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Abstract: Three classes of kernel density estimates are proposed which are appropri-

ate in the analysis of complex survey data. The three classes of estimates pertain to

use of the whole data file, to use of binned data and to smoothing binned data. In

each class a model-based asymptotic integrated mean square error is obtained un-

der the complex sampling design. The parallel design-based asymptotic integrated

mean square errors are obtained for the binned data and the smoothed binned

data only. Quantile estimates from the smoothed binned data are proposed. The

methodology is applied to data from the Ontario Health Survey of 1990.

Key words and phrases: Histograms, integrated mean square error, kernel density

estimation, quantile estimation, smoothing.

1. Introduction

A population from which a measurement y can be taken has density function
f(y). The use of kernel density estimation to obtain f̂(y), an estimate of f(y),
is investigated in the context of data collection from sample surveys. We assume
that f(y), the density function of interest, is defined on one of two types of super-
populations. The first is an infinite superpopulation in which the observations
are independent and identically distributed. The second is a superpopulation
defined as a limiting sequence of finite populations. The purpose of this paper is
two-fold. The major purpose is to examine the effect of the complex design on the
asymptotic integrated mean square error of the density estimate. In particular,
we show that there is no effect on the bias after customary probability weighting,
but there is an effect, related to the design effect, on the variance. Further, the
finite population approach allows us to examine properties of density estimates
using correlated data in large samples. A second purpose is to show how this
methodology may be applied to complex surveys.

As outlined in Jones (1989), three steps to kernel density estimation may
be considered: prebinning, smoothing and postbinning. Prebinning refers to
binning the data before smoothing. This may occur naturally in survey ques-
tionnaires when a nominally continuous random variable is coded in grouped
form. Postbinning refers to binning after smoothing has been carried out. With
the appropriate choice of the kernel to smooth the raw data, the usual histogram
can be expressed as a postbinned estimate. The binning, pre or post, may be
presented in piecewise constant, or in piecewise linear forms. Jones (1989) calls
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these discretized and interpolated forms respectively. The bar graph or histogram
is an example of a piecewise constant presentation and the frequency polygon is
an example of a piecewise linear presentation. We investigate kernel density esti-
mation from complex surveys for three situations: the complete data file is used,
a histogram of the data is obtained (postbinning) and the histogram is smoothed
(prebinning).

Our results are finite population based, in particular a finite population of
size N is considered with measurements denoted by y1, . . . , yN . Inferences are
based on n sample measurements yj , j ∈ s, where s denotes the set of sample
units. Although a single subscript j is used to denote the unit, the sampling
design P (s) may be complex in the sense that there may be a combination of
stratification, several stages of sampling and clustering.

Previously the approach that has been used was through the distribution
function. The starting point to this approach is the finite population empirical
distribution function defined by

FN (y) =
#yj’s ≤ y

N
.

Given any sampling design, an unbiased or consistent estimator for FN (y) may
be obtained by standard design-based techniques since FN (y) is a finite pop-
ulation proportion. This approach has been used, for example, by Chambers
and Dunstan (1986) and later by Kuk (1988). Chambers and Dunstan (1986)
also introduced covariates through a regression model and took a model-based
approach to estimation of FN (y) using the prediction approach introduced by
Brewer (1963) and Royall (1970). Various techniques for the use of covariates
were further studied by Kuo (1988), Rao, Kovar and Mantel (1990), Chambers,
Dorfman and Wehrly (1993), Dorfman (1993) and Dorfman and Hall (1993). In
the estimation techniques presented here covariates are not used. Further, esti-
mation of the density function is carried out directly through smoothing rather
than a strict finite population approach, either model-based or design-based,
through sampling estimation of the finite population distribution function.

The rationale for considering prebinned and postbinned estimates through
kernel density estimation arises from the practicalities of survey methodology.
Large samples can make subsequent computations intensive, for example in the
estimation of percentiles with standard errors. Therefore it is not uncommon,
even at the collection stage, for data to be grouped, or binned, in an effort
to simplify coding and computation. Binning may result in a histogram which,
depending on the size of the bins, does not resemble the original density estimate.
Subsequent smoothing over these bins may recover some of the lost structure,
while retaining the computational simplicity of a histogram.

The binning of continuous data provides a cell means approach to data anal-
ysis similar to, for example, Rao and Scott (1981) in contingency table analysis,
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Roberts, Rao and Kumar (1987) in logistic regression and Bellhouse and Rao
(1994) in the analysis of domain means.

Two approaches may be taken for the estimation of f(y); model-based and
design-based. Associated with these approaches are two ways of handling the
asymptotics. This has been noted, for example, by Fuller (1975). We denote
these as Superpopulations 1 and 2. The first is used in the model-based approach
and the second in the design-based approach.

Superpopulation 1. The N finite population units are a sample of independent
and identically distributed units from some infinite superpopulation with density
function f(y).

Superpopulation 2. There is a nested sequence of finite populations of size Nl,
l = 1, 2, 3, . . ., such that Nl → ∞ as l → ∞ and FNl

(y) → F (y) as l → ∞, where
F (y) is a smooth function. For simplicity we write FN (y) → F (y) as N → ∞.

Under both the model-based and design-based approaches, the estimand is
the hypothetical density function f(y). Under Superpopulation 2 the density
function of interest is f(y) = ∂F (y)/∂y. This is in contrast to the approach of
Chambers and Dunstan (1986), and others, where the estimand is the finite popu-
lation empirical distribution function FN (y). We make the following assumption
on f(y):

Assumption 1.1. The superpopulation density f(y) is a continuous function
on the real line with finite third derivatives thus assuring that a Taylor series
expansion to second order has a vanishing remainder.

In view of the two approaches the expectation operator E can be used in two
ways. Under the model-based approach the operator E is a composite expectation
EmEp, where Ep is the expectation with respect to the sampling design and Em is
the expectation with respect to the superpopulation model with density function
f(y). In the design-based approach E = Ep. Once the operator Ep is applied
then the limit as N → ∞ is taken on the sequence of finite populations. We will
first obtain results under the model-based approach and then show the analogous
design-based results.

The measure of variation of the estimate f̂(y) is the integrated mean square
error or ∫

E{f̂(y) − f(y)}2dy. (1.1)

See, for example, Scott ((1992), Section 2.3). Expression (1.1) may be rewritten
as

IV {f̂(y)} + ISB(f̂). (1.2)

Scott ((1992), p.131) has labeled the integrated variance as IV {f̂(y)} =∫
Var {f̂(y)}dy and the integrated square bias as ISB(f̂) =

∫
[E{f̂(y)}−f(y)]2dy.

When (1.1) or (1.2) are taken to some order of approximation, then (1.1) is
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called the asymptotic integrated mean square error (AIMSE) and (1.2) becomes
AIMSE = AIV + AISB. On taking the model-based approach of Superpopu-
lation 1, a standard calculation gives

EmEp{f̂(y)−f(y)}2 = EmVar p{f̂(y)}+Var mEp{f̂(y)}+[EmEp{f̂(y)}−f(y)]2,
(1.3)

where Var m and Var p denote variance with respect to the model and design
respectively. Note that in (1.3), Ep{(f̂(y)} is a finite population quantity. Cu-
mulants of such quantities are generally O(N−1) and hence negligible for large
populations. Consequently, the measure of variation effectively simplifies to

∫
EmVar p{f̂(y)}dy +

∫
[EmEp{f̂(y)} − f(y)]2dy. (1.4)

The expression in (1.4) corresponds to the integrated variance plus the integrated
squared bias as in (1.2). Although we can develop results for both (1.3) and (1.4),
it is generally the latter that is of interest. In the design-based approach (1.1)
may be written as (1.2) with E replaced by Ep and Var replaced by Var p.

In Section 2 we describe three kernel density estimators that are appropriate
to complex surveys. The asymptotic integrated mean square errors of these esti-
mators are derived in Section 3 and the effect of the complex sampling design on
this measure is examined. Proofs of the results are given in the Appendix. Data
from a large-scale survey with a complex design, the 1990 Ontario Health Survey,
are used in Section 4 to illustrate the application of kernel density estimation to
survey data. In the final section, ideas for future work, in particular quantile
estimation from kernel density estimates, are discussed.

2. Discretization and Smoothing

In order to develop kernel density estimates in finite population sampling,
it is useful first to obtain such an estimate based on the entire finite population
as an estimate of a density defined on a larger superpopulation. Denote the
standard kernel density estimate based on the entire population by fs(y). This
is given by

fs(y) =
1

Nh
S

N∑
j=1

K
S
(
y − yj

h
S

), (2.1)

where K
S

denotes the choice of kernel with window width h
S
. For a sample

survey f
S
(y) is then estimated by

f̂S(y) =
1
h

S

∑
j∈S

wjSKS (
y − yj

h
S

), (2.2)

where wjs are the sample weights determined from the complex design.
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Assume that the population can be discretized by dividing the range of y into
bins defined by the boundaries x0, . . . , xk where x0 ≤ min{yj} and xk ≥ max{yj}.
The ith bin is denoted by Bi = [xi−1, xi) with midpoint mi and common length
b = xi −xi−1. When this is done the kernel density estimate may be postbinned.
For any point y we denote the midpoint of the bin containing y by m(y). The
postbinned estimate based on the finite population measurements is given by
f

S
(m(y))/δ with the sample version being f̂

S
(m(y))/δ̂. The density estimate

needs to be scaled by δ = b
∑k

i=1 f
S
(mi), or the sample equivalent, in order to be

a true density. For convenience we have assumed that x0 and xk are finite. As
b → 0 we can allow x0 → −∞ and xk → ∞ if necessary.

The histogram estimate of the density function can now be obtained in one
of two ways. Let the proportion of observations in the finite population falling
into Bi be pi. The sample estimate is p̂i. The histogram estimate of f(y) is

f
H

(y) = pi/b for y ∈ Bi (2.3)

for the finite population and

f̂H (y) = p̂i/b for y ∈ Bi (2.4)

for the sample. Note that the finite population asymptotics in Superpopulation
2 yield f

H
(y) → f(y) as N → ∞ and b → 0. Alternately the histogram estimate

may be obtained as special cases of f
S
(m(y))/δ or f̂

S
(m(y))/δ̂ as appropriate.

In (2.1) and (2.2) replace K
S

by a naive kernel KH which is the uniform density
on the interval (−1/2, 1/2) and set hS = b. With these choices, δ = δ̂ = 1 and
the histogram based on sampled data is

f̂H (y) =
1
b

∑
j∈S

wsjKH

(m(y) − yj

b

)
. (2.5)

The expression for f
H

(y) as a special case of f
S
(m(y))/δ may be similarly ob-

tained.
The effect of binning is to reduce the original data to a collection of evenly

spaced midpoints and counts. Treating this as the only data available, a weighted
kernel density estimate f̂

B
(y) based on the sample data can be obtained as

f̂
B
(y) =

1
h

B

k∑
i=1

p̂iKB
(
y − mi

h
B

) (2.6)

using (2.4), where K
B

is the kernel and h
B

the bandwidth. Equivalently

f̂
B
(y) =

b

hB

k∑
i=1

f̂
H

(mi)KB
(
y − mi

hB

) (2.7)
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using (2.5). The expression for the finite population f
B
(y) is obtained on replac-

ing p̂i by pi in (2.6) or on replacing f̂
H

(mi) by f
H

(mi) in (2.7). In the same
manner that a standard density estimate weights a sample point by its distance
from y, f̂

B
(y) weights the weight, f̂

H
(mi), for the ith bin by the distance this

bin is from y.
The choice of the kernel KT (T = S, H or B) is in the hands of the data

analyst. We make the standard assumptions about the kernel KT :

Assumption 2.1. KT is a symmetric function with
∫

KT (t)dt = 1,
∫

tKT (t)dt =
0 and 0 <

∫
t2KT (t)dt < ∞ and

∫
K2

T (t)dt < ∞.

See, for example, Silverman (1986, p.38).

3. Determination of the Asymptotic Integrated Mean Square Error

Assuming independence and identical distributions for the observations, ex-
pressions for the asymptotic integrated mean square error (AIMSE) of f

S
(y),

f
H

(y) and f
B
(y) are given by Scott (1992) and Jones (1989). In the current

context the situation for f̂
S
(y), f̂

H
(y) and f̂

B
(y) is complicated by the sampling

structure and the possible lack of independence. We first obtain the asymptotic
integrated square bias for each of f̂

S
(y), f̂

H
(y) and f̂

B
(y) under the model-based

and design-based frameworks (Lemmas 3.1 and 3.2). Then the asymptotic in-
tegrated variances are obtained, again under the model-based and design-based
frameworks (Lemmas 3.3, 3.4 and 3.5). The resulting integrated mean square
errors (Theorems 3.1 and 3.2) are obtained according to (1.2) and (1.4). For
notational convenience in what follows, the subscript T refers collectively to S,
H or B. Further, we set R(φ) =

∫
φ(t)2dt and σ2

T =
∫

t2KT (t)dt, and denote
∂f(t)/∂t by f ′ and ∂2f(t)/∂t2 by f ′′. For particular cases of R(φ) we make the
following assumption:

Assumption 3.1. For the superpopulation density function f(y), assume that
R(f) < ∞, R(f ′) < ∞ and R(f ′′) < ∞.

We make the following assumption on the density estimators:

Assumption 3.2. The density estimator f̂T (y) is asymptotically unbiased for
fT (y)(T = S, H or B) in the sense of Särndal, Swensson and Wretman ((1992),
pp.166-167).

Under Assumption 3.2, when the weights wjs are chosen to give asymptoti-
cally unbiased estimates, we have as n → ∞,

Ep(f̂T (y)) = fT (y) (3.1)

under Superpopulation 2, and

EmEp(f̂T (y)) = Em(fT (y)) (3.2)
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under Superpopulation 1. The expressions in (ii) and (iii) of Lemma 3.1 are given
by Jones (1989) while (i) is given by Silverman (1986). Consequently, there is no
effect of the complex sampling design on the bias.

Lemma 3.1. Under Superpopulation 1, with the yj’s, j = 1, . . . , N , having
identical distributions, and under Assumptions 1.1, 2.1, 3.1 and 3.2,

(i) B(f̂S(y)) = σ4
S
h4

S
R(f ′′)/4 + O(h6

S
) as hS → 0;

(ii) B(f̂H (y)) = b2R(f ′)/12 − b4R(f ′′)/360 + O(b6) as b → 0;
(iii) B(f̂

B
(y)) = (σ2

B
h2

B
+ b2/12)2R(f ′′)/4 + O(h6

B
+ b6) as h

B
→ 0 and b → 0.

Proof. See the Appendix.

Lemma 3.2. Under Superpopulation 2 and under Assumptions 1.1, 2.1, 3.1 and
3.2 with n/N → π as n,N → ∞, where π is a constant in the interval (0, 1),
(i) B(f̂H (y)) = b2R(f ′)/12 − b4R(f ′′)/360 + O(b6) as b → 0 and
(ii) B(f̂

B
(y)) = (σ2

B
h2

B
+ b2/12)2R(f ′′)/4 + O(h6

B
+ b6) as h

B
→ 0 and b → 0.

Proof. See the Appendix.

Comment 3.1. Note that finite population asymptotics apply only to the sit-
uation in which a histogram has been used so that there is no result parallel to
(i) in Lemma 3.1 for the standard kernel estimator. Also note that once again
there is no effect of the complex sampling design on the bias.

In general terms each density estimate can be written as a weighted sample
sum

f̂T (y) =
∑
j∈S

wjsqT
(yj), (3.3)

where q
T
(yj) is a function of the data yj depending upon which of T = S, H or

B is used. For example, from (2.2) we have that qS(yj) = KS ((y − yj)/hS )/hS .
We obtain the following for the design variance of f̂T (y) averaged over the model
in the first superpopulation.

Lemma 3.3. Under Superpopulation 1,

EmVp{f̂T (y)} = −
N∑

j �=l=1

wjlEm(q
T
(yj)2} +

N∑
j �=l=1

wjlEm{q
T
(yj)qT

(yl)},

where wjl = Ep(wsj − 1/N)(wsl − 1/N).

Proof. See the Appendix.

We can use Lemma 3.3 to derive the asymptotic variances of each of the
kernel density estimators under the first superpopulation. In particular, we have
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Lemma 3.4. Under Superpopulation 1 and under Assumptions 1.1, 2.1, 3.1 and
3.2, as n → ∞,

AIV (f̂
S
(y)) =

[R(K
S
)

nh
S

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+ O(n−1),

AIV (f̂
H

(y)) =
[ 1
nb

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+ O(n−1), and

AIV (f̂
B
(y)) =

[R(K
B
)

nh
B

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+ O(n−1).

Proof. See the Appendix.

Comment 3.2. Under a simple random sampling without replacement sampling
design, the expression −n

∑
wjl reduces to [1−(n/N)], which is 1 for large N . In

this case each of the asymptotic integrated variances reduces to the appropriate
expressions in Silverman (1986) or Jones (1989). Consequently the expression
−n

∑
wjl may be interpreted as a design effect so that the effect of the complex

design is to inflate the variance by the value of the design effect.

Comment 3.3. Under Superpopulation 1 it is assumed that the observations
are independent and identically distributed. When the y’s are not independent
then the effect on the asymptotic integrated variances may be negligible. See the
Appendix for further details.

In the design-based framework, denote the variance-covariance matrix of
(p̂1, . . . , p̂k) by V and its estimate based on the complex design by V̂ . The (i, j)th
element of V is vij and of V̂ is v̂ij. The design effect for the ith bin is given by
di = nvii/[pi(1 − pi)] so that the estimated design effect is d̂i = nv̂ii[p̂i(1 − p̂i)].
The covariance design effect is given by dij = −nvij/[pipj]. We let d̄ =

∑k
i=1 di/k

and d̄′ =
∑k

i=1

∑k
i=1 dij/k

2, where dii = di. Using this notation we have

Lemma 3.5. Under Superpopulation 2 and under Assumptions 1.1, 2.1, 3.1 and
3.2, then as n,N → ∞ with n/N → π, where π is a constant in the interval
(0, 1),

AIV (f̂
H

(y)) = d̄
[ 1
nb

− R(f)
n

]
+ O(n−1), and

AIV (f̂
B
(y)) = d̄

R(KB )
nh

B

− d̄′
R(f)

n
− (d̄ − d̄′)

bR(f)R(KB )
n

+ O(n−1).

Proof. See the Appendix.

Comment 3.5. Note that in the case of the smoothed histogram the effect of
the complex design is not as straightforward as in all other cases, except in the
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special case when d̄ = d̄′. Note also that the average design effect d̄ is analogous
to the use of −n

∑
wjl in Lemma 3.4.

Comment 3.6. As in Scott (Section 3.2.1) the differentiability condition of f(y),
Assumption 1.1, can be changed to Lipshutz continuity of f(y) within each bin
for the derivation of AIV (f̂

H
(y)).

Dropping the higher order terms, for the first superpopulation we can sum-
marize the results of Lemmas 3.1, 3.3 and 3.4 as

Theorem 3.1. Under Superpopulation 1, and under Assumptions 1.1, 2.1, 3.1
and 3.2, then as n → ∞ and h

S
, h

B
, b → 0 as appropriate,

AIMSE(f̂
S
(y)) =

[R(K
S
)

nh
S

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+

1
4
σ4

S
h4

S
R(f ′′),

AIMSE(f̂
H

(y)) =
[ 1
nb

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+

b2

12
R(f ′) − b4

360
R(f ′′), and

AIMSE(f̂
B
(y)) =

[R(K
B
)

nh
B

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
+

1
4
(σ2

B
h2

B
+

b2

12
)2R(f ′′).

Again dropping the higher order terms, for the second superpopulation we
can summarize the results of Lemmas 3.2 and 3.5 as

Theorem 3.2. Under Superpopulation 2 and under Assumptions 1.1, 2.1, 3.1
and 3.2, then as n,N → ∞ with n/N → π, where π is a constant in the interval
(0, 1), and h

B
, b → 0 as appropriate,

AIMSE(f̂
H

(y)) = d̄
[ 1
nb

− R(f)
n

]
+

b2

12
R(f ′) − b4

360
R(f ′′), and

AIMSE(f̂
B
(y)) = d̄

R(KB )
nh

B

− d̄′
R(f)

n
− (d̄−d̄′)

bR(f)R(KB )
n

+
1
4
(σ2

B
h2

B
+

b2

12
)2R(f ′′).

4. Example: The Ontario Health Survey

We illustrate the techniques of density estimation from large-scale surveys
with data from a Canadian survey known as the Ontario Health Survey (see
Ontario Ministry of Health (1992)). A stratified two-stage cluster sample of On-
tarians was carried out in 1990 to measure the health status of the population
and to collect data relating to the risk factors of major causes of morbidity and
mortality in the Province of Ontario. The survey was designed to be compatible
with the Canada Health Survey carried out in 1978-1979. A total sample size
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of 61,239 people was obtained from 43 public health units across the Province
of Ontario. The public health unit was the basic stratum with an additional
division of the health unit into rural and urban strata so that there were a total
of 86 strata. The first stage units within a stratum were enumeration areas.
These enumeration areas, taken from the 1986 Census of Canada, are the small-
est geographical units from which census counts can be obtained automatically.
An average of 46 enumeration areas was chosen within each stratum. Within an
enumeration area dwellings were selected, approximately 15 from an urban enu-
meration area and 20 from a rural enumeration area. Information was collected
on members of the household within the dwelling.

Several health characteristics were measured. We will focus on two continu-
ous variables from the survey, Body Mass Index (BMI) and Desired Body Mass
Index (DBMI). The BMI is a measure of weight status and is calculated from the
weight in kilograms divided by the square of the height in metres. The DBMI is
the same measure with actual weight replaced by desired weight. The index is
not applicable to adolescents, adults over 65 years of age, pregnant or breastfeed-
ing women. The measures vary between 7.0 and 45.0. A value of the BMI less
than 20.0 is often associated with health problems such as eating disorders. An
index value above 27.0 is associated with health problems such as hypertension
and coronary heart disease. A total of 44,457 responses were obtained for the
BMI and 41,939 for the DBMI. When the data were binned, the design effects for
the proportion of observations falling in each bin were usually in the range of 2.0
to 3.9, except when the estimated proportion was small (< 0.2%), in which case
the design effect was less than 2.0. Had the sampling design been more heavily
clustered, the probable effect would be an increase in the design effects so that
there would be an increase in the integrated variance with the bias remaining
the same.

For both the BMI and DBMI we constructed density estimates in S-Plus
using both f̂

H
(y) and f̂

B
(y). The implementation of the estimation procedure

was straightforward, the only complication being the determination of the appro-
priate window width h

B
. Standard techniques involve differentiating the AIMSE

and solving for h
B
. This leads to a choice of h

B
that is proportional to 1/ 5

√
n.

However, given the large sample size typically encountered in large-scale surveys,
this criterion is clearly inappropriate as the resulting window width is extremely
small.

Consequently, we prefer to use a criterion appearing in Jones (1989) that
compares the AIMSE of a kernel density estimate involving binning to the ideal
estimate where no binning occurs. This criterion, Ra, is reported in Jones (1989)
for the prebinned kernel density estimates. The full developments given there
are only briefly outlined here and are as follows. Clearly the window size and the
bin size are related. For example, for a smoothed histogram larger bins would
lead to larger window sizes. Hence Jones (1989) sets b = ah and makes this
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substitution in the expression for AIMSE, denoting the result as AIMSEa. He
notes that AIMSE0 is the expression for the AIMSE of the ideal kernel density
estimate. Upon further substitution given in Jones (1989), the expression Ra =
AIMSEa/AIMSE0 may be simplified to give (4.3) of Jones (1989). Pursuing
the same strategy in our case leads to an expression equivalent to (4.3) in Jones
(1989), but only if one ignores the term R(f)/n in the AIMSE, as Jones has;
otherwise Ra depends on the design effect. We conveniently adopt the former
approach and hence values of a near 1.25 are reasonable (Jones (1989)).

The bin sizes and bin widths for both the BMI and DBMI measures were
determined after an initial examination of the data. It was decided in both cases
to use 30 bins. For the BMI the bin width was set at 1.22 with the lowest bin
boundary at 8.9 and the highest boundary at 45.5. In this case h

B
, the window

width, was set at 0.976. The associated values for the DBMI were a bin width
of 1.27, lower and upper boundaries of 7.0 and 45.1 respectively, and a window
width of 1.016. Figures 1 and 2 show the histogram, frequency polygon and
prebinned kernel density estimates for the BMI and DBMI datasets respectively.
The height of the ith bar in the histogram is proportional to p̂i, the survey
estimate of the proportion of population observations falling in bin i. From
Figures 1 and 2 it is clear that the prebinned kernel density estimates has a more
appealing appearance that the histogram or frequency polygon. However, in this
case smoothing the histogram has tended to erode the peak of the histogram
while the tails become fatter.
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Figure 1. Density estimates for the Body Mass Index. There include a
histogram, a frequency polygon and a kernel density estimate.
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Figure 2. Density estimates for the Desired Body Mass Index. There include
a histogram, a frequency polygon and a kernel density estimate.

We also report quantile estimates from f̂
H

(y) and f̂
B
(y) for both the BMI

and DBMI datasets. These are given in Table 1. Quantile estimates from the
histogram were obtained in the usual way through linear interpolation. Quantile
estimates based on f̂

B
(y) required solving the equation

g(q̂α) =
∫ q̂α

−∞
f̂

B
(t)dt − α = 0 (4.1)

through the use of the following Newton-Raphson recipe.
1. Set the initial value q̂0 to q̂

H
, the quantile based on the histogram.

2. Compute the Newton-Raphson step as ∆i = −g(q̂i−1)/g′(q̂i−1) where g′ is
simply f̂

B
.

3. Steps 1 and 2 were repeated until ∆i < 10−4, giving the final estimate as
q̂α = q̂0 +

∑i
j=1 ∆j.

Implementation involves using the kernel density estimate to evaluate the denom-
inator of ∆i and the computing of tail areas for a gaussian kernel to compute
the numerator. Both of these are readily available, making the implementation
so convenient that no other method was considered. Convergence was generally
obtained after no more than four iterations and often after only two. This is
not surprising given that the quantiles of the histogram serve as excellent initial
values, the density estimate is a nice smooth function and g is monotone. Bin
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and window widths were the same as those used for the estimation of f̂
H

(y) and
f̂

B
(y). The quantile estimates given reflect the bias pattern noted for f̂

B
(y).

The question now remains whether this smoothed histogram used for quantile
estimation provides any advantage over existing quantile estimation procedures.
This is addressed below.

Table 1. Estimated quantile values from f̂H (y) and f̂B (y)

Quantile Value Quantile Value Quantile Value Quantile Value
Quantile f̂H (y) - BMI f̂B (y) - BMI f̂H (y) - DBMI f̂B (y) - DBMI

0.05 18.56 18.26 18.21 17.92
0.15 20.31 20.21 19.78 19.59
0.25 21.53 21.46 20.70 20.63
0.35 22.52 22.51 21.52 21.49
0.45 23.52 23.50 22.30 22.30
0.55 24.48 24.51 23.07 23.09
0.65 25.53 25.61 23.88 23.92
0.75 26.90 26.94 24.74 24.82
0.85 28.52 28.73 25.73 25.92
0.95 32.17 32.42 27.76 27.96

5. Future Work

An immediate benefit of the availability of a histogram or kernel density
estimate is the ability to estimate quantiles and this issue is briefly addressed.
As mentioned earlier, if the complete data file is available, and often this is
not the case, the histogram and prebinned kernel density estimate still have the
advantage that quantile estimates can be more easily computed. In addition,
quantiles based on the kernel density estimate are effectively smoothed versions
of quantiles based on the histogram. The effect of smoothing is to reduce variance
and increase bias. Whether this results in a decrease in the mean square error
needs to be studied formally and is beyond the scope of the paper. However, we
do present a small preliminary simulation study. The purpose of the study is to
estimate the mean square error of the quantile estimates.

In the study a finite population of N = 1, 000 was taken from a standard
normal superpopulation. A simple random sample of n = 100 was obtained from
the population. Quantiles were obtained from both f̂

H
(y) and f̂

B
(y). Given

the stable nature of the Newton-Raphson algorithm described earlier, we felt
comfortable with setting the number of iterations at two. For each quantile 100
sample estimates were obtained from which one estimate of the mean square error
was obtained. This estimate was decomposed to assess the relative contributions
of variance and squared bias. The entire process was repeated 100 times and
the average variance, squared bias and mean square errors were calculated along
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with the standard error of simulation. The results are reported in Table 2. The
whole simulation study was repeated using a chi-square superpopulation with
five degrees of freedom. These results are reported in Table 3. The notable
trend in Tables 2 and 3 is a drop in the mean square error for quantiles q̂α

based on f̂
B
(y). This is evidently due to a relatively larger drop in the variance

of q̂α compared with a smaller increase in squared bias. This is, in part, not
surprising since smoothing, as noted earlier, has just this effect. Histograms are
binned kernel density estimates and the quantiles are obtained from a smoothed
version of the histogram. This trend is simply inherited by q̂α. However, the fact
that variance reduction would dominate as it has can only be explained through
further investigation, which is our intention in forthcoming work.

Table 2. Simulated mean square errors of quantile estimates using
f̂

H
(y) and f̂

B
(y) for a Normal superpopulation

f̂
H

(y) f̂
H

(y)
Variance (Bias)2 MSE Variance (Bias)2 MSE

Quantile ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

0.15 2159(28)* 24(3.0) 2173(28) 1921(25) 55(6.4) 1977(26)
0.25 1713(23) 17(2.5) 1730(23) 1553(20) 35(4.4) 1589(20)
0.35 1550(22) 15(2.1) 1565(22) 1414(20) 18(2.4) 1432(20)
0.45 1513(23) 13(1.5) 1526(22) 1375(21) 13(1.5) 1388(21)
0.55 1478(22) 18(2.4) 1496(22) 1343(21) 18(2.3) 1361(21)
0.65 1531(24) 13(1.5) 1544(24) 1384(22) 15(1.7) 1400(22)
0.75 1713(22) 20(3.1) 1733(22) 1547(20) 33(5.1) 1580(21)
0.85 2134(28) 25(3.5) 2159(28) 1908(27) 73(7.3) 1981(27)

* Simulation standard errors are in parentheses.

Table 3. Simulated mean square errors of quantile estimates using f̂H (y) and
f̂

B
(y) for a Chi-square superpopulation

f̂
H

(y) f̂
H

(y)
Variance (Bias)2 MSE Variance (Bias)2 MSE

Quantile ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4

0.15 578(8)* 6(1.1) 584(8) 506(6) 48(3.1) 554(7)
0.25 724(13) 10(1.1) 734(13) 639(12) 6(0.7) 645(12)
0.35 896(12) 10(1.4) 906(12) 791(11) 10(1.4) 801(11)
0.45 1176(30) 15(2.1) 1192(30) 1036(30) 30(3.1) 1066(30)
0.55 1393(29) 18(2.8) 1411(30) 1223(29) 44(4.8) 1267(30)
0.65 1855(41) 31(4.4) 1886(41) 1657(39) 76(7.8) 1734(40)
0.75 2672(70) 27(3.9) 2699(70) 2410(69) 77(8.2) 2486(69)
0.85 4427(112) 45(6.5) 4471(112) 3990(110) 107(11.6) 4097(110)

* Simulation standard errors are in parentheses.
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Appendix: Proofs of Lemmas

Proof of Lemma 3.1. For any S, H or B, the techniques of Silverman ((1986),
Section 3.3) or Jones ((1989), Appendix) may be applied to the right hand side
of (3.2). We illustrate this with result (i). From (1.4) and (3.2) and since the y’s
are identically distributed,

B(f̂S(y)) =
∫

[
∫

K(y − t)/hS )f(t)dt/hS − f(y)]2dy.

On making the substitution t = y−uh
S
, and on expanding f(y−uh

S
) in a Taylor

series about y and simplifying, the result is obtained.

Proof of Lemma 3.2. For H or B, the technique of Scott ((1992), Section
3.2.2) may be applied to the right hand side of (3.1). We illustrate this with
result (i). From (2.3) and (3.1) the bias

B(f̂H (y)) =
k∑

i=1

∫
Bi

[pi/b − f(y)]2dy.

Now pi is approximated by
∫
Bi

f(t)dt as N → ∞. On expanding f(t) in a Taylor
series about y and simplifying, the result is obtained.

Proof of Lemma 3.3. On applying a result obtained by Rao (1979) (see, for
example, Rao (1988), p.429) to (3.3), we obtain

Vp{f̂T (y)} =
N∑

j<l=1

wjl(qT (yj) − qT (yl))2,

where wjl = Ep(wsj − 1/N)(wsl − 1/N). Application of the operator Em to
Vp{f̂T (y)} and expansion of the square yields the required result.

Proof of Lemma 3.4. We prove only the result for (iii). The proof of (i) is
similar, and (ii) is a special case of (i) in which K

S
is the uniform density on the

interval (−1/2, 1/2) and h
S

= b so that R(K
S
) = 1.

Part (iii). For f̂
B
(y), the smoothed histogram or kernel estimate based on binned

data, we note from (2.5) and (2.7) that

qB(yj) =
1

h
B

k∑
i=1

KH (
mi − yi

b
)KB (

y − mi

h
B

).

Now q
B
(yj)2 will involve a double sum with indices i and i′ so that Em(q

B
(yj)2)

involves the evaluation of the term

1
b2

∫
KH (

mi − t

b
)KH (

mi′ − t

b
)f(t)dt. (A.1)
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Since K
H

is the uniform density on (−1/2, 1/2), (A.1) reduces to 0 for i �= i′ and
to

1
b2

∫
K2

H
(
m − i − t

b
)f(t)dt (A.2)

for i = i′. In (A.2), f(t) may be expanded in a Taylor series around mi. On
retaining the leading term only, (A.2) reduces to f(mi)/b. By similar arguments
and by assuming that the joint density function gjl(t, u) = f(t)f(u),

Em{q
B
(yj)qB

(yl) =
1
b2

∫
K

H
(
mi − t

b
)K

H
(
mi − u

b
)gjl(t, u)dtdu = f(mi)f(mi′)

for i �= i′. Consequently EmVp(f̂B
(y)) can be expressed as

[
− n

N∑
j �=l=1

wjl

] [ k∑
i=1

bf(mi)K2
B
(
y − mi

h
B

)

−
k∑

i�=i′=1

b2f(mi)f(mi′KB
(
y − mi

h
B

)K
B
(
y − mi′

h
B

)
]/

nh2
B
. (A.3)

On noting that
∑k

i=1 bf(mi)z(mi) ∼=
∫

f(t)z(t)dt, where z(mi) is K
B

or K2
B
, and

on expanding f(t) in a Taylor series around y, then (A.3) integrated over y is
approximately [R(K

B
)

nh
B

− R(f)
n

][
− n

N∑
j �=l=1

wjl

]
.

Proof of Lemma 3.5. Part (i). For the histogram estimate

Var p(f̂H
(y)) =

dipi(1 − pi)
nb2

(A.4)

for y ∈ Bi. The integrated variance is obtained on summing (A.4) over i and
multiplying the result by b. Write di = d̄ + (di − d̄). If the variation in the di’s
is small then the integrated variance is approximately d̄

∑k
i=1 pi(1− pi)/(nb). As

N → ∞ and b → 0 then, on using the results of Scott ((1992), Section 3.2.2) in
a fashion similar to Lemma 3.2, the asymptotic integrated variance is given by

d̄(
1
nb

− R(f)
n

).

Part (ii). For the smoothed histogram the design variance is given by

Vp(f̂B
(y)) =

1
nh2

B

[ k∑
i=1

dipi(1 − pi)K2
B
(
y − mi

h
B

)

−
k∑

i�=j=1

dijpipjKB
(
y − mi

hB

)K
B
(
y − mj

hB

)
]
. (A.5)
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As in the case of the histogram estimator we write di = d̄ + (di − d̄). Also
dij = d̄′ + (dij − d̄′). If the variation in the di’s is small, as well as the variation
in the dij ’s, then (A.5) is approximately

1
nh2

B

[
d̄

k∑
i=1

piK
2
B
(
y − mi

h
B

) − d̄′
k∑

i,j=1

pipjKB
(
y − mi

h
B

)K(
y − mj

h
B

)

− (d̄ − d̄′)
k∑

i=1

p2
i K

2
B
(
y − mi

h
B

)
]
.

On noting that, for example,
∑k

i=1 piK
2
B
{(y − mi)/hB

} is an approximation to∫
K2

B
{(y − t)/hB}dt, the techniques of Scott ((1992), p.130) may be applied to

obtain the approximate integrated variance. This yields

d̄
R(KB )
nh

B

− d̄′
R(f)

n
− (d̄ − d̄′)

bR(f)R(KB )
n

.

Further Detail on Comment 3.3

In a multistage design it may be assumed that gjl(t, u) = f(t)f(u) when j and
l are in different primaries, so that the effect of the lack of independence of units
within primaries may be small. Further, although the term R(f)/n in Lemma 3.4
appears in Scott (1992), it is considered negligible by Jones (1989). This is the
only component of variance calculation in which the assumption of independence
is necessary. Finally, when gjl(t, u) is bivariate normal, the resulting term in the
integrated variance is proportional to R(f)/n with the constant of proportionality
depending on the correlation. This leads to different design effect corrections to
R(K

S
) and R(f) appearing in (3.11). A similar result occurs in the design-

based approach to the smoothed histogram. In this approach independence is
not assumed.
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