(r,qr,mr) denote the corresponding function estimator.

To adaptively select I = (r,qr ,mr) by criterion ABC, we need to assign
model complexity. To describe the model index, we just need to describe a
few integers. Since r is between 1 and d, we need log2 d bits to describe r. To
describe qr and mr, we use

∑r
j=1 log∗ qj and

∑r
j=1 log∗ mj bits respectively. Thus

we assign the model complexity CI = log2 d +
∑r

j=1 log∗ qj +
∑r

j=1 log∗ mj . Let
În be the model selected by ABC over all valid choices of (r,qr,mr). We have
the following result.

Theorem 5. The estimator f̂În
has mean average square error for the enlarged

Sobolev classes bounded as follows:

sup
f∈Sr(α;C)

E
(
ASE(În)

)
= O

(
n−2α/(2α+r)

)
,

simultaneously for all 1 ≤ r ≤ d, α ≥ 1 and C > 0.

It is anticipated that the minimax rate of convergence of mean ASE is of the
same order as the minimax risk under L2 loss (cf. Chen (1991), pp. 1863-1864).
If that is confirmed, then without knowing the true interaction order r and the
smoothness parameter α, the estimator based on ABC is minimax-rate adaptive
over these enlarged Sobolev classes.

6.2. Adaptation with respect to full approximation sets of functions

Let Φ = {φ1, . . . , φk, . . .} be a fixed choice of fundamental sequence in
L2[0, 1]d (that is, linear combinations of the sequence are dense in L2[0, 1]d).
Let Υ = {γ0, . . . , γk, . . .} so that γk ↓ 0 as k → ∞. Let η0(f) =‖ f ‖2 and
ηk(f) = min{ai} ‖ f −∑k

i=1 aiφi ‖2, k ≥ 1, be the kth degree approximation
of f ∈ L2[0, 1]d by the system Φ. Let F(Υ,Φ) be all functions in L2[0, 1]d with
approximation errors bounded by Υ, i.e.,

F(Υ,Φ) = {f ∈ L2[0, 1]d : ηk(f) ≤ γk, k = 0, 1, . . .}.
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These are called full approximation sets of functions (Lorentz (1966)). Some
familiar function classes, e.g., Sobolev classes, are essentially full approximation
sets (in the sense that each is contained between two full approximation sets of
essentially the same size).

From the defining property, to estimate a function in full approximation sets,
it is natural to consider the finite dimensional families

fm(x, θ) =
m∑

i=1

θiφi, θ = (θ1, . . . , θm) ∈ Rm,

for m ≥ 1. Intuitively, a good choice of m should balance the approximation
error and estimation error, resulting in an optimal estimator. Indeed, Yang and
Barron (1997) showed that for full approximation sets of functions, the minimax
square L2 risk is of order m

n (estimation error) or γ2
m (approximation error) when

they are balanced (i.e., m
n � γ2

m), under a general condition on the approximation
error sequence Υ, namely, that there exist 0 < c

′
< c < 1 such that

c
′
γm ≤ γ2m ≤ cγm. (10)

This holds for γm ∼ m−α and also for γm ∼ m−α (log m)β, α > 0, β ∈ R

(which covers classical classes such as Sobolev). Let mn (Υ) be a sequence of
model dimensions that balances γ2

m and m/n. Then mn (Υ) /n is the minimax
rate of convergence for the class F(Υ,Φ). For instance, the minimax rate is
n−2α/(1+2α) (log n)−2β/(1+2α) if γm ∼ m−α (log m)β. In applications, of course,
we do not know the order of approximation error γm, and therefore cannot choose
mn (Υ) directly. To use ABC, we assign model complexity Cm = log∗ m as in
Section 3. Applying Corollary 1, Noting Cm negligible compared to m, we have
the following conclusion.

Theorem 6. Let În be selected using criterion ABC with λ ≥ 5.1. Then the
estimator f̂În

satisfies

sup
f∈F(Υ,Φ)

E
(
ASE(În)

)
= O (mn (Υ) /n) ,

simultaneously for all choices of Υ satisfying (10).

This result shows that the estimator based on order selection is adaptive
among the full approximation sets of functions without knowledge of the approx-
imation error.

6.3. Subset selection for sparse approximation sets of functions

Instead of full approximation, one can also consider sparse approximation.
Let Φ and Υ be as in the previous subsection with Υ satisfying the condition in
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(10). As in Section 3, Let Nk > k (k ≥ 1) be a chosen increasing sequence of
integers satisfying lim inf Nk/k = ∞ and let N = {N1, N2, . . .}. For simplicity,
take Nk of order kτ for some τ > 1. Let η̃k(g) = minl1≤N1,l2≤N2...,lk≤Nk

min{ai} ‖
g −∑k

i=1 aiφli ‖2 be called the kth degree sparse approximation of g ∈ L2[0, 1]d

by the system Φ under the chosen sparsity constraint N . Here for k = 0, there
is no approximation and η̃0(g) =‖ g ‖2. The kth term used to approximate g

is selected from Nk basis functions. Let S(Υ,Φ,N ) be all functions in L2[0, 1]d

with the sparse approximation errors bounded by Υ, i.e.,

S(Υ,Φ,N ) = {g ∈ L2[0, 1]d : η̃k(g) ≤ γk, k = 0, 1, . . .}.
Sparse approximation provides much more freedom of approximation yet one

can still enjoy the simplicity of linearity to a great extent. Minimax bounds are
given for sparse approximation sets in Yang and Barron (1997). For instance, if

γk ∼ k−α, α > 0, then the minimax rate is between
(
n log2α n

)−2α/(1+2α)
and

(n/ log n)−2α/(1+2α) .

Corresponding to sparse approximation, consider subset models:

fI(x, θ) =
∑

1≤j≤k

θjϕlj (x),

where I = (k, l) with l = (l1, . . . , lk) satisfying 1 ≤ lj ≤ Nj . The model complex-
ity CI can be assigned as in Section 3. From Corollary 1, we have the following
result.

Theorem 7. Let În be selected among the subset models using criterion ABC

with λ ≥ 5.1. Then the risk is bounded by

sup
f∈S(Υ,Φ,N )

E
(
ASE(În)

)
= O (mn(Υ) log n/n) ,

simultaneously for all choices of Υ satisfying (10).

Remark. For the above result, Φ and N are held fixed. Generally, one is allowed
to consider different choices of Φ and N . A similar result still holds with suitable
assignment of model complexity.

Since S(Υ,Φ,N ) contains F(Υ,Φ), the minimax square L2 risk of S(Υ,Φ,N )
is bounded below by order mn(Υ)/n. Thus from Theorem 7, by the subset se-
lection, the mean ASE is within at most a logarithmic factor of the anticipated
rates of convergence automatically over the different sparse approximation sets.
In contrast, if only complete models are considered (i.e., considering only full
approximation), the rate in general could be much worse as can be seen in the
following example.
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Example. Sparse Fourier Series. Consider the Fourier basis on [0, 1] : φ1(x) = 1,
φ2(x) = sin(2πx), φ3(x) = cos(2πx), . . . . With γk of order k−α (α ≥ 1), the full
approximation set F(Υ,Φ) is essentially a periodic Sobolev class with smoothness
parameter α (i.e., F(Υ,Φ) is contained between two Sobolev balls of different
radii, see, e.g., Lorentz (1966)). From Theorem 6, by considering the complete
models, the optimal rate of convergence n−2α/(2α+1) is achieved using the selected
model. However, if the true regression function is in S(Υ,Φ,N ) with Nk = k2,
then the rate of convergence of the estimator for the larger class S(Υ,Φ,N )
deteriorates to at least n−α/(α+1) (see Yang and Barron (1997)). When the sparse
subset models are considered, the rate improves to n−2α/(2α+1) log n, Theorem 7.

We suspect that a logarithmic factor in the risk bound in Theorem 7 is
needed for the sparse approximation sets. However, it still appears even if f is in
a full approximation set, which we know from Theorem 6 is not necessary when
just full approximation sets are considered. We next show that by considering
both types of models, we get the advantages of both of them as if we knew which
type to consider in advance. To that end, let the model index be I = (δ,H),
where δ = 0 indicates it is a complete model for which H = m, and δ = 1
indicates it is a sparse subset model for which H = (k, l). To describe the new
model index, we just need to add an extra bit describing the value of δ. Then
H can be described as before. This gives us C(0,m) = 1 + log∗ m for a complete
model and C(1,(k,l)) = 1+ log∗ k +

∑k
i=1 log Ni for a subset model. Let Γ1 and Γ2

denote the lists of complete models and sparse subset models, respectively. Then
it can be easily verified that

Rn(f ; Γ1 ∪ Γ2) = λ log 2/n + min (Rn(f ; Γ1), Rn(f ; Γ2)) .

That is, the index of resolvability when both types of models are considered is
the minimum of the indices of resolvability when they are considered separately
plus λ log 2/n, and this is negligible for nonparametric estimation. Let În be the
selected model. Then we have the following result.

Corollary 2. The estimator f̂În
satisfies

sup
f∈F(Υ,Φ)

E
(
ASE(În)

)
= O (mn(Υ)/n)

and
sup

f∈S(Υ,Φ,N )
E
(
ASE(În)

)
= O (mn(Υ) log(n)/n) ,

simultaneously for all choices of Υ satisfying (10). In addition, if f has approx-
imation error c1k

−α ≤ ηk(f) ≤ c2k
−α for some constants c1 and c2 and α > 0,

then
ASE(În)

infI∈Γ1∪Γ2 ASE(I)
→ 1 in probability.
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This corollary shows the advantages of enlarging the list of models from
which to select. The resulting estimator converges at least nearly optimally for
sparse approximation sets; stay at the anticipated rates for full approximation
sets; and for a function with approximation error regularly decreasing, it has
ASE asymptotically equivalent in probability to the smallest value one can get
with knowledge of which model is the best in advance. The last statement in
Corollary 2 follows directly from Theorem 2.
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Appendix. Proofs of the Results

For the proofs of Theorems 1 and 2, assume σ2 = 1, without lose of generality.

Proof of Theorem 1. Let en = (ε1, . . . , εn)T . Using ŶI = MIYn, Yn = fn + en,
and expanding the square, one obtains

‖Yn−Ŷ I‖2+2rI+λCI = ‖fn−Ŷ I‖2
+e

′
nen+2e

′
n(fn−MIfn)+2(rI−e

′
nMIen)+λCI .

Let rem1(I) = e
′
n(fn−MIfn) and rem2(I) = (rI−e

′
nMIen). For simplicity, denote

I∗n, Rn(f ; I), and R∗
n(f ; Γ) by In, Rn(I), and R∗

n respectively. By definitions of
Î and In, and using the projection property of MI , we have

‖fn − ŶÎ‖
2
+ λCÎ

= ABC(Î) − en
′en − 2rem1(Î) − 2rem2(Î)

≤ ABC(In) − en
′en − 2rem1(Î) − 2rem2(Î)

= ‖fn − ŶIn‖
2
+ λCIn + 2rem1(In) + 2rem2(In) − 2rem1(Î) − 2rem2(Î)

= ‖fn−MIfn‖2 + rIn + λCIn + 2rem1(In) + rem2(In) − 2rem1(Î) − 2rem2(Î).

Using nRn(Î) = ‖fn − ŶÎ‖
2
+ λCÎ + rem2(Î), we obtain

Rn(Î)
R∗

n

≤ nR∗
n + 2rem1(In) + rem2(In) − 2rem1(Î) − rem2(Î)

nR∗
n

= 1 +
2rem1(In) + rem2(In) − 2rem1(Î) − rem2(Î)

nR∗
n

.

Suppose we can show that for any 0 < δ < 1, there exist g1(δ) > 0 and g2(δ) > 0
such that for each sample size n, with probability no less than 1 − 3δ, we have
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that for all I ∈ Γ
|rem1(I)| ≤ τ1 (nRn(I) + g1(δ)) , (A.1)

and that
|rem2(I)| ≤ τ2 (nRn(I) + g2(δ)) , (A.2)

where τ1 and τ2 are two constants satisfying 2τ1 + τ2 < 1. Then with probability
no less than 1 − 3δ,

Rn(Î)
R∗

n

≤ 1 + (2τ1 + τ2)
Rn(Î)
R∗

n

+ 2τ1

(
1 +

2g1(δ)
nR∗

n

)
+ τ2

(
1 +

2g2(δ)
nR∗

n

)
. (A.3)

Using that nR∗
n ≥ rIn ≥ 1, we know that with probability no less than 1 − 3δ,

Rn(Î)
R∗

n

≤ 1 + 2τ1(1 + 2g1(δ)) + τ2(1 + 2g2(δ))
1 − 2τ1 − τ2

, (A.4)

and

‖fn−ŶÎ‖2 + λCÎ

nR∗
n

≤ nRn(Î)+|rem2(Î)|
nR∗

n

≤ (1 + τ2)
Rn(Î)
R∗

n

+ τ2g2(δ)

≤ (1 + τ2)(1 + 2τ1(1 + 2g1(δ)) + τ2(1 + 2g2(δ))
1 − 2τ1 − τ2

+ τ2g2(δ). (A.5)

Let Zn = (‖fn−ŶÎ‖2 + λCÎ)/(nR∗
n), and ξ1 = (1+τ2)(1+2τ1 +τ2)/(1−2τ1−τ2),

ξ2 = λ(2(1 + τ2)(2τ1 + τ2)/(1 − 2τ1 − τ2) + τ2) for some constant λ (to be given
later). If g1(δ) = g2(δ) = λ log2 (1/δ) then, conditioned on Xi, 1 ≤ i ≤ n,
Pn{Zn ≥ ξ1 + ξ2 log2 (1/δ)} ≤ 3δ. Thus

En

(
Zn − ξ1

ξ2

)+

=
∫ ∞

0
Pn{Zn − ξ1

ξ2
≥ t}dt ≤ 3

∫ ∞

0
2−tdt =

3
ln 2

.

Let ξ = 3ξ2/ ln 2+ξ1, then we have En(‖fn−ŶÎ‖2/n + λCÎ/n)≤ξR∗
n. Thus we

need only prove (A.1) and (A.2) with g1(δ) = g2(δ) = λ log2(1/δ).
The following two facts are useful.

Fact 1. If Z ∼ N(0, 1), then P (|z| ≥ t) ≤ e−t2/2.
Fact 2. If Zm ∼ χ2

m, then

P (Zm − m ≥ κm) ≤ e−
m
2

(κ−ln(1+κ)), κ > 0
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P (Zm − m ≤ −κm) ≤ e−
m
2

(ln( 1
1−κ

)+κ), 0 < κ < 1.

These familiar large deviation bounds follow by evaluating the Cramér-
Chernoff exponents for Normal and Chi-square distributions.

Notice rem1(I) ∼ N(0, ‖fn−MIfn‖2), so by Fact 1, P (|rem1(I)|/‖fn−MIfn‖
≥ tI) ≤ e−t2I/2. Taking t2I = 2(ln 2)(CI − log2(δ), we have

P
(

sup
I∈Γ

|rem1(I)|
‖fn − MIfn‖tI ≥ 1

)
≤
∑
I∈Γ

P
( |rem1(I)|
‖fn − MIfn‖tI ≥ 1

)
≤
∑
I∈Γ

2−(CI−log2(δ))

≤ δ.

Thus, with probability no less than 1 − δ, for all I ∈ Γ,

|rem1(I)| ≤ ‖fn − MIfn‖(2(ln 2)(CI − log2(δ)))
1/2 .

For the other remainder term, because en
′MIen ∼ χ2

rI
, by taking ρ1,I such that

rI

2
(ρ1,I − ln(ρ1,I + 1)) = (ln 2)(CI − log2(δ)), (A.6)

we get from Fact 2 that

P (rem2(I) ≤ −ρ1,IrI for some I ∈ Γ) ≤
∑
I∈Γ

2−(CI−log2(δ)) ≤ δ. (A.7)

Take ρ2,I such that

rI

2
(ρ2,I + ln(

1
1−ρ2,I

)) = (ln 2)(CI − log2(δ)) (A.8)

to find

P (rem2(I) ≥ ρ2,IrI for some I ∈ Γ) ≤
∑
I∈Γ

2−(CI−log2(δ)) ≤ δ.

If we can choose λ large enough (not depending on δ) so that

‖fn − MIfn‖
√

2(ln 2)(CI − log2 δ) ≤ τ1(nRn(I) + g1(δ)),

ρ1,IrI ≤ τ2(nRn(I) + g2(δ)) and ρ2,IrI ≤ τ2(nRn(I) + g2(δ)), then (A.1) and
(A.2) are satisfied. Equivalently, we need

λ + g1(δ)/CI ≥ (1/τ1)(‖fn − MIfn‖/C1/2
I )(2 ln 2 − 2(ln 2) log2 δ/CI)1/2 − rI/CI

−‖fn − MIfn‖2/CI ,

λ + g2(δ)/CI ≥ (ρ1,I/τ2 − 1)rI/CI − ‖fn − MIfn‖2/CI ,

λ + g2(δ)/CI ≥ (ρ2,I/τ2 − 1)rI/CI − ‖fn − MIfn‖2/CI .
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Let s = ‖fn − MIfn‖2 /(CI− log2(δ)) . Using the relationships in (A.6) and (A.8),
it suffices to require that for all s > 0, ρ1 > 0, and 0 < ρ2 < 1,

λ + g1(δ)/CI ≥ (1 − log2(δ)/CI )
(
(2(ln 2)s)1/2 /τ1 − s

)
,

λ + g2(δ)/CI ≥ (1 − log2(δ)/CI ) ((ρ1/τ2−1)2(ln 2)/(ρ1 − ln(ρ1 + 1))),

λ + g2(δ)/CI ≥ (1 − log2(δ)/CI) ((ρ2/τ2−1)2(ln 2)/ (ρ2 − ln(1 − ρ2))).

The third requirement is automatically satisfied in the presence of the second
one. Thus it suffices to require that

λ≥h(τ1, τ2)=max
(
sup
s≥0

((2(ln 2)s)1/2/τ1−s), sup
ρ>0

(ρ/τ2−1)2(ln 2)/(ρ−ln(ρ + 1))
)
,

with the choice of g1(δ) = g2(δ) = (− log2 δ) h(τ1, τ2) (i.e., λ = h(τ1, τ2)). It
is easily seen that for any τ1 > 0, τ2 > 0, h(τ1, τ2) is less than infinity. Let
λ0 = min0<τ2<1 h ((1 − τ2) /2, τ2) . Then if λ > λ0, by continuity, there exist τ1

and τ2 with 2τ1 + τ2 < 1 such that the desired requirements are satisfied. With
suitably chosen τ2, 4.78, λ0 can be shown to be smaller than 5.1.

Now suppose nR∗
n → ∞ as n → ∞. From (A.3), using ‖fn−ŶI‖2 = nRn(I)−

rem2(I) and (A.2), we have that with exception probability no bigger than 3δ,

‖fn−ŶÎ‖2+λCÎ

nR∗
n

≤ (1+τ2)(1+2τ1(1+2g1(δ)/nR∗
n)+τ2(1+2g2(δ)/nR∗

n)
(1 − 2τ1 − τ2)

+
τ2g2(δ)
nR∗

n

.

Because for any fixed δ, g1(δ) and g2(δ) are asymptotically negligible compared
to nR∗

n, the second conclusion of Theorem 1 follows. This complete the proof of
Theorem 1.

Remark. The essential ingredients in the above analysis are the exponential
inequalities in Facts 1 and 2. They are used to bound the magnitude of rem1(I)
and rem2(I). Normality makes the quadratic remainder term rem2(I) chi-square
(centered) distributed and therefore easy to handle. In general, the distribution
of this term depends on both the distribution of the errors and the design matrix
of the model. Thus without normality, it seem unlikely that one can obtain such
a general risk bound as in Theorem 1 without any conditions on the unknown
regression function and the operating linear models.

Proof of Corollary 1. Let Ĩ∗n be a model achieving R∗
n. Observing that ‖fn −

f I‖2 ≤ ‖fn − fI,θ∗‖2, where θ∗ is the minimizer of E (f(X) − f I,θ(X))2 over
θ ∈ RmI and f I,θ∗ = (fI(X1, θ

∗), . . . , fI(Xn, θ∗))T , we have

‖fn−f I∗n‖2/n+rI∗nσ2/n + λσ
2
CI∗n/n ≤ inf

I∈Γ
{‖fn−f I,θ∗‖2/n+rIσ

2/n+λσ2CI/n}
≤ ‖fn − f

Ĩ∗n,θ∗‖
2/n + r

Ĩ∗n
σ2/n + λσ2C

Ĩ∗n
/n

≤ ‖fn − f
Ĩ∗n,θ∗‖

2/n + m
Ĩ∗n

σ2/n + λσ2C
Ĩ∗n

/n.
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Together with (4), by taking expectation further with respect to {Xi}n
i=1, and us-

ing E(‖fn − f
Ĩ∗n,θ∗‖

2/n) = E(f(X) − f
Ĩ∗n,θ∗(X))2, we conclude that the expected

value of the sum of ASE and the model complexity (over n) of the selected model
is bounded above by a multiple of R∗

n. This completes the proof of Corollary 1.

Proof of Theorem 2. From (A.3) with g1(δ) = g2(δ) = λ log2(1/δ), for any
fixed 0 < δ < 1, there exists τ0

1 and τ0
2 and A = Aδ = (1 + (2τ0

1 + τ0
2 ) (1 −

2λ log2(δ)/nR∗
n))/(1 − 2τ0

1 − τ0
2 ) such that P (Î ∈ Kn,A) ≥ 1 − 3δ. Suppose we

can show that for any τ1, τ2 with 2τ1 + τ2 < 1, when n is large enough,

P (|rem1(I)| ≥ τ1nRn(I) for some I ∈ Kn,A) ≤ δ, (A.9)

P (|rem2(I)| ≥ τ2nRn(I) for some I ∈ Kn,A) ≤ 2δ. (A.10)

Then, similarly to the analysis in the proof of Theorem 1 (see (A.5)) but con-
sidering only models in Kn,A instead of Γ, when Î ∈Kn,A (which implies that
Î minimizes ABC over Kn,A), one can show that with probability no less than
1 − (3δ + 3δ),

Rn(Î)(1 − τ2)
R∗

n

≤ ‖fn − ŶÎ‖
2
+ λCÎ

nR∗
n

≤ (1 + τ2)(1 + 2τ1 + τ2)
1 − 2τ1 − τ2

.

Note the r.h.s of the above inequality goes to 1 when τ1 → 0, τ2 → 0 and that
Rn(Î) /R∗

n ≥ 1. As a result, (‖fn − ŶÎ‖2 + λCÎ)/(nR∗
n) −→ 1 in probability.

Using supI∈Kn,A
CI/rI → 0 together with (A.10) , it is seen that for I ∈ Kn,A, λCI

is negligible in probability compared to ‖fn−ŶI‖2 = ‖fn − MIfn‖2+rI−rem2(I).
Also λCIn is negligible compared to ‖fn − MInfn‖2 + rIn . As a consequence, we
have both ‖fn − ŶÎ‖2/nR∗

n → 1 and ‖fn − ŶÎ‖2/
(
‖fn − MInfn‖2 + rIn

)
→ 1 in

probability. Now let us prove (A.9) and (A.10). In the proof of Theorem 1, we
have shown that with probability no less than 1 − δ, for all I ∈ Γ,

|rem1(I)| ≤ ‖fn − MIfn‖ (2(ln 2)(CI − log2(δ)))
1/2 . (A.11)

Because ‖fn − MIfn‖2+rI +λCI ≥ 2‖fn − MIfn‖(rI)1/2 and supI∈Kn,A
CI/rI →

0, we have that for any fixed 0 < δ < 1, |rem1(I)| ≤ τ1Rn(I) holds with proba-
bility no less than 1− δ for all I ∈ Kn,A and any τ1 > 0 when n is large enough.
For the other remainder term, from the proof of Theorem 1, we know that with
probability no less than 1− δ, rem2(I) ≤ ρ2,IrI for all I ∈ Γ, where ρ2,I satisfies
(A.8). So with probability no less than 1 − δ,

rem2(I) ≤ 2(ln 2)(CI − log2(δ)) for all I ∈ Γ. (A.12)

Similarly, with probability no less than 1 − δ, rem2(I) ≥ −ρ1,IrI for all I ∈ Γ,

where ρ1,I satisfies (A.6). From supI∈Kn,A
CI/rI → 0, we have supI∈Kn,A

ρ1,I →
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0. Therefore for n large enough, ρ1,I − ln(1 + ρ1,I) ≥ (ρ1,I) 2/4 for all I ∈ Kn,A.

Then rem2(I) ≥ − (8(ln 2)(CI − log2(δ))rI )
1/2 holds with probability no less than

1 − δ for all I ∈ Kn,A. For any fixed 0 < δ < 1, again from the assumption
supI∈Kn,A

CI/rI → 0, it follows that supI∈Kn,A
(CI − log2(δ)) / (nRn(I)) → 0

and supI∈Kn,A
(8(CI − log2(δ))rI )

1/2 / (nRn(I)) → 0. So with probability no less
than 1 − 2δ, |rem2(I)| ≤ τ2nRn(I) for all I ∈ Kn,A and for every τ2, when n is
large enough.

For the proof of the second result, we need to treat the two remainder terms
more carefully. Let

τ1(δ) = sup
I∈Γn

‖fn − MIfn‖ (2(ln 2)(CI − log2(δ)))
1/2

‖fn − MIfn‖2 + rI + λCI + log2(δ)
.

Then using a + b ≥ 2(ab)1/2 for a, b > 0, we have

τ1(δ) ≤ sup
I∈Γn

((ln 2)(CI−log2(δ))
2(rI +λCI +log2

2 δ)

)1/2 ≤
( ln 2

2

)1/2(
sup
I∈Γn

(CI

rI
+

1
2
√

rI

))1/2
.

Let τ1,0 denote the right side of the second inequality above. Then together
with (A.11), we have that with probability no less than 1 − δ, for all I ∈ Γn,
|rem1(I)| ≤ τ1,0(nRn(I)+log2

2 δ). From (A.12), with probability no less than 1−δ,
rem2(I) ≤ 2(ln 2)(CI − log2(δ)) for all I ∈ Γn. From (A.7), with probability no
less than 1−δ, rem2(I) ≥ −ρ1,IrI for all I ∈ Γn, where (rI/2)(ρ1,I −ln(1+ρ1,I) =
(ln 2)(CI − log2(δ)). For ρ1,I ≤ 1, ρ1,I − ln(1 + ρ1,I) ≥ ρ2

1,I/4. Then rem2(I) ≥
− r

1/2
I (rIρ

2
1,I)

1/2 ≥ − (8(ln 2)(CI − log2(δ))rI )
1/2 holds with probability no less

than 1 − δ. For ρ1,I ≥ 1, because ρ1,I − ln(1 + ρ1,I) ≥ ρ1,I/2, we have that
rIρ1,I/2 ≤ 2 ln 2(CI−log2 δ). So rem2(I) ≥ −4(ln 2)(CI −log2 δ) with probability
no less than 1 − δ. As in the bounding of τ1(δ), we have

sup
I∈Γn

max((8 ln 2(CI − log2(δ))rI )1/2, 4 ln 2(CI − log2 δ))
nRn(I) + log2

2 δ

≤ max((8 ln 2 sup
I∈Γn

(CI/rI + 1/(2r1/2
I )))1/2, 4 ln 2 sup

I∈Γn

(CI/rI + 1/(2r1/2
I ))).

Let τ2,0 denote the right side of the above inequality. It follows that with proba-
bility no less than 1 − 2δ, |rem2(I)| ≤ τ2,0(nRn(I) + log2

2 δ) holds for all I ∈ Γn.
Together, and from (A.3), we have that with probability no less than 1 − 6δ,

Wn =
Rn(Î)
R∗

n

≤ 1 + (2τ1,0 + τ2,0)(1 + 2 log2
2 δ/rn)

1 − 2τ1,0 − τ2,0
,

where rn = minI∈Γn rI . Let

W̃ =
(
Wn − 1 + 2τ1,0 + τ2,0

1 − 2τ1,0 − τ2,0

)/ 2 (2τ1,0 + τ2,0)
rn (1 − 2τ1,0 − τ2,0)

.
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Then Pn{W̃ ≥ log2
2 δ} ≤ 6δ for 0 < δ < 1. It follows that EnW̃+ =

∫∞
0 Pn{

W̃ ≥ t}dt ≤ 6
∫∞
0 2−t1/2

dt = 12/ (ln 2)2. Thus

En (Wn) ≤ 1 + 2τ1,0 + τ2,0

1 − 2τ1,0 − τ2,0
+

24 (2τ1,0 + τ2,0)
(ln 2)2 rn (1 − 2τ1,0 − τ2,0)

.

Because supI∈ΓnCI/rI → 0, τ1,0 and τ2,0 tend to 0. Then the r.h.s. of the
above inequality tends to 1 as n → ∞. Together with Wn ≥ 1, we conclude that
limn→∞ En (Wn) = 1. Because CI is uniformly negligible compared to rI , we
have

infI∈Γ(‖fn − f I‖2/n + rIσ
2/n)

infI∈Γ(‖fn − f I‖2/n + rIσ2/n + λσ2
0CI/n)

→ 1.

Then (8) follows. This completes the proof of Theorem 2.

Proof of Theorem 3. Expanding squares as in the proof of Theorem 1, we
have

‖Yn − ŶI‖2 + 2rI σ̂
2 + λCI σ̂

2

= e
′
nen+(‖fn−M Ifn‖2+rIσ

2+λσ2CI) + 2e
′
n(fn−MIfn) + (rIσ

2 − e
′
nMIen)

+(2rI + λCI)(σ̂2 − σ2).

From the proof of Theorem 1, for λ ≥ 5.1, there exist τ1 and τ2 with 2τ1 + τ2 ≤
1 − γ for some small γ > 0, such that for any 0 < δ < 1, there exist g1(δ) and
g2(δ) such that (A.1) and (A.2) are satisfied with probability no less than 1− 3δ.
Let βn = P

(|σ̂2 − σ2| > γσ2/2
)
. Then, because σ̂2 is consistent, βn → 0. Let

rem3(I) = (2rI + λCI)
(
σ̂2 − σ2

)
. From the above, with probability no less than

1 − 3δ − βn, the three remainder terms are well controlled as in (A.1), (A.2),
and | rem3(I)| ≤ (2rI + λCI)γσ2/2 ≤ (γ/2)nRn(I). Proceed as in the proof of
Theorem 1 to get an inequality similar to (A.5) with a different upper bound in
terms of δ. The proof of the second assertion in Theorem 3 can be handled using
the argument in the proof of Theorem 2. This completes the proof of Theorem
3.

Proof of Theorem 4. We prove the slightly stronger conclusion that with
probability tending to 1, ASE(Î) ≤ B1 infI∈Γ(‖fn − f I‖2 + rIσ

2 + λσ2
0CI). Let

AI = ImI×mI
−MI , where ImI×mI

is the mI ×mI identity matrix. By removing
a common term (e

′
nen) for all models, the criterion is theoretically equivalent to

crit(I) = ‖AIfn‖2 − rIσ
2 + (rIσ

2 − e
′
nMIen) + 2e

′
nAIfn

+
2rI

n − rI

(
‖Yn−Ŷ I‖2 + λσ2

0CI

)
+ λσ2

0CI

= ‖AIfn‖2 + rI

(
2

n − rI

(
‖Yn−Ŷ I‖2 + λσ2

0CI

)
− σ2

)
+λσ2

0CI + 2rem1(I) + rem2(I),
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where rem1(I) and rem2(I) are defined in the proof of Theorem 1. Note also that

‖Yn−Ŷ I‖2 + λσ2
0CI

= ‖AIfn‖2 + (n − rI)σ2 +
(
e
′
nAIen − (n − rI)σ2

)
+ 2e

′
nAIfn + λσ2

0CI .

Let T (I) = ‖AIfn‖2 + (n − rI)σ2 + λσ2
0CI . Redefine Rn(I) = ‖AIfn‖2 + rIσ

2 +
λσ2

0CI (noting that ‖AIfn‖2 = ‖fn − f I‖2). As in the proof of Theorem 1,
one can show that if λ > h(τ1, τ2), then there exist two constants τ1 and τ2

with 2τ1 + τ2 < 1 such that for any δ > 0, with probability no less than 1 − 5δ,
|rem1(I)| ≤ τ1 (nRn(I) + g1(δ)) , |rem2(I)| ≤ τ2 (nRn(I) + g2(δ)) , and |e′

nAIen−
(n − rI)σ2| ≤ τ2 (T (I) + g2(δ)) , where g1(δ) = g2(δ) = λ log2(1/δ). Under the
condition that for each I ∈ Γ, ‖fn − f I‖2 → ∞, for any ε > 0, when n is large
enough, nRn(I) + g1(δ) ≤ (1 + ε)nRn(I), nRn(I) + g2(δ) ≤ (1 + ε)nRn(I), and
(T (I) + g2(δ)) ≤ (1 + ε)T (I). Then with probability no less than 1− 5δ, we have

crit(I) ≥ ‖AIfn‖2+rI

(2(1−(1+ε)(2τ1+τ2))T (I)
n − rI

−σ2
)
− (1 + ε)(2τ1 + τ2)Rn(I)

+λσ2
0CI

≥ ‖AIfn‖2+rI(1−(1+ε)(4τ1+2τ2))σ2 − (1 + ε)(2τ1+τ2)Rn(I)+λσ2
0CI

≥ (1 − (1 + ε)(6τ1 + 3τ2))Rn(I)

For the above inequalities to be useful, we need 6τ1 + 3τ2 < 1. Let In be the
model minimizing Rn(I) among the candidate models. From the above, with
exception probability less than 5δ,

crit(In) ≤ ‖AIn
f‖2 + rI

(
2(1 + (1 + ε)(2τ1 + τ2))T (In)

n − rIn

− σ2
)

+(1 + ε)(2τ1 + τ2)Rn(In) + λσ2
0CI .

Under the assumption that R∗
n(f ; Γ) → 0, and since Rn(In) ≤ (σ2

0/σ
2)R∗

n(f ; Γ),
we have that rIn/n → 0 and (‖AIn

fn‖2 + λσ2
0CIn)/ (n − rIn) → 0. So when the

sample size is large enough, T (In)/(n − rI) → 1 and crit(In) ≤ (1 + ε) (1 + (1 +
ε)(6τ1 + 3τ2))Rn(In). Thus for any δ > 0, when the sample size is large enough,
we have that with probability no less than 1 − 5δ,

Rn(Î) ≤ crit(Î)/ (1 − (1 + ε)(6τ1 + 3τ2))

≤ crit(In)/ (1 − (1 + ε)(6τ1 + 3τ2))

≤ (1 + ε) (1 + (1 + ε)(6τ1 + 3τ2))Rn(In)/ (1 − (1 + ε)(6τ1 + 3τ2)) .

That is,

Rn(Î)/Rn(In) ≤ (1 + ε) (1 + (1 + ε)(6τ1 + 3τ2)) / (1 − (1 + ε)(6τ1 + 3τ2))
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with exception probability less than 5δ. As in the proof of Theorem 1, we know
with probability tending to 1, (‖fn − ŶÎ‖

2
+ λCÎ)/Rn(In) ≤ B1, where the con-

stant B1 depends on ε, τ1 and τ2, provided (1 + ε)(6τ1 + 3τ2) < 1. Minimizing
h(τ1, τ2) over τ1 and τ2 in the region 6τ1 + 3τ2 < 1, one finds a minimum value
less than 40. Thus the asymptotic results hold when λ ≥ 40. This completes the
proof of Theorem 4.

Proof of Theorem 5. From Corollary 1, we need only examine the index
of resolvability R∗

n for the enlarged Sobolev classes Sr(α;C). To that end, the
main task is to upper bound the approximation error for these classes by the
tensor-product splines. For g ∈ W α,r

2 (C), from Schumaker (1981), Theorem
12.8 and Equation 13.69, as used in Stone (1994), with q∗

r satisfying |q∗
r | = α

and m∗
r = (m,m, . . . ,m), for the spline model I = (r,q∗

r ,m
∗
r) , the approximation

error
∫ 1
0 (g(zr) − gI,θ∗(zr))

2 dzr is upper bounded by Am−2α, where the constant
A depends only on r, q∗

r and C. As a consequence, the approximation error of
class Sr(α;C) by model I is upper bounded by order d!/(r!(d− r)!)Am−2α. The
model dimension mI is of order mr. Note that for given r and q∗

r, the model
complexity log2 d+

∑r
j=1 log∗ qj + r log∗ m is asymptotically negligible compared

to mI . Finally,

sup
f∈Sr(α;C)

R∗
n(f ; Γ) ≤ inf

m

(
sup

f∈Sr(α;C)

∫ (
f(x)−f (r,q∗

r ,m∗
r),θ∗(x)

)2
dx +

m(r,q∗
r ,m∗

r)σ
2

n

+
λσ2C(r,q∗

r ,m∗
r)

n

)
= O

(
inf
m

(
m−2α + mr/n

) )
= O

(
n−2α/(2α+r)

)
,

where in the last step, m is taken of order n1/(2α+r). This completes the proof of
Theorem 5.

Proof of Theorem 6. By Corollary 1, we need only show supf∈F(Υ,Φ) R∗
n(f ; Γ1)

= O (mn (Υ) /n) for each choice of Υ satisfying (10), where Γ1 is the list of
complete models. For f ∈ F(Υ,Φ), by definition, we have infθ∈Rm E(f(X)−
fm,θ(X))2 ≤ γ2

m, together with Cm/m → 0, we know supf∈F(Υ,Φ) R∗
n(f ; Γ1) ≤

A infm
(
γ2

m + mσ2/n
)

= O (mn (Υ) /n) , where A is a constant not depending on
m. The conclusion follows.

Proof of Theorem 7. As mentioned in Section 3, for Nk of order kτ (τ > 1),
CI is of order k log k. Let Γ2 denote the list of the subset models. Then, as in the
proof of Theorem 6, supf∈S(Υ,Φ,N ) R∗

n(f ; Γ2) ≤ A
′
infk

(
γ2

k + kσ2/n + k log k/n
)

= O (mn (Υ) log n/n) , where in the last step, we take k of order mn (Υ). The
conclusion then follows from Corollary 1.
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