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Abstract: In the analysis of complex survey data, it is often important to estimate

distribution functions or quantiles associated with a given variable x. Estimation

of these values is known to be problematic if the variable x is measured with er-

ror. Previous work with this problem generally has used the assumption that the

measurement errors, or transformations thereof, have a normal distribution. This

paper uses small-error approximations to develop adjusted estimators of distribu-

tion functions or quantiles for cases in which measurement errors are nonnormal.

These approximations also lead to some relatively simple diagnostics that indicate

the extent to which customary sample survey distribution function estimators are

sensitive to: (1) varying magnitudes of measurement error; and (2) the approximate

shape of the distribution of the true x values. Some of the proposed diagnostics re-

quire identification information, e.g., estimates of the measurement error variance,

but do not necessarily require direct access to individual-level replicate observa-

tions. The proposed methods are applied to data from the U.S. Third National

Health and Nutrition Examination Survey (NHANES III).
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1. Introduction

1.1. Distribution functions, prevalence rates and quantiles

In the analysis of complex survey data, one often needs to estimate distribu-
tion functions or quantiles associated with specific variables Y . The design-based
survey literature has developed a variety of methods for point estimation, vari-
ance estimation and confidence interval construction for these parameters, both
in a pure finite-population context and in a superpopulation-model context. See,
e.g., Woodruff (1952), Rao Kovar and Mantel (1990), Francisco and Fuller (1991),
Shao and Wu (1992) and references cited therein.

To review some of the main ideas in this literature, assume that a finite
population of size N is generated through a superpopulation with cumulative
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distribution function FY (·). One then selects a stratified multistage sample,
and computes F̂Y (x), an appropriately weighted sample proportion of units i

that have observed Yi less than or equal to a specified value x. In some cases,
a certain prespecified cutoff value x∗ is of special substantive interest, and so
analysts focus attention on an estimated prevalence rate F̂Y (x∗), the weighted
proportion of sample units i with Yi ≤ x∗.

In other cases, analytic interest focuses on the quantiles associated with
FY (·), defined by

xFγ = inf{x : FY (x) ≥ γ} for γ ∈ (0, 1). (1.1)

See, e.g., Rao, Kovar and Mantel (1990, p.372). A point estimator x̂Fγ can
be computed by replacing FY (x) with F̂Y (x) in expression (1.1). The quantile
estimators x̂Fγ , γ ∈ (0, 1) provide useful descriptive statistics. In addition, there
is often strong substantive interest in specific quantiles like the median (γ = 0.5),
quartiles (γ = 0.25, 0.75) and certain tail quantiles (γ = 0.05 or 0.95, say).

Under large-sample conditions, the survey literature has also developed meth-
ods for the construction of variance estimators and confidence intervals for the
distribution functions and quantiles of interest. For example, for a given point x

the estimator F̂Y (x) generally can be written as a ratio of estimated population
totals, and customary variance estimation and confidence interval methods can
be applied accordingly. In addition, Woodruff (1952) noted that the inverse rela-
tionship between x̂Fγ and F̂Y (x), combined with standard confidence bounds for
FY (x), lead to relatively simple confidence intervals for xFγ . See, e.g., Francisco
and Fuller (1991) for a rigorous review and extension of these ideas. In addition,
see Rao, Kovar and Mantel (1990) for some related methods involving the use of
auxiliary data.

1.2. An example: prevalence rates and quantiles estimated from
NHANES III

The present work was motivated by applications to the U.S. Third National
Health and Nutrition Examination Survey (NHANES III). Details of the applica-
tion will be presented in Section 6, but for the moment we note that NHANES III
selected sample persons through a stratified multistage sample design intended
to cover the noninstitutionalized U.S. civilian population. Selected sample per-
sons were asked to provide a blood sample and to participate in an interview and
a thorough medical examination. This is in contrast with most other national-
level sample surveys on health, which generally have not collected blood sample
or medical examination variables.

Many of the resulting NHANES III variables are recorded on a continuous
scale. A person with a true value Y below a specified cut-point x∗ is defined to



DISTRIBUTION FUNCTIONS UNDER MEASUREMENT ERROR 427

have a deficiency disease associated with Y . Consequently, NHANES III ana-
lysts have considerable interest in estimation of the associated disease prevalence
rates FY (x∗). In addition, there is related substantive interest in comparison of
quantiles xFγ across subpopulations or comparison of xFγ values to the quantiles
of a reference distribution.

1.3. The effect of measurement error

The abovementioned literature uses the implicit assumption that the obser-
vations Y are recorded without error. However, in many cases this assumption
is problematic, due to imperfections in the measurement instrument or due to
definitional issues. For example, many of the NHANES III variables referred to
in Section 1.2 are measured imperfectly.

To develop some notation, consider a sample element i and let Yi and Xi be
the associated “true value” and recorded observation, respectively. Then Xi −Yi

is defined to be the measurement error associated with unit i. If these errors are
nontrivial, then it is well known that classical distribution function and quantile
estimators can have a correspondingly nontrivial bias.

Consequently, several authors have developed estimators of FY and xFγ in-
tended to account for the presence of measurement error. For example, Gaffey
(1959), building on previous work by Eddington (1913), and Pollard (1953), de-
veloped an infinite-series expression for FY (x) under the assumption that the
measurement errors were normally distributed. This expression involved the
distribution function of X evaluated at a specialized set of points in the neigh-
borhood of x; an infinite number of its derivatives at the same points; and the
variances of the measurement errors. Under the assumptions of simple random
sampling and known error variances, Gaffey (1959) used his infinite-series result
to develop an estimator of FY (x) based on the sample distribution function of
X, and on second and higher-order differences.

In addition, several application areas have addressed the estimation of distri-
bution functions or prevalence rates in the presence of measurement error. These
applications also generally have used the assumption of normal errors, and some-
times have used the assumption of normal true values. See, e.g., quality-control
work by Mee Owen and Shyu (1986) and references cited therein.

More recently, Stefanski and Bay (1996) considered cases in which true val-
ues arose from either a finite population or from an infinite population with
unspecified distribution. They proposed a simulation-extrapolation method to
estimate FY (·) based on the observed values X collected through a complex sam-
ple design. Their development used the assumption that the measurement errors
were normal with mean zero and constant variance; and that this variance was
either known or estimated from an independent source. Also, several authors
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have examined the related problem of estimation of the density of Y based on
the observations X. See, e.g., Carroll, Ruppert and Stefanski (1995, Section 12.1)
and Stefanski and Bay (1996) for discussion of this literature.

Finally, note that for many applications, the assumption of normal measure-
ment errors can be problematic. To some degree this problem can be addressed
by using a monotone transformation t(·) such that the difference t(X) − t(Y )
follows an approximate normal distribution. For example, Nusser, Carriquiry,
Dodd and Fuller (1996) used a four step estimation method involving prelimi-
nary adjustment for nuisance effects; identification of a transformation t(·) such
that the population distributions of both t(Y ) and t(X) − t(Y ) were believed
to be approximately normal; use of a normal variance component model to esti-
mate the distribution function of t(Y ); and back-transformation to estimate the
distribution function of the original Y . However, as noted by Nusser Carriquiry,
Dodd, and Fuller (1996, pp.1443-1444), construction of an appropriate trans-
formation is labor-intensive because customary simple transformations (e.g., the
Box and Cox (1964) family of transformations) may not suffice. Eckert, Carroll
and Wang (1997, Section 3.1) also commented on this problem, and carried out
a detailed study of estimation of a transformation t(·) such that the difference
t(X) − t(Y ) is independent of Y . They emphasized cases in which t(X) − t(Y )
has a symmetric distribution, but did not generally require normality of either
t(X) − t(Y ) or t(Y ).

1.4. Adjustment methods and sensitivity analyses to account for non-
normal errors and limited information

This paper extends the work reviewed in Section 1.3 by developing meth-
ods for the estimation of true-value distribution functions and quantiles in the
presence of non-normal measurement error. First, Section 2 shows that if mea-
surement errors are relatively small in magnitude, then the superpopulation dis-
tribution function of the “noisy” observations X can be approximated by the
true-value superpopulation distribution function FY (·) and an additional term
that depends only on the second derivative of FY (·) and on the variance of the
measurement errors. This in turn leads to an approximation of FY (·) as a function
of the observed-value distribution function and its first and second differences.
Section 2 also examines the extent to which the approximations are improved
under the more restrictive assumption of symmetric measurement errors. Sec-
tion 3 develops related approximations for quantiles. Special emphasis is placed
on a shift function that characterizes the relationship between the quantiles of
the X and Y distributions, respectively.

Second, Section 4 uses the results of Sections 2 and 3 to develop adjusted
point estimators, variance estimators and confidence intervals for FY (·) and xFγ
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based on data from a complex sample survey. These adjustment methods use an
estimator of the measurement error variance that may arise either from replicate
observations collected for a subsample of sample units, or from an independent
source.

Third, the approximations in Sections 2 and 3 also lead directly to simple
sensitivity analyses for the potential effect of measurement error on standard
estimators of distribution functions or quantiles. Section 5 discusses this idea
and Section 6 applies the resulting sensitivity-analysis methods to hemoglobin
data from the U.S. Third National Health and Nutrition Examination Survey.
Section 7 reviews the main ideas of the paper and notes some extensions to
related problems. The appendix presents proofs of the main results of Sections
2 and 3.

2. The Effect of Measurement Error on Superpopulation Distribution
Functions

2.1. Superpopulation conditions

Our adjustment methods and diagnostics are based on an approximate re-
lationship among superpopulation distribution functions for the true values Y ,
and for terms U associated with measurement error. The following conditions
will be used.
(C.1) The random vector (Y,U) is generated by a superpopulation model ξ.

Under this model, Y and U have marginal distribution functions FY (·)
and GU (·), respectively. In addition, Y and U are independent, and U has
an expectation equal to zero.

(C.2) The distribution function FY (·) is absolutely continuous, is three times dif-
ferentiable, and the first three derivatives of FY (·) are uniformly bounded.
The first three derivatives associated with FY (·) are denoted F

(1)
Y (·), F

(2)
Y (·)

and F
(3)
Y (·), respectively.

(C.3) The third absolute moment associated with GU (·) is finite.

The assumption in (C.1) of mean-zero measurement error independent of Y is
frequently used in measurement error work. The differentiability condition (C.2)
is not minimal, but allows a relatively simple local approximation for FY (·).
Similarly, the bounding conditions in (C.2) and (C.3) are not minimal, but lead
to relatively simple approximations for the distribution of X.

2.2. Two small-error approximations

Under condition (C.1), define the observed value

Xδ = Y + δU (2.1)
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where δ is a positive scale factor, and let HXδ(·) be the superpopulation cumu-
lative distribution function of Xδ. In addition, recall the standard result (e.g.,
Woodroofe (1975), p.201) that since FY (·) is absolutely continuous, model (2.1)
implies that HXδ(·) is also absolutely continuous, even though continuity of G(·)
is not assumed.

The work below will use “small error” approximations in which δ is assumed
to converge to zero. Small-error approaches are frequently used in measurement-
error analyses. In keeping with comments by Stefanski and Bay (1996, p.408)
and others, it should be emphasized that methods developed from small-error
approximations often are useful even when realized measurement errors are mod-
erate; this is somewhat analogous to the applicability of customary large-sample
approximations to cases involving moderate sample sizes. However, small-error
approximations will not necessarily apply to cases (e.g, Nusser, Carriquiry, Dodd
and Fuller (1996), Table 1) in which the variance of δU is of the same or larger
magnitude than the variance of Y . In the present superpopulation context, small-
error approximations lead to two useful results.

First, we can approximate the superpopulation distribution function of Xδ

in a way that depends only on the true-value distribution FY (·), the second
derivative of FY (·) and the superpopulation variance δ2σ2

U of the measurement
errors δU .

Result 2.1. Assume conditions (C.1) through (C.3) and define Xδ by expression
(2.1). Then as δ converges to zero,

HXδ(x) = FY (x) + 2−1{F (2)
Y (x)}δ2σ2

U + O(δ3) (2.2)

where σ2
U is the variance associated with GU (·).

The Appendix presents a direct proof of Result 2.1. Note especially that
the conditions for Result 2.1 do not require continuity of the measurement errors
δU . Several related results have been developed in previous work with continuous
measurement errors. For example, expression (2.2) is similar to the first two terms
of an infinite-series expansion of a distribution-function convolution in Eddington
(1913). See, e.g., Gaffey (1959) for further discussion of such expansions under
the assumption of normal measurement errors. Also, under the assumption of
normal measurement errors, Stefanski and Bay (1996, expression (9)) gave a
small-error approximation for the expectation of a weighted sample distribution
function of Xδ. Their approximation was similar to the present expression (2.2)
and depended explicitly on δ2σ2

U , FY (·), F
(2)
Y (·) and F

(4)
Y (·); given a bounded

sixth derivative F
(6)
Y (·), their approximation error was O(δ6). Also, under the

assumptions of continuous measurement error, Chesher (1991, expression (2.4))
developed a small-error approximation for the density of Xδ in a multivariate
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setting. Chesher (1991, p.456) then used this density result to establish a form
of expression (2.2) involving an order o(δ2) remainder term.

Second, we can extend Result 2.1 to approximate FY (·) as a function of
HXδ(·) and δ2σ2

U . Specifically, consider the second derivative F
(2)
Y (·) in (2.2). For

work with distribution functions of Y , some previous work has implicitly approx-
imated the first derivative of FY through scaled first differences (2d)−1{FY (x +
d) − FY (x − d)}; and similar ideas have been used in quantile estimation. See,
e.g., Kovar, Rao and Wu (1988), Rao, Kovar and Mantel (1990) and Francisco
and Fuller (1991). Result 2.2 uses a similar idea involving second differences
of HXδ(·) to approximate F

(2)
Y (·). Section 4 will use this result to construct an

estimator of FY (·) that adjusts for measurement error.

Result 2.2. Assume the conditions of Result 2.1, and let c be a fixed positive
constant. Then as δ converges to zero,

c−2{HXδ(x+ cδσU )+HXδ(x− cδσU )− 2HXδ(x)} = F
(2)
Y (x)δ2σ2

U +O(δ3). (2.3)

Consequently,

FY (x) = HXδ(x)−2−1c−2{HXδ(x+ cδσU )+HXδ(x− cδσU )−2HXδ(x)}+O(δ3).
(2.4)

Note especially that in Result 2.2, the differencing-distance term cδσU is a con-
stant multiple of our measurement-error standard deviation δσU . Thus, in an in-
formal sense, the differencing operation (and thus the approximation of F

(2)
Y (x))

is carried out in a neighborhood of x, with the width of the neighborhood deter-
mined by the magnitude of the measurement errors. Sections 4 and 5 will use
Result 2.2 to develop adjusted estimators of FY (·) and some related diagnostics.
Also, the end of Section 4.2 discusses the choice of an appropriate value for the
constant c in applications.

2.3. Related comments

Results 2.1 and 2.2 lead to several related comments. First, note that Re-
sult 2.2 approximated F

(2)
Y (x) through a relatively simple second difference of

HXδ(x) evaluated at three points. Alternative methods for approximation and
estimation of F

(2)
Y (·), e.g., local quadratic regression, are also possible, but will

not be considered further here.
Second, note that Results 2.1 and 2.2 were stated as superpopulation model

results. Analogous, but somewhat more cumbersome, results can be obtained
asymptotically for a sequence of finite populations. However, in the interest of
space the mathematical development of Sections 2 and 3 is focused on superpopu-
lation results. Similarly, Sections 4 through 6 will restrict attention to estimation
and inference for superpopulation parameters.
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Finally, note that in some cases (e.g., Eckert, Carroll and wang (1997)) an
analyst may believe that the distribution of measurement errors is symmetric but
nonnormal. For a symmetric error distribution, we can reduce the magnitude
of the approximation errors in Results 2.1 and 2.2. Result 2.3 gives a formal
statement of this idea.

Result 2.3. Assume condition (C.1) and let c be a fixed positive constant. In
addition, assume that FY (·) is four times differentiable, and that the first four
derivatives of FY (·) are uniformly bounded. Also, assume that the fourth moment
associated with GU (·) is finite, and that for any t ∈ (−∞,∞),

GU (t) = 1 − GU (−t) (2.5)

i.e., U is distributed symmetrically around zero. Then as δ converges to zero,

HXδ(x) = FY (x) + 2−1{F (2)
Y (x)}δ2σ2

U + O(δ4) (2.6)

and

FY (x) = HXδ(x)−2−1c−2{HXδ(x+ cδσU )+HXδ(x− cδσU )−2HXδ(x)}+O(δ4).
(2.7)

Results 2.1 through 2.3, combined with variants on expression (9) of Stefanski and
Bay (1996), give a hierarchy of approximations. Specifically, the mild conditions
(C.1) through (C.3) lead to an approximation with error of order O(δ3); the
additional assumption of a symmetric measurement error distribution reduces
the approximation error to order O(δ4); and the more restrictive assumption of
normal measurement error further reduces the approximation error to O(δ6).

2.4. Superpopulation models with clustering

Note that condition (C.1) includes the assumption that our finite population
was generated through independent and identically distributed realizations of
a superpopulation model. This assumption is used fairly commonly; see, e.g.,
Francisco and Fuller (1991) on distribution functions and quantiles; and Binder
(1983) on parameters associated with superpopulation-level estimating equations.

However, in some cases substantive features of a population suggest some
correlation among true values Y within groups of units at the superpopulation
level. For these cases, the assumption of independent and identically distributed
superpopulation realizations should be replaced with a more refined superpopu-
lation model intended to account explicitly for superpopulation-level correlation.
Under such models, inference regarding superpopulation parameters becomes
more complex. See, e.g., Fuller (1975, Appendix A), Korn and Graubard (1998),
and references cited therein. For the present work, generalization of condition
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(C.1) to account for correlation within groups of elements would lead to fairly
straightforward extensions of the parametric relationships developed under (C.1)
in Sections 2.2, 2.3 and 3 below. However, confidence bounds for superpopula-
tion parameters considered in Section 4 would require substantial modification;
details of these modifications will be considered elsewhere.

3. The Effect of Measurement Error on Superpopulation Quantiles

The ideas of Section 2 extend directly to superpopulation quantiles. Subsec-
tion 3.1 outlines some relevant notation and a technical condition. Subsection
3.2 presents two approximations for relationships between the quantiles of the
FY (·) and HXδ(·) distributions. Subsection 3.3 ties these differences to the idea
of a “shift function” used in the general distribution-function literature. Subsec-
tion 3.4 examines links with previously developed normal-distribution quantile
adjustments.

3.1. Notation and an additional condition

As noted in section 2.2, conditions (C.1) and (C.2) and model (2.1) ensure
that both FY (·) and HXδ(·) are absolutely continuous. Thus, for any γ ∈ (0, 1),

the inverses F−1
Y (·) and H−1

Xδ(·) are well-defined, and the quantiles xFγ
def= inf{x :

FY (x) ≥ γ} = F−1
Y (γ) and xHδγ

def= inf{x : HXδ(x) ≥ γ} = H−1
Xδ(γ) are uniquely

defined. In developing approximations for these quantiles, we will use conditions
(C.1) through (C.3) as well as the following additional condition.

(C.4) For any γ ∈ (0, 1), F
(1)
Y (xFγ) is strictly positive.

3.2. Two small-error approximations for quantiles

Result 3.1 presents a small-error approximation for the quantile xHδγ as a
function of xFγ and the first and second derivatives of FY (·) evaluated at xFγ .

Result 3.1. Assume conditions (C.1) through (C.4), define Xδ by expression
(2.1), and let HXδ(·) be the cumulative distribution function of Xδ. Then for
any γ ∈ (0, 1), as δ converges to zero,

xHδγ = xFγ − 2−1{F (1)
Y (xFγ)}−1{F (2)

Y (xFγ)}δ2σ2
U + O(δ3). (3.1)

The proof of Result 3.1 in the appendix uses some of the same arguments
as the usual Bahadur (1966) approximation for sample quantiles. (See Francisco
and Fuller (1991, Section 3) for detailed discussion of the Bahadur approximation
in the context of complex sample surveys.) However, note that xHδγ and xFγ

are both superpopulation quantiles rather than sample quantiles. Also, note that
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expression (3.1) is a variant on general results for the effect of small measurement
error on the bias of some nonlinear estimators, e.g., Carroll and Stefanski (1990).
Less formally, note that for a given value of δ2σ2

U , the adjustment term in (3.1) is
largest for x values with the largest values of F

(2)
Y (x)/F (1)

Y (x), i.e., at the points
x for which the distribution function of Y has the largest amount of curvature
relative to its slope.

Result 3.1 extends directly to functions of several quantiles. For example,
consider the difference xFγ2 − xFγ1 of quantiles evaluated at two distinct points
γ1, γ2 ∈ (0, 1); a common example is the interquartile range, with γ2 = 0.75 and
γ1 = 0.25. Then Result 3.1 implies that

(xHδγ2 − xHδγ1) − (xFγ2 − xFγ1)

=−2−1[{F (1)
Y (xFγ2)}−1F

(2)
Y (xFγ2)−{F (1)

Y (xFγ1)}−1F
(2)
Y (xFγ1)]δ2σ2

U +O(δ3). (3.2)

Thus, depending on the numerical values of the derivatives of FY (·), the
leading term of expression (3.2) may be, on an absolute scale, either larger or
smaller than the individual differences xHδγi − xFγi, or may be negligible, i.e.,
O(δ3). In particular, suppose that F

(2)
Y (xFγ1) > 0 and F

(2)
Y (xFγ2) < 0, as would

occur for the interquartile range of a unimodal symmetric distribution. Then the
leading (i.e., order O(δ2)) term of the difference (3.2) is the sum of the absolute
values of the positive leading term of (xHδγ2 − xFγ2) and the negative leading
term of (xHδγ1 − xFγ1).

Finally, Result 3.2 gives a related small-error approximation for xFγ as a
function of xHδγ and first and second-order differences of HXδ(·) in a neighbor-
hood of xHδγ . Sections 4 and 5 will use this result to construct diagnostics for
xFγ.

Result 3.2. Assume the conditions of Result 3.1 and let c be a fixed positive
constant. Then as δ converges to zero,

xFγ = xHδγ + [c−1{HXδ(xHδγ + cδσU ) − HXδ(xHδγ − cδσU )}−1

× {HXδ(xHδγ+cδσU )+HXδ(xHδγ−cδσU )−2HXδ(xHδγ)}δσU ]+O(δ3). (3.3)

3.3. Related shift functions

In an informal sense, Results 2.1 and 3.1 indicated that measurement error
causes the distribution of the observed Xδ to be shifted relative to the distribution
of the true values Y ; cf. Chesher (1991) and references cited therein. To formalize
this idea, note that the general distribution-function literature (e.g., Doksum
and Sievers (1976), p.421) has developed the idea of a shift function ∆(x) that
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describes the relationship between the quantiles associated with two distribution
functions. For the present measurement-error problem, we define

∆(x) = H−1
Xδ{FY (x)} − x (3.4)

so that HXδ{x+∆(x)} = FY (x). Thus, for any γ ∈ (0, 1), HXδ{xFγ +∆(xFγ)} =
FY (xFγ) = γ, i.e., if xFγ is the γth quantile for FY (·), then xFγ + ∆(xFγ) is the
γth quantile for HXγ(·).

Then Result 3.1 implies that the shift function (3.4) evaluated at x = xFγ is
approximately equal to −2−1{F (1)

Y (xFγ)}−1{F (2)
Y (xFγ)}δ2σ2

U . Similarly, Result
3.2 implies that this same shift function can be approximated by

−c−1{HXδ(xHδγ +cδσU ) − HXδ(xHδγ − cδσU )}−1

×{HXδ(xHδγ +cδσU )+HXδ(xHδγ−cδσU )−2HXδ(xHδγ)}δσU . (3.5)

Graphical displays of estimates of these shift functions provide useful diagnostics,
and will be illustrated in the NHANES III application in Section 6.

3.4. Links with normal-distribution quantile adjustments

Finally, consider the relationship between the small-error approximation
(3.1) and previously developed normal-distribution results. Assume condition
(C.1) and assume that FY (·) and GU (·) are distribution functions for normal
random variables with, respectively, means µY and 0 and variances σ2

Y and σ2
U ,

respectively. Then standard arguments lead to the exact result

xHδγ − µY = (xFγ − µY )(σδX/σY ), (3.6)

where σ2
δX = σ2

Y + σ2
δX . See, e.g., Fuller ((1995), p. 124).

Under the same conditions, {F (1)
Y (xFγ)}−1F

(2)
Y (xFγ) = −(σY )−2(xFγ − µY ),

and so expression (3.1) becomes equivalent to,

xHδγ − µY = (xFγ − µY ){1 + δ2σ2
U/(2σ2

Y )} + O(δ3). (3.7)

Moreover, Taylor expansion arguments show that as δ converges to zero, σX/σY =
1 + δ2σ2

U/(2σ2
Y ) + O(δ4) and so the leading term of expression (3.7) is approxi-

mately equal to expression (3.6).
Thus, expression (3.1) can be viewed as an extension of the normal-

distribution result (3.6) to cases involving non-normal distributions and small
errors. In addition, the preceding arguments suggest that for non-normal FY

and small measurement errors, the adequacy of the customary adjustment (3.6)
will depend on whether {F (1)

Y (xFγ)}−1F
(2)
Y (xFγ) is well approximated by the mo-

ment ratio −σ−2
Y (xFγ −µY ). For moderately nonnormal distributions (e.g., some
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t or mixed-normal cases), this adequacy may be problematic primarily in the
tails; for markedly nonnormal distributions, this adequacy may problematic in
both the tails and the center of the distribution.

4. Adjustment of Complex Survey Estimators to Account for Mea-
surement Error

The superpopulation results of Sections 2 and 3 lead directly to adjusted esti-
mators and diagnostics for FY (·) and xFγ . Section 4.1 outlines some preliminary
estimators and some general large-sample conditions. Section 4.2 develops an
adjusted distribution-function estimator based on an estimator of δ2σ2

U obtained
from replicate measurements of sample units or alternative sources. Section 4.3
outlines similar estimators for the quantiles xFγ and the related shift functions
∆(x).

4.1. Preliminary estimators and large-sample conditions

The notation used here will build on previous work by Francisco and Fuller
(1991). First, let ξ be the basic superpopulation model described by conditions
(C.1) through (C.4). Second, consider a sequence of populations, samples and
positive scale terms δν indexed by the positive integers ν. For a given ν, we
have a population of size Nν ; each unit in the population is an independent and
identically distributed realization of the random vectors (Y, δνU). The super-
population distribution of Y + δνU is HνXδ, and principal interest involves the
superpopulation distribution function FY . For convenience, we will use the no-
tation σ2

νUδ = δ2
νσ2

U . In addition, a complex design leads to a sample of size nν.
Standard weighted estimation methods lead to the point estimators ĤνXδ(x).

Third, for this section we also assume that we have available an estima-
tor σ̂2

νUδ of σ2
νUδ. In practical applications, this estimator may arise from: (a)

replicate measurements of sample units (sometimes known as internal reliability
data); (b) comparison of sample measurements to true values (internal validation
data); or (c) variance estimates from sources that are independent of the origi-
nal sample observations (external reliability or validation data). See, e.g., Carroll
and Stefanski (1990) for a detailed discussion of these possible data sources. Also,
under simple random sampling Zhong (1997) used empirical likelihood methods
to combine validation data with error-prone measurements to produce estimators
of the distribution function FY (·).

In the interest of space, details of the specific cases (a)-(c) are omitted here.
Instead, we use the following general framework. For any given k-dimensional real
vector x(k)=(x1, . . . , xk), let HνXδ(x(k))={HνXδ(x1), . . . ,HνXδ(xk)}. In addition,
for each ν, let {ĤνXδ(x(k))′, σ̂2

νUδ}′ be a point estimator for the (k+1)-dimensional
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vector {HνXδ(x(k))′, σ2
νUδ}′ and let V̂νHσ(x(k)) = V̂ [{ĤνXδ(x(k))′, σ̂2

νUδ}′] be an
estimator of the (k+1)×(k+1) covariance matrix of the approximate distribution
of {ĤνXδ(x(k))′, σ̂2

νUδ}′. We will use the following large-sample condition.

(C.5) As ν increases, Nν and nν increase without bound and the positive terms
δν decline to zero. Also, the sequence of random matrices {[(ĤνXδ(x(k))′,
σ̂2

νUδ)
′, V̂νHσ(x(k))], ν =1, 2, . . .} is such that {V̂νHσ(x(k))}−1/2[{ĤνXδ(x(k))′,

σ̂2
νUδ}′ −{HνXδ(x(k))′, σ2

νUδ}′] d−→ N(0, I), the (k+1)-dimensional normal
distribution with mean zero and identity covariance matrix.

Because {ĤνXδ(x(k))′, σ̂2
νUδ} is approximately a weighted mean vector, condition

(C.5) is relatively mild. A formal development of sufficient conditions for (C.5)
requires a fairly long but routine repetition of standard arguments from, e.g.,
Krewski and Rao (1981), Francisco and Fuller (1991, especially Theorem 1),
Shao (1996) and references cited therein. Consequently, detailed developments
of these sufficient conditions are omitted here, and we will make direct use of
condition (C.5) itself. Also, to simplify notation the index ν will be omitted in
the remainder of this development.

4.2. Distribution functions

Direct substitution of ĤXδ(·) and σ̂2
Uδ into expression (2.4) leads directly to

an adjusted point estimator for FY (x), defined as

F̂Y (x) = min[1, ĤXδ(x)− 2−1c−2{ĤXδ(x + cσ̂Uδ) + ĤXδ(x− cσ̂Uδ)− 2ĤXδ(x)}].
(4.1)

Due to the second differences in ĤXδ(·), the estimator F̂Y (x) will not necessarily
be monotone nondecreasing in x for finite samples. To impose this motonicity
constraint, let x1 < x2 < . . . be the distinct values of X observed in a given
sample, and define the modified estimator F̃Y (·) by

F̃Y (x1) = ĤXδ(x1); F̃Y (xi) = max{F̂Y (xi), F̃Y (xi−1)}, i ≥ 2;

and F̃Y (x) = F̃Y (xi−1), x ∈ (xi−1, xi). (4.2)

In addition, routine linearization arguments lead to the estimator of the vari-
ance of the approximate distribution of F̃Y (x), V̂ {F̃Y (x)} = (d∗)′V̂νHσ(x(3))(d∗),
where d∗ = {d′,−2−1F̂ (2)(x)}′, d′=(0, 1, 0)−2−1c−2(1,−2, 1), F̂

(2)
Y (x)=(cσ̂Uδ)−2

{ĤXδ(x + cσ̂Uδ) + ĤXδ(x − cσ̂Uδ) − 2ĤXδ(x)} and V̂νHσ(x(3)) is the covariance
matrix defined by condition (C.5) with k = 3 and x(3) = (x − cσ̂Uδ, x, x + cσ̂Uδ).
Condition (C.5) and routine approximation arguments then indicate that an ap-
proximate (1 − α)100% confidence interval for FY (x) is

{F̃Y L(x), F̃Y U (x)} = F̃Y (x) ± z1−α/2[V̂ {F̃Y (x)}]1/2 (4.3)
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where z1−α/2 is the customary 1 − α/2 upper quantile of the standard normal
distribution.

This estimation work leads to four general comments. First, the point esti-
mator (4.1) is formally similar to the leading terms of a deconvolution estima-
tor proposed by Gaffey (1959, p.199) under the assumption of simple random
sampling and normal measurement errors. Second, recall that condition (C.1)
required that the true observations Y and the error terms U be independent at
the superpopulation level. If this is problematic for a given dataset, one may
consider a transformation t(·) such that t(Y ) and t(X) − t(Y ) are independent
at the superpopulation level, in keeping with the discussion of Eckert Carroll
and Wang (1997) in Section 1. An estimator of the distribution function of Y

then follows from application of (4.2) to the transformed data, followed by back-
transformation into the original Y scale. Third, in keeping with case (c) discussed
in Section 4.1, consider an estimator σ̂Uδ that arises from a source that is indepen-
dent of ĤXδ(x) (e.g., through laboratory calibration work separate from the main
survey dataset). Then the covariance matrix V̂νHσ(x) has a block-diagonal form
with a null covariance between ĤXδ(x) and σ̂Uδ, and computation of V̂νHσ(x)
simplifies accordingly.

Fourth, note that Results 2.2, 2.3 and 3.2 and the estimator (4.1) were
developed for an arbitrary fixed positive constant c. For finite sample sizes and
nontrivial measurement errors, the choice of an appropriate c will depend on
several factors. For example, for a given FY (·), x and δσU , one would prefer
values of c that are small enough to provide a satisfactory approximation (2.3);
i.e., such that FY (y) and HXδ(y) are approximately quadratic over the interval
y ∈ [x − cδσU , x + cδσU ]. On the other hand, for a given FY (·), x, δσU , sample
design and sample size, design-based estimators of the second difference on the
left hand side of (2.3) will tend to be more stable with larger c. The data analysis
of Section 6 below used c = 2. For that specific dataset, moderate changes in c
did not have a severe effect on the resulting estimates of FY (·) and associated
quantiles. Additional study of appropriate choices of c, or of quadratic-regression
and other estimators of F (2)(·) mentioned in Section 2.3, would be of interest for
future work.

4.3. Quantiles

A direct estimator of the true-observation quantile xFγ is

x̃Fγ
def= inf{x : F̃Y (x) ≥ γ} = F̃−1

Y (γ), (4.4)

say. Also, a direct extension of the Woodruff (1952) method leads to the approx-
imate (1 − α)100% confidence interval,

(x̃FγL, x̃FγU ) = [F̃−1
Y {F̃Y L(x̃Fγ)}, F̃−1

Y {F̃Y U (x̃Fγ)}]. (4.5)
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In addition, direct substitution of ĤXδ(·) and σ̂Uδ into expression (3.5) pro-
duces an estimator ∆̂(x), say, of the shift function ∆(x) from expression (3.4).
An associated confidence interval is

[∆̂L(x), ∆̂U (x)] = ∆̂(x) ± z1−α/2[V̂ {∆̂(x)}]1/2, (4.6)

where the variance estimator V̂ {∆̂(x)} follows directly from standard lineariza-
tion arguments.

Finally, in the present work we will use ∆̂(x) as a diagnostic to explore
the magnitude of measurement error effects at various points x. However, Luo
(1996) and Luo and Stokes (1997) showed that one can also use ∆(x) as the basis
for direct estimation of the true-value distribution function FY (·). Specifically,
consider some estimators H∗

Xδ(·) and ∆∗(·), say. Then the relation FY (x) =
HXδ{x + ∆(x)} leads to an alternative estimator F ∗

Y (x) = H∗
Xδ{x + ∆∗(x)}; see

Luo (1996) and Luo and Stokes (1997) for detailed discussion of F ∗
Y (·).

5. Sensitivity Analyses

As noted in Section 4.1, the measurement-error variance estimator σ̂2
Uδ gen-

erally is based on some form of auxiliary data, e.g., replicate measurements.
Similar comments apply to related identifying information used in previous lit-
erature, e.g., Stefanski and Bay (1996) and Nusser, Carriquiry, Dodd and Fuller
(1996). However, in some practical cases it is difficult or impossible to obtain
this information. See, e.g., Biemer (1995, p.146). In addition, even for cases in
which replicate measurements are available, there can be a substantial burden
associated with data cleaning and the calculation of σ̂2

Uδ and the corresponding
terms of V̂νHσ(x).

Thus, it is useful to complement the adjusted estimation methods of Section
4 with some simple sensitivity-analysis tools. These tools use limited informa-
tion (e.g., a range of possible measurement error variances, based on equipment
specifications or related previous studies) to identify cases for which measure-
ment error is of greatest concern in estimation of FY (·) or related quantiles. For
these identified cases, one may proceed with a deeper (and potentially more time
consuming) study, e.g., collection of replicate measurements and a more detailed
subsequent measurement error analysis as in Section 4.

Specifically, assume that external sources of information have provided a
data analyst with a range of plausible values [mL,mU ], say, for the measurement
error variance σ2

Uδ. For a given element m ∈ [mL,mU ], define the point esti-
mator F ∗

Y (x) and the confidence interval (F ∗
Y L(x), F ∗

Y U (x)) by expressions (4.2)
and (4.3) with σ̂2

Uδ replaced by m and the corresponding elements of V̂νHσ(x)
set equal to zero. In addition, define the quantile estimator x∗

Fγ and confidence
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interval (x∗
FγL, x∗

FγU ) through expressions (4.4) and (4.5), with the terms F̃Y (·),
F̃−1

Y {F̃Y L(x̃Fγ)} and F̃−1
Y {F̃Y U (x̃Fγ)} replaced accordingly. Similarly, define

the shift function point estimator ∆∗(x) and confidence interval [∆∗
L(x),∆∗

U (x)]
through corresponding modifications of expressions (3.5) and (4.6).

6. Application to NHANES III Data

6.1. Hemoglobin measurements in NHANES III

An application of the Section 5 sensitivity analyses arose with data from
measurements X of hemoglobin (measured in grams per deciliter) collected in
the U.S. Third National Health and Nutrition Examination Survey (NHANES
III). See National Center for Health Statistics (1996) for a detailed discussion of
the NHANES III design and for a description of appropriate design-based anal-
ysis methods. For the current discussion, it suffices to note that NHANES III is
a large-scale survey based on a stratified multistage design with 49 strata, two
primary sample units (roughly equivalent to counties) selected per stratum, and
additional subsampling used to select secondary sample units (roughly equiv-
alent to city blocks), households and individual persons within selected house-
holds. Point estimates and variance estimates for the observed-value distribution
function HXδ(·) were computed using standard methods. For example, point es-
timators ĤXδ(x) were standard weighted ratios, with weights computed from
inverses of selection probabilities, with poststratification adjustments to account
for nonresponse and related issues. In addition, V̂ {ĤXδ(x)} was computed from
standard variance estimation formulas for a weighted sample ratio under a com-
plex design as in, e.g., Cochran (1977).

Dallman Looker, Johnson and Carroll (1996) give a detailed discussion of
hemoglobin and other iron status measures in NHANES III. For the current dis-
cussion, it suffices to note that very low levels of hemoglobin are associated with
anemia, a serious health problem. Consequently, epidemiologists have strong in-
terest in the quantiles of the distribution of hemoglobin in certain demographic
groups. In addition, it is important to have estimates of low-iron prevalence rates
as determined by some specific standard cutoffs. For example, for white women
aged 20-49, a hemoglobin level of less than 12 grams per deciliter is an indicator
of anemia. Thus, epidemiologists will have specific interest in estimation of the
low-hemoglobin prevalence rate equal to FY (12).

All hemoglobin measurements, including those collected by NHANES III, are
believed to contain some amount of measurement error. In particular, prelimi-
nary work with some related NHANES III data indicated that the measurement
error for hemoglobin had a variance in the range [m1,m2] = [0.15, 0.30]. In
keeping with the small-error ideas of Sections 2 and 3, note that the square
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roots of these possible variances (e.g., (m1)1/2 = 0.387 or (m2)1/2 = 0.548) are
fairly small relative to overall variability in the Xδ observations. For example,
ĤXδ(10) = 0.011 and ĤXδ(15) = 0.964; i.e., the effective support for hemoglobin
measurements is roughly the interval [10, 15].

6.2. Prevalence rates for low hemoglobin levels, and related quantiles

The current analysis focused on hemoglobin levels for white females aged 20-
49. Table 1 presents point estimates and approximate 95% confidence intervals
for FY (12), the true proportion of persons in this population with hemoglobin
less than 12 grams per deciliter. The first row gives the unadjusted estimates,
i.e., estimates computed under the assumption that σ2

Uδ = 0. The remaining
rows report estimates for σ2

Uδ = 0.15(0.05)0.30, in keeping with the sensitivity
analyses outlined in Section 5. Also, as discussed at the end of Section 4.2, the
present analysis used the multiplier c = 2 in the computation of expressions (4.1)
and (4.2) and associated quantiles, shift functions and confidence bounds.

Table 1. Point estimates F ∗
Y (12) and approximate 95% confidence intervals

(F ∗
Y L(12), F ∗

Y U (12)) for the prevalence of low hemoglobin. NHANES III data
for white women aged 20-49.

F ∗
Y (12) (F ∗

Y L(12), F ∗
Y U (12))

Unadjusted (m = 0) 0.1321 (0.1123, 0.1520)
m = 0.15 0.1195 (0.0989, 0.1402)
m = 0.20 0.1162 (0.0953, 0.1371)
m = 0.25 0.1121 (0.0910, 0.1331)
m = 0.30 0.1010 (0.0888, 0.1312)

Table 2. Point estimates x∗
F,0.05 and approximate 95% confidence intervals

(x∗
F,0.05,L, x∗

F,0.05,U ) for the 0.05 quantile of hemoglobin. NHANES III data
for white women aged 20-49.

x∗
F,0.05 (x∗

F,0.05,L, x∗
F,0.05,U )

Unadjusted (m = 0) 11.27 (11.16, 11.42)
m = 0.15 11.42 (11.24, 11.54)
m = 0.20 11.47 (11.26, 11.58)
m = 0.25 11.51 (11.32, 11.62)
m = 0.30 11.53 (11.35, 11.64)

Note especially that for σ2
Uδ = 0.30, the adjusted confidence intervals fall en-

tirely below the unadjusted point estimate. This implies that measurement error
may have led to substantial inflation in the unadjusted prevalence rate. Table
2 presents related point estimates and confidence intervals for xF,0.05, the fifth
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percentile of the population hemoglobin distribution. The practical implications
of this sensitivity analysis are qualitatively similar to those for Table 1.

To examine the quantile issue in further detail, Figure 1 presents a shift
function plot for σ2

Uδ = 0.25. The center curve represents the point estimates
∆∗(x), while the upper and lower curves represent the upper and lower pointwise
95% confidence bounds ∆∗

U (x) and ∆∗
L(x). Note especially that for x between 10

and 12, the shift function is fairly constant, at about −0.10. In addition, note the
relatively tight confidence bounds for ∆(x) with x ≤ 13. As one would expect,
shift-function plots using other values of σ2

Uδ showed more (less) pronounced
shifts for larger (smaller) values of σ2

Uδ; otherwise, the plots were qualitatively
similar to Figure 1.
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Figure 1. Plot of shift-function point estimates ∆∗(x) and approximate
95% confidence bounds [∆∗

L(x), ∆∗
U (x)] for hemoglobin levels with m = 0.25.

NHANES III data for white females aged 20-49.

7. Discussion

Taken together, this paper, Stefanski and Bay (1996) and Nusser Carriquiry,
Dodd and Fuller (1996) indicate that the choice of a specific measurement-error
adjustment method for estimation of FY (·) depends heavily on the characteristics
of the measurement errors, and on available information and analytic resources.
For example, Sections 2 and 4 of the present paper indicate that if the mea-
surement error variance is relatively small, then one can obtain relatively simple
adjusted point estimators that depend only on the unadjusted estimator ĤXδ(·)
and an estimator σ̂2

Uδ of the measurement error variance. This adjusted estimator
does not require the assumption of normal measurement errors. In addition, the
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adjusted estimators and diagnostics in Sections 4 and 5 are relatively simple to
implement. This is important because some previously proposed transformation
and adjustment methods generally require substantial analytic effort. See, e.g.,
Fuller (1995, p.127). Also, the proposed simple adjustments extend directly to
construction of adjusted quantile estimators, the associated shift function ∆(x)
and the sensitivity analyses discussed in Sections 5 and 6.

On the other hand, the methods in Stefanski and Bay (1996) and Nusser Car-
riquiry, Dodd and Fuller (1996) also have strengths. For example, if measurement
errors are believed to be normal, as well as relatively small, then extensions of
expression (9) in Stefanski and Bay (1996) indicate that simulation-extrapolation
methods can lead to more refined adjustments (e.g., with remainder terms of or-
der O(δ6) instead of the order O(δ3) or O(δ4) remainders discussed in Sections
2 and 3 here for nonnormal errors). In addition, if the variances of measurement
errors and true values are of roughly the same magnitude, then the small-error
approximation approaches in this paper and in Stefanski and Bay (1996) may be
problematic. For such cases, the transformation approach in Nusser Carriquiry,
Dodd and Fuller (1996) is attractive because under its stated conditions it pro-
vides additional structure through the assumption that both the transformed
measurement errors and the transformed true values arise from normal distribu-
tions.
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Appendix. Proofs of Results 2.1-2.3 and 3.1-3.2, and Three Related
Lemmas

This appendix contains proofs of the main results of Sections 2 and 3. It
also states and proves the related technical Lemmas A.1 through A.3, which are
used in the proof of Result 3.1.

Proof of Result 2.1. Given condition (C.1) and model (2.1), routine convolu-
tion arguments (e.g., Chung (1974), p.144) show that for a given real number x,
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the distribution function of Xδ is

HXδ(x) =
∫ ∞

−∞
FY (x − δt)dGU (t). (A.1)

Routine Taylor-expansion arguments for FY (·) show that under condition (C.2),

FY (x − δt) = FY (x) + F
(1)
Y (x)(−δt) + 2−1F

(2)
Y (x)(−δt)2 + 6−1F

(3)
Y (x∗)(−δt)3,

where x∗ is a point in the interval [x − δt, x]. Thus, expression (A.1) equals
∫ ∞

−∞
[FY (x) + F

(1)
Y (x)(−δt) + 2−1F

(2)
Y (x)(δt)2 + (6)−1F

(3)
Y (x∗)(δt)3]dGU (t)

= FY (x)
∫ ∞

−∞
dGU (t) + 2−1F

(2)
Y (x)

∫ ∞

−∞
(δt)2dGU (t)

+
∫ ∞

−∞
(6)−1F

(3)
Y (x∗)(−δt)3]dGU (t) = FY (x) + 2−1F

(2)
Y (x)δ2σ2

U + δ3R3(x),

where R3(x) is a uniformly bounded term involving the bounded derivative
F

(3)
Y (·) and the bounded third moment associated with GU (·); and where the

integration results follow from the fact that U has a mean equal to zero. Expres-
sion (2.2) follows immediately from the boundedness of R3(x).

Proof of Result 2.2. Under conditions (C.1) and (C.2), standard Taylor ex-
pansion arguments show that

FY (x+cδσU ) = FY (x)+F
(1)
Y (x)cδσU +2−1F

(2)
Y (x)(cδσU )2+6−1F

(3)
Y (x∗∗)(cδσU )3,

(A.2)
and

FY (x−cδσU )=FY (x)+F
(1)
Y (x)(−cδσU )+2−1F

(2)
Y (x)(cδσU )2+6−1F

(3)
Y (x∗∗∗)(−cδσU )3,

(A.3)
where x∗∗ and x∗∗∗ are contained in the intervals [x, x+cδσU ] and [x−cδσU , x], re-
spectively. Also, due to the uniform bounding condition (C.2), F

(3)
Y (x∗∗)(cδσU )3

and F
(3)
Y (x∗∗∗)(cδσU )3 are both of order O(δ3). Addition of expressions (A.2)

and (A.3) then shows that

FY (x + cδσU ) + FY (x − cδσU ) − 2FY (x) = F
(2)
Y (x)(cδσU )2 + O(δ3). (A.4)

Condition (C.2) and an argument similar to that for expression (A.4) show that

F
(2)
Y (x + cδσU ) + F

(2)
Y (x − cδσU ) − 2F (2)

Y (x) = O(δ2). (A.5)
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Three applications of Result 2.1, and expressions (A.4) and (A.5), show that

HXδ(x + cδσU ) + HXδ(x − cδσU ) − 2HXδ(x)

= FY (x + cδσU ) + FY (x − cδσU ) − 2FY (x)

+2−1{F (2)
Y (x + cδσU ) + F

(2)
Xδ (x − cδσU ) − 2F (2)

Xδ (x)}δ2σ2
U + O(δ3)

= FY (x + cδσU ) + FY (x − cδσU ) − 2FY (x) + O(δ3)

= F
(2)
Y (x)(cδσU )2 + O(δ3),

and expression (2.3) follows. Expression (2.4) then follows directly from expres-
sions (2.2) and (2.3).

Proof of Result 2.3. Under the symmetry condition (2.5), expression (A.1)
equals ∫ ∞

0
{FY (x + δt) + FY (x − δt)}dGU (t). (A.6)

Also, Taylor-expansion arguments for FY (·) show that under under the stated
derivative conditions,

FY (x + δt) + FY (x − δt)

= FY (x) + F
(1)
Y (x)(δt) + 2−1F

(2)
Y (x)(δt)2 + 6−1F

(3)
Y (x)(δt)3

+(24)−1F
(4)
Y (x∗∗∗∗)(δt)4 + FY (x) + F

(1)
Y (x)(−δt) + 2−1F

(2)
Y (x)(−δt)2

+6−1F
(3)
Y (x)(−δt)3 + (24)−1F

(4)
Y (x∗∗∗∗∗)(−δt)4

= 2FY (x) + F
(2)
Y (x)(δt)2 + (24)−1{F (4)

Y (x∗∗∗∗) + F
(4)
Y (x∗∗∗∗∗)}(δt)4,

where x∗∗∗∗ and x∗∗∗∗∗ are points in the intervals [x, x + δt] and [x − δt, x],
respectively. Thus, expression (A.6) equals

∫ ∞

0
[2FY (x) + F

(2)
Y (x)(δt)2 + (24)−1{F (4)

Y (x∗∗∗∗) + F
(4)
Y (x∗∗∗∗∗)}(δt)4]dGU (t)

= 2FY (x)
∫ ∞

0
dGU (t) + F

(2)
Y (x)

∫ ∞

0
(δt)2dGU (t)

+
∫ ∞

0
(24)−1{F (4)

Y (x∗∗∗∗) + F
(4)
Y (x∗∗∗∗∗)}(δt)4dGu(t)

= FY (x) + 2−1F
(2)
Y (x)δ2σ2

U + δ4R4(x),

where R4(x) is a uniformly bounded term involving the bounded derivative
F

(4)
Y (·) and the bounded fourth moment associated with GU (·); and where the

final integration results follow from the fact that GU (·) is a symmetric distribu-
tion function. Expression (2.6) then follows immediately from the boundedness
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of R4(x). Expression (2.7) then follows from arguments that are almost iden-
tical to those for Result 2.2, but with third-order Taylor expansions and order
expressions replaced by corresponding fourth-order terms.

Lemma A.1. Assume conditions (C.1) through (C.4). Then the following
statements hold.
(a) For any γ ∈ (0, 1), there exist positive real numbers dγ and C1γ such that

F
(1)
Y (x) > C1γ for all x in the closed interval [xFγ − dγ , xFγ + dγ ].

(b) For any γ ∈ (0, 1) and for sufficiently small δ > 0, xHδγ ∈ [xFγ−dγ , xFγ+dγ ].

Proof of Lemma A.1. Part (a) follows immediately from the continuity of
FY (x) and condition (C.4). To establish part (b), note first that a review of
the proof of Result 2.1 shows that there exists some real number C2γ > 0 such
that |HXδ(xFγ − dγ) − FY (xFγ − dγ)| ≤ C2γδ2 for all δ. Also, part (a) and
a routine integration argument show that FY (xFγ) ≥ FY (xFγ − dγ) + dγC1γ .

Moreover, for sufficiently small δ, dγC1γ > C2γδ2 and thus HXδ(xFγ − dγ) ≤
F (xFγ − dγ) + |HXδ(xFγ − dγ) − FY (xFγ − dγ)| ≤ FY (xFγ − dγ) + C2γδ2 ≤
FY (xFγ − dγ) + dγC1γ ≤ FY (xFγ) = γ, where the final equality follows from
the definition of xFγ and the absolute continuity of Fy(·). Similar arguments
show that HXδ(xFγ + dγ) ≥ γ for sufficiently small δ. Part (b) then follows
immediately from the definition of xHδγ .

Lemma A.2. Assume conditions (C.1) through (C.4). Then for any γ ∈ (0, 1)
there exists C3γ > 0 such that |xHδγ − xFγ | ≤ C3γδ2.

Proof of Lemma A.2. By condition (C.2) and the mean value theorem,

FY (xHδγ) − FY (xFγ) = F
(1)
Y (x∗)(xHδγ − xFγ), (A.7)

where x∗ is contained in the interval with endpoints xHδγ and xFγ. Moreover,
Lemma A.1 implies that for sufficiently small δ, xHδγ ∈ [xFγ − dγ , xFγ + dγ ],
so x∗ is contained in the same interval, and thus F

(1)
Y (x∗) > C1γ . Then by

expression (A.7) |xHδγ − xFγ | ≤ (C1γ)−1|FY (xHδγ) − FY (xFγ)| for sufficiently
small δ. In addition, a review of the proof of Result 2.1 shows that due to the
uniform boundedness of the first through third derivatives of FY (·), there exists
a positive real number C4 such that |FY (xHδγ) − FY (xFγ)| ≤ C4δ

2 for all δ.
Lemma A.2 then follows immediately, with C3γ = (C1γ)−1C4.

Lemma A.3. Assume conditions (C.1) through (C.4). Then for any γ ∈ (0, 1)
there exists C5γ > 0 such that |F (2)

Y (xHδγ) − F
(2)
Y (xFγ)| ≤ C5γδ2.

Proof of Lemma A.3. By condition (C.2) and the Mean Value Theorem,
F

(2)
Y (xHδγ) − F

(2)
Y (xFγ) = F

(3)
Y (x∗∗)(xHδγ − xFγ) where x∗∗ is contained in the
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interval with endpoints xHδγ and xFγ. Lemma A.3 then follows from Lemma
A.2 and the uniform boundedness of F (3)(·) provided in condition (C.2).

Proof of Result 3.1. Condition (C.2) and a standard Taylor expansion show
that

FY (xHδγ)−FY (xFγ) = F
(1)
Y (xFγ)(xHδγ−xFγ)+2−1F

(2)
Y (x∗)(xHδγ−xFγ)2, (A.8)

where x∗ is a point in the interval bounded by xHδγ and xFγ. An application of
Lemma A.2, along with the uniform boundedness of F (2)(·) provided by condition
(C.2), shows that F

(2)
Y (x∗)(xHδγ−xFγ)2 = O(δ4). Routine algebra and expression

(A.8) then imply that

xHδγ − xFγ = {F (1)
Y (xFγ)}−1{FY (xHδγ) − FY (xFγ)} + O(δ4). (A.9)

Also, FY (xFγ) = γ = HXδ(xHδγ), so

FY (xHδγ)−FY (xFγ) = FY (xHδγ)−HXδ(xHδγ) = −2−1F
(2)
Y (xHδγ)δ2σ2

U + O(δ3),
(A.10)

where the final equality follows from Result 2.1. Result 3.1 then follows from
expressions (A.9) and (A.10), Lemma A.3 and routine algebra.

Proof of Result 3.2. Routine Taylor-expansion arguments show that under
condition (C.2),

F
(1)
Y (xFγ) = (2cδσU )−1{FY (xFγ + cδσU ) − FY (xFγ − cδσU )} + O(δ)

= (2cδσU )−1{HXδ(xFγ + cδσU ) − HXδ(xFγ − cδσU )} + O(δ), (A.11)

where the final equality follows from Result 2.1. In addition, two applications of
the Mean Value Theorem and Lemma A.2 show that expression (A.11) equals

(2cδσU )−1{HXδ(xHδγ + cδσU ) − HXδ(xHδγ − cδσU )} + O(δ). (A.12)

Similar arguments show that

F
(2)
Y (xFγ)(cδσU )2 ={HXδ(xHδγ+cδσU )+HXδ(xHδγ−cδσU )−2HXδ(xHδγ)}+O(δ4).

(A.13)
Then by Result 3.1,

xFγ = xHδγ + 2−1{F (1)
Y (xFγ)}−1F

(2)
Y (xFγ)δ2σ2

U + O(δ3)
= xHδγ +2−1[(2cδσU )−1{HXδ(xHδγ + cδσU )−HXδ(xHδγ−cδσU )} + O(δ)]−1

×{HXδ(xHδγ + cδσU ) + HXδ(xHδγ − cδσU ) − 2HXδ(xHδγ) + O(δ4)}
= xHδγ + 2−1[(2cδσU )−1{HXδ(xHδγ + cδσU ) − HXδ(xHδγ − cδσU )}]−1

×{HXδ(xHδγ + cδσU ) + HXδ(xHδγ − cδσU ) − 2HXδ(xHδγ)} + O(δ3),

where the second equality follows from expressions (A.12) and (A.13), and the
final equality follows from additional routine Taylor expansion arguments.
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