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Abstract: Hot deck imputation for nonrespondents is often used in surveys. It is a

common practice to treat the imputed values as if they are true values, and compute

survey estimators and their variance estimators using standard formulas. The vari-

ance estimators, however, have serious negative biases when the rate of nonresponse

is appreciable. Methods such as the multiple imputation and the adjusted jackknife

have been proposed to obtain improved variance estimators. However, multiple im-

putation requires that multiple data sets be generated and maintained and that the

imputation procedure be proper; the adjusted jackknife requires “flags” to identify

imputed values. In many practical problems there is only a single imputed data

set with unknown response status (no identification flag). In this paper we de-

rive some asymptotically design-consistent inference procedures in the situation

where a stratified multistage sampling design is used to collect survey data; hot

deck imputation is applied to form a single imputed data set; the imputed values

are nonidentifiable; and the survey estimators under consideration are functions of

sample means, sample quantiles, and sample low income proportions.
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1. Introduction

Most survey data are incomplete due to nonresponse. We consider item
nonresponse which occurs when a sampled unit cooperates in the survey but fails
to provide answers to some of the questions. Imputation techniques (which insert
values for nonrespondents) are commonly used to compensate for missing data
because of various practical (not necessarily statistical) reasons (Kalton (1981),
Sedransk (1985)). We focus on the hot deck imputation method described in
Rao and Shao (1992) which inserts missing values by a random sample from
the respondents. An advantage of using this hot deck imputation method is
that it preserves the distribution of item values so that valid estimators that
depend on the entire distribution of item values (e.g., the sample quantiles) can
be obtained based on the imputed data set. This important property is not
shared by some deterministic imputation methods such as the mean imputation,
the ratio imputation, and the regression imputation.
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It is a common practice to treat the imputed values as if they are true val-
ues, and then make inference using standard formulas. If imputation is suitably
carried out, survey estimators of population parameters, computed by using the
imputed data and standard formulas, are asymptotically valid; their variance
estimators, however, have serious negative biases when the proportion of non-
respondents is appreciable, because standard formulas for variance estimation
do not account for the inflation in variance due to missing data and/or impu-
tation. Consequently, inference based on these variance estimators can be very
misleading.

There exist two types of methods which provide better variance estima-
tors:
(1) Rubin (1978) and Rubin and Schenker (1986) proposed the multiple imputa-

tion method which requires several independent imputations and computes
variance estimators using the variabilities among the imputed data sets.

(2) There are methods based on some adjustments which account for the inflation
in the variance due to nonresponse and/or imputation, e.g., the adjusted
jackknife method (Rao and Shao (1992)), the adjusted linearization method
(Rao (1993)), and the bootstrap method (Shao and Sitter (1996)). These
methods provide asymptotically design-consistent variance estimators and
work for both single and multiple imputation, but require identification flags
to locate imputed values.
In this paper we focus on the situation where both types of methods discussed

above are not applicable; that is, the situation where we only have a single
imputed data set and we do not know which sampled units are imputed values
(no identification flag).

Multiple imputation requires multiple imputations and some extra spaces to
maintain multiple data sets and, therefore, is not appreciated by many practical
users. It also requires that the imputation method be “proper” (i.e., it satisfies
conditions 1-3 in Rubin (1987), pp. 118-119). However, some commonly used
imputation methods (including the hot deck method) are not proper, but are
simple, asymptotically valid, and more efficient than proper imputation methods.
In some complex situations, it is hard to find a proper imputation method (Fay
(1991) and (1993), Rao (1996)). These are the reasons why we study inference
methods that work for a single imputed data set.

The reason why we condsider the case of unknown response status is the fol-
lowing. Many public data sets do not carry identification flags for imputed values.
Note that adding identification flags is the same as adding a response indicator
variable to the data set. When we have multivariate data and item nonresponse,
identification flags have to be added for all items, which nearly doubles the size
of the original data set and is not easy to handle in large scale surveys. Another
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situation in which imputed values are not identifiable is when confidentiality edit
is applied to the data set for confidential reasons (Griffin, Navarro and Flores-
Baez (1991)). One type of confidentiality edit is done by selecting a portion of
the data and interchanging them with a random sample from the rest of data.
If we treat the selected data for interchange as “nonrespondents” and the rest of
data as “respondents”, then the “imputed values” cannot be identified.

Under a general stratified multistage sampling design (see Section 2), we
propose some inference methods (variance estimators and confidence intervals)
based on two types of most commonly used estimators in surveys: (1) the sample
mean or a function of sample means (Section 3), (2) the sample quantiles (Section
4). The sample low income proportion, a statistic that is important for income
studies, is also considered in Section 4. Design-consistency of our proposed pro-
cedures are established under a usual asymptotic framework. Some simulation
results are given in Section 5.

2. The Population and Sampling Design

Consider a population with L strata and Nh first-stage units in the hth
stratum, h = 1, . . . , L. Suppose that nh ≥ 2 first-stage units are sampled from
stratum h without replacement, independently across the strata. Within the
hth stratum, the (h, i)th first-stage unit is selected with probability phi > 0,
i = 1, . . . , Nh. We focus on the common case where L is large and the nh are
bounded by a fixed integer. We assume that the first-stage sampling fraction∑

h nh/
∑

h Nh is negligible. If the first-stage units are clusters, then a second-
stage sample, a third-stage sample,. . . , may be selected within each cluster, and
the samples are selected independently across the clusters. We do not specify the
number of stages and the sampling methods used after the first-stage sampling.
For simplicity, we shall index the ultimate units in a first-stage cluster by using
a single index, i.e., unit (h, i, j) is the jth ultimate unit in the ith first-stage
cluster of stratum h, i = 1, . . . , nh, h = 1, . . . , L. Item values for unit (h, i, j) are
denoted by yhij, zhij, etc. This sampling design is called the stratified multistage
sampling plan.

We adopt the design-based approach; that is, we do not use any model
assumption on the values yhij, zhij,. . . All probabilities and expectations are with
respect to repeated sampling and/or random imputation.

Let A be the index set of all sampled units and let whij be the survey weight
associated with the (h, i, j)th sampled ultimate unit. The survey weights are
constructed so that when there is no nonrespondent,

Ŷ =
∑
A

whijyhij

is an unbiased estimator of the population total Y on any item y, where
∑

A de-
notes the summation over all indices that are in A. Since in multistage sampling
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the total number of ultimate units M is often unknown, the population mean
Ȳ = Y/M is estimated by a ratio estimator

ȳ = Ŷ /M̂ , (2.1)

where
M̂ =

∑
A

whij.

A usual framework for the development of asymptotic theory is provided
by the concept of a sequence of populations {Pν , ν = 1, 2, . . .}, where each Pν

contains Lν strata. The population under consideration is then viewed as a
member of this sequence of populations. Note that L, Nh, whij , and yhij depend
on ν, but ν is omitted for simplicity. All limiting processes are understood to be
as ν → ∞.

Imputation is usually carried out separately in several imputation classes
which form a partition of the whole population. The imputation classes are
constructed according to the value of a categorical variable observed for all the
sampled units. Within each imputation class, the sampled units respond to an
item y with nearly the same probability py (see, e.g., Schenker and Welsh (1988),
Section 4), although py may be different for different items and/or different impu-
tation classes. Within an imputation class, imputation is usually done by cutting
across strata and clusters. Thus, imputation can still be carried out even when
some strata or clusters have no respondent within an imputation class.

3. Variance Estimation for Functions of Sample Means

In this section, we consider variance estimation for the sample mean (2.1)
for an item or a function of sample means for several items.

3.1. Univariate case with uniform response

We start with the simplest case where we consider only one item, y, and
there is only one imputation class (the sampled units respond with the same
probability py > 0). Let

Ar = {(h, i, j) : yhij is observed}
and

Am = {(h, i, j) : yhij is missing}.
Suppose that missing yhij are imputed by y∗hij, (h, i, j) ∈ Am. Define y∗hij =

yhij if (h, i, j) ∈ Ar. Treating {y∗hij, (h, i, j) ∈ A} as the true data set and using
the standard formula (2.1), we estimate Ȳ by

ȳ∗ =
∑
A

whijy
∗
hij

/
M̂ . (3.1)
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We focus on the following hot deck imputation (Rao and Shao (1992)):
{y∗hij : (h, i, j) ∈ Am} is an i.i.d. sample from the respondents, where each yhij,
(h, i, j) ∈ Ar, is selected with probability proportional to its weight whij. Under
this hot deck imputation, ȳ∗ in (3.1) is asymptotically unbiased, consistent, and
asymptotically normal (Rao and Shao (1992)).

A variance estimator for ȳ∗ calculated based on the standard formula (e.g.,
Cochran (1977), Krewski and Rao (1981)) is

v∗ =
L∑

h=1

nh

nh − 1

nh∑
i=1

(ζ∗hi − ζ̄∗h)2, (3.2)

where

ζ∗hi =
1
M̂

∑
j

whij(y∗hij − ȳ∗), ζ̄∗h =
1
nh

nh∑
i=1

ζ∗hi,

and
∑

j is the summation over j with (h, i, j) ∈ A.
Note that both ȳ∗ and v∗ can be computed according to (3.1)-(3.2) without

knowing which sampled units are imputed values. However, v∗ has a serious
negative bias if the response rate py is low (Rubin (1987), Rao and Shao (1992)).

Let E∗ and V∗ be the asymptotic expectation and variance with respect to
the randomness in the imputation process, and let E and V be the asymptotic
expectation and variance with respect to the repeated sampling from the popu-
lation and the response mechanism. Then

V (ȳ∗) = V (E∗ȳ∗) + EV∗(ȳ∗) = V (ȳr) + EV∗(ȳ∗), (3.3)

where
ȳr = E∗(ȳ∗) =

∑
Ar

whijyhij

/∑
Ar

whij

and
V∗(ȳ∗) =

1
M̂2

∑
Am

w2
hij

∑
Ar

whij(yhij − ȳr)2
/∑

Ar

whij. (3.4)

It follows from (3.3)-(3.4) that if we can identify which units are imputed values,
then a substitution estimator of V (ȳ∗) is

vr + V∗(ȳ∗),

where vr is the usual variance estimator for ȳr by treating the respondents
{yhij, (h, i, j) ∈ Ar} as the whole data set. Such an estimator is asymptoti-
cally consistent. However, neither vr nor V∗(ȳ∗) can be computed when imputed
values are not identifiable. Therefore, we have to consider some alternatives.

It can be shown that

E(v∗) ≈ p2
yV (ȳr) + EV∗(ȳ∗) (3.5)
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(see the proof of Theorem 1). Suppose that a consistent estimator, p̂y, of the
response probability py is available (e.g., p̂y = the sample proportion of respon-
dents). Then, by (3.5), an estimator of V (ȳ∗) can be obtained if an estimator of
EV∗(ȳ∗) can be found. For this purpose, we define

u∗ =
1 − p̂y

M̂3

∑
A

w2
hij

∑
A

whij(y∗hij − ȳ∗)2, (3.6)

which can be computed without identifying the imputed values. In view of

E∗(u∗) ≈ V∗(ȳ∗) (3.7)

(see the proof of Theorem 1) and (3.3) and (3.5), we obtain the following esti-
mator of V (ȳ∗):

v∗S = p̂−2
y v∗ + (1 − p̂−2

y )u∗. (3.8)

This estimator is the same as v∗ if p̂y = 1 (no nonrespondent).

In the special case where the sampling design is one stage and simple random
sampling (no stratification), u∗ reduces to m(n−1)

n2 v∗ and

v∗S =
n2

r2
v∗ +

(
1 − n2

r2

)m(n − 1)
n2

v∗ ≈
(n

r
+

m

n

)
v∗, (3.9)

where r is the number of respondents, m is the number of nonrespondents, and
n = r + m. This is the correct variance estimator for ȳ∗ given in (2.1) of Rao
and Shao (1992).

The proposed estimator in (3.8) may take negative values, although v∗S > 0 is
always true in the special case of one stage simple random sampling (see (3.9)).
However, v∗S > 0 holds for large sample sizes (Theorem 1) and for moderate
sample sizes as well (in view of (3.5) and (3.7)). In our simulation study presented
in Section 5 (L = 32 and n = 75), v∗S is always positive in 10,000 simulation runs.

The following result shows that v∗S is consistent.

Theorem 1. Assume that
C1. n1+δ∑

h

∑
i E|rhi − E(rhi)|2+δ = O(1) for some fixed δ > 0, where rhi =∑

j w̃hija
y
hijyhij,

∑
j w̃hija

y
hij, or

∑
j w̃hij, w̃hij = whij/M , n =

∑
h nh, and

ay
hij =

{
1 if yhij is observed
0 if yhij is missing

C2. n(covariance matrix of
∑

Ar
w̃hijyhij,

∑
A w̃hij and

∑
Ar

w̃hij) has eigenval-
ues bounded away from 0 and ∞;

C3.
∑

A w̃hij|yhij − Ȳ |2+δ = Op(1) for some δ > 0, where Ȳ = Y/M is the
population mean for item y;

C4. n(maxh,i
∑

j w̃hij) = Op(1) and n/N → 0, where N =
∑

h Nh.
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Then
v∗S

V (ȳ∗)
→p 1.

The proof of Theorem 1 is given in the Appendix.

3.2. Multivariate case with uniform response

Survey data are usually multivariate, i.e., each ultimate unit has a vector of
responses. We focus on the two-dimensional case: (yhij, zhij) is the response of
the (h, i, j)th ultimate unit if it responds to both item y and item z. Extensions
of our results to three or more dimensional cases are straightforward.

If there is no nonrespondent, then the population mean vector (Ȳ , Z̄) is
estimated by (ȳ, z̄), where z̄ is calculated according to (2.1) with yhij replaced
by zhij. Note that the same survey weight whij is applied to both items y and z.

In practice a sampled ultimate unit cooperates in the survey but often fails
to provide answers to some (not all) of the questions. This is referred to as item
nonresponse. Define

Amm = {(h, i, j) ∈ A : both yhij and zhij are missing},
Arr = {(h, i, j) ∈ A : both yhij and zhij are observed},
Arm = {(h, i, j) ∈ A : yhij is observed but zhij is missing},

and
Amr = {(h, i, j) ∈ A : yhij is missing but zhij is observed}.

Then all these four subsets of A may be nonempty and have appreciable sizes.
If the imputation is carried out jointly, i.e., for any unit in Arm∪Amr∪Amm,

its y and z values are imputed by using (yhij, zhij), (h, i, j) ∈ Arr, irrespective of
whether both y and z values are missing or only one of these values is missing,
then the extension of the results in Section 3.1 to the multivariate case is trivial:
We only need to view yhij as a vector and change the squares to vector products
in appropriate places. However, using joint imputation we throw away the data
in Arm ∪ Amr, which is not desirable. Furthermore, Arr may be of a small size
(which is more serious when we have higher dimensional data). Because of these
considerations, in practice imputation is often carried out marginally, i.e., missing
y values are imputed using the respondents yhij with (h, i, j) ∈ Arr∪Arm, missing
z values are imputed using zhij with (h, i, j) ∈ Arr ∪Amr, and the y and z values
are imputed independently.

Marginal imputation is simple and does not require any model assumption
(between y and z variables). A limitation of the marginal imputation is that
it does not preserve the relation between the y and z variables so that we can-
not estimate any parameter which measures how y and z are related (e.g., the
correlation coefficient between the two variables). In this paper we focus on
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the situation where the parameter of interest is θ = g(Ȳ , Z̄), a function of the
population mean vector. In such cases marginal imputation provides an asymp-
totically valid estimator of θ. Note that many parameters of interest in survey
problems are functions of population means (e.g., θ = Ȳ /Z̄). Our method of de-
riving a correct variance estimator can also be applied to cases where imputation
are not done marginally. But a careful study of the imputation method under
consideration is required and it will not be discussed in this paper.

We still assume that there is only one imputation class and denote the re-
sponse probabilities to items y and z by py and pz, respectively. For item y,
let v∗y = v∗ in (3.2), and u∗

y = u∗ in (3.6). For item z, let z∗hij , z̄∗, p̂z, v∗z , and
u∗

z be analogs to y∗hij, ȳ∗, p̂y, v∗y , and u∗
y, respectively. A naive estimator of the

variance-covariance matrix of (ȳ∗, z̄∗), calculated based on the standard formula,
is

v∗ =

(
v∗y v∗yz

v∗yz v∗z

)
,

where

v∗yz =
L∑

h=1

nh

nh − 1

nh∑
i=1

(ζy∗
hi − ζ̄y∗

h )(ζz∗
hi − ζ̄z∗

h ),

ζy∗
hi =

1
M̂

∑
j

whij(y∗hij − ȳ∗), ζ̄y∗
h =

1
nh

nh∑
i=1

ζy∗
hi

and

ζz∗
hi =

1
M̂

∑
j

whij(z∗hij − z̄∗), ζ̄z∗
h =

1
nh

nh∑
i=1

ζz∗
hi .

Similar to the estimator in (3.2), this estimator is inconsistent when py < 1 or
pz < 1.

A multivariate analog of v∗S in (3.8) is

v∗
S = p̂−1v∗p̂−1 + u∗ − p̂−1u∗p̂−1 (3.10)

where

p̂ =
(

p̂y 0
0 p̂z

)
and u∗ =

(
u∗

y 0
0 u∗

z

)
.

The consistency of v∗
S in (3.10) can be established similarly to the univari-

ate case (Theorem 1). If we estimate θ = g(Ȳ , Z̄) by θ̂∗ = g(ȳ∗, z̄∗), then a
linearization variance estimator for θ̂∗ is

[∇g(ȳ∗, z̄∗)]tv∗
S∇g(ȳ∗, z̄∗),

where ∇g is the vector of partial derivatives of g.
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3.3. K imputation classes

As we discussed in Section 2, imputation is usually carried out separately in
several (say K) imputation classes. Within the kth class, the sampled units re-
spond to item y and item z with the probabilities pk

y > 0 and pk
z > 0, respectively,

k = 1, . . . ,K.
Assume that an imputation class label is added to each sampled unit, which

is the case when imputation classes are constructed according to the value of a
categorical variable observed for all the sampled units. Let v∗k

S be the variance
estimator calculated according to (3.10) but based on the data in the kth impu-
tation class, k = 1, . . . ,K. Then an asymptotically consistent variance estimator
for (ȳ∗, z̄∗) is

v∗
S =

K∑
k=1

v∗k
S .

Extensions of our method to more general non-uniform response cases rely on
whether we can obtain an explicit asymptotic formula for V (ȳ∗, z̄∗) and whether
we can use statistics such as v∗ and u∗ to provide consistent estimators of the
unknown quantities in V (ȳ∗, z̄∗). These extensions have to be handled case by
case and will not be further discussed here.

4. Inference Based on Quantiles

For a given population P, the population distribution for a given item y is
defined to be

F (x) =
1
M

∑
(h,i,j)∈P

Iy
hij

(x),

where Iy(x) is the indicator function of the set {y ≤ x}. If there is no missing
datum, a customary estimator of F (x) is

F̂ (x) =
∑
A

whijIy
hij

(x)
/∑

A

whij.

Suppose now that there are nonrespondents which are imputed by using
the hot deck imputation method described in Section 3.1. We still assume that
imputation is carried out independently in K imputation classes and the response
probability is py > 0 for all units within an imputation class. For a concise
presentation we assume K = 1 throughout this section. The extensions of the
results to the case of any fixed K are straightforward.

Based on the imputed data set {y∗hij , (h, i, j) ∈ A}, an estimator of F (x) is

F̂ ∗(x) =
∑
A

whijIy∗
hij

(x)
/∑

A

whij.

Asymptotic properties of F̂ ∗(x) for any fixed x can be derived from the results
in Section 3.1 with y∗hij replaced by Iy∗

hij
(x).
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In studies of income shares or wealth distributions, an important class of
population characteristics is the p-th quantile of F defined as θ = F−1(p) =
inf{x : F (x) ≥ p}, p ∈ (0, 1). Another important parameter is the proportion
of low income economic families. Let µ = F−1(1

2) be the population median
family income. Then, the population low income proportion can be defined as
ρ = F (1

2µ), (1
2µ is called the poverty line; see Wolfson and Evans (1990)).

Based on the imputed data set, survey estimators of θ (with a fixed p) and
ρ are the sample p-th quantile and the sample low income proportion defined by

θ̂∗ = (F̂ ∗)−1(p) and ρ̂∗ = F̂ ∗(1
2 µ̂∗), (4.1)

respectively, where µ̂∗ = θ̂∗ with p = 1
2 , the sample median.

4.1. Bahadur representation and asymptotic normality

We first establish a Bahadur representation which relates the sampling be-
havior of θ̂∗−θ to that of F (θ)− F̂ ∗(θ). Similar results for the case of no missing
datum can be found in Francisco and Fuller (1991) and Shao and Wu (1992).
We still adopt the asymptotic framework given in Section 2. Recall that there
is a sequence of populations indexed by ν and quantiles F , θ, ρ, F̂ ∗, θ̂∗, and ρ̂∗
depend on ν but the index ν is omitted for simplicity.

Theorem 2. Assume C4 and
C5. There is a sequence of functions {f = fν : ν = 1, 2, . . .} such that

0 < inf
ν

f(θ) ≤ sup
ν

f(θ) < ∞

and for any δν = O(n−1/2),

lim
ν→∞

[F (θ + δν) − F (θ)
δν

− f(θ)
]

= 0.

Then

θ̂∗ = θ +
F (θ) − F̂ ∗(θ)

f(θ)
+ op

( 1√
n

)
(4.2)

and
θ̂∗ − θ

σν(θ)/f(θ)
→ N(0, 1) in distribution, (4.3)

where σ2
ν(x) denotes the asymptotic variance of F̂ ∗(x) for any fixed x.

The proofs of Theorem 2 and the following lemma (which is used in the proof
of Theorem 2) are given in the Appendix.

Lemma 1. Assume C4 and C5. Then

sup
|x−θ|≤cn−1/2

|Hν(x)| = op(n−1/2)
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for any constant c > 0, where θ = F−1(p) and Hν(x) is defined in (A.20).

We now turn to studying the asymptotic distribution of the sample low
income proportion ρ̂∗ in (4.1).

Theorem 3. Assume that C4 holds and that C5 holds when θ = µ (the population
median) and θ = 1

2µ. Then

ρ̂∗ − ρ = F̂ ∗(1
2µ) − F (1

2µ) + f( 1
2
µ)

2f(µ) [F (µ) − F̂ ∗(µ)] + op

(
1√
n

)
(4.4)

and
(ρ̂∗ − ρ)/γν → N(0, 1) in distribution, (4.5)

where
γ2

ν = σ2
ν(

1
2µ) + σ2

ν(µ)
[

f( 1
2
µ)

2f(µ)

]2 − σν(1
2µ, µ)f( 1

2
µ)

f(µ) , (4.6)

σ2
ν(x) is the asymptotic variance of F̂ ∗(x), and σν(x, t) is the asymptotic covari-

ance between F̂ ∗(x) and F̂ ∗(t).

Proof. From Lemma 1 and (4.2),

U∗
ν = F̂ ∗(1

2 µ̂∗) − F̂ ∗(1
2µ) − F (1

2 µ̂∗) + F (1
2µ) = op

(
1√
n

)
. (4.7)

Note that
ρ̂∗ − ρ = F̂ ∗(1

2µ) − F (1
2µ) + F (1

2 µ̂∗) − F (1
2µ) + U∗

ν .

Hence result (4.4) follows from (4.7) and

F (1
2 µ̂∗) − F (1

2µ) = 1
2f(1

2µ)(µ̂∗ − µ) + op

(
1√
n

)
= f( 1

2
µ)

2f(µ) [F (µ) − F̂ ∗(µ)] + op

(
1√
n

)
(by C4-C5 and (4.2)). Result (4.5) can be established by applying the same ar-
gument used in the proof of (4.3) and by noting that γ2

ν in (4.6) is the asymptotic
variance of the quantity on the right side of (4.4).

4.2. Variance estimation and confidence intervals

We first focus on the sample quantiles. Result (4.3) shows that θ̂∗ is asymp-
totically normal with asymptotic mean θ and asymptotic variance σ2

ν(θ)/f2(θ).
In inference we need to either obtain a variance estimator for θ̂∗ or construct a
confidence interval for θ.

In the case of no missing datum, we usually start with the construction of
a consistent estimator σ̂2

ν(x) for the asymptotic variance of F̂ (x) with a fixed
x (Francisco and Fuller (1991)). Then, we estimate the asymptotic variance of
F̂ (θ) by σ̂2

ν = σ̂2
ν(θ̂), θ̂ = F̂−1(p). Using the idea of Woodruff (1952) and the
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estimator σ̂2
ν , we can obtain the following approximate level 1 − 2α confidence

interval for θ:
Cν = [F̂−1(p − zασ̂ν), F̂−1(p + zασ̂ν)], (4.8)

where zα is the (1 − α)th quantile of the standard normal distribution. A con-
sistent estimator for the asymptotic variance of θ̂ is then obtained by equating
the interval in (4.8) to a normal theory interval.

Because of the existence of imputed values, the above procedure does not
produce correct variance estimators or confidence intervals. However, we only
need to modify the estimator σ̂2

ν(x), using the same idea in Section 3.1. Let
σ̂∗2

ν (x) = v∗S in (3.8) with y∗hij replaced by Iy∗
hij

(x). Then, by Theorem 1,

σ̂∗2
ν (x)

σ2
ν(x)

→p 1 (4.9)

for any fixed x.

Theorem 4. Assume C4 and C5. Then
(i) σ̂∗2

ν /σ2
ν(θ) →p 1, where σ̂∗2

ν = σ̂∗2
ν (θ̂∗);

(ii) P{θ ∈ C∗
ν} → 1 − 2α, where

C∗
ν = [(F̂ ∗)−1(p − zασ̂∗

ν), (F̂ ∗)−1(p + zασ̂∗
ν)]. (4.10)

Proof. The result in part (i) is not a direct consequence of result (4.9). We need
to show that σ̂∗2

ν (x) has a continuity property for x near θ. That is,

n[σ̂∗2
ν (θ + δν) − σ̂∗2

ν (θ)] = Op(δν) (4.11)

for any δν = O(n−1/2). Result (4.11) can be proved using the same argument
as that in the proof of Theorem 5 in Shao (1994). The result in part (ii) can
be proved by using the result in part (i) (see the proof of Theorem 6 in Shao
(1994)).

By equating the interval C∗
ν in (4.10) to a normal theory interval based on

(4.3), an estimator of the asymptotic variance of θ̂∗, σ2
ν(θ)/f2(θ), can be obtained

as

v∗W (α) =
[(F̂ ∗)−1(p + zασ̂∗

ν) − (F̂ ∗)−1(p − zασ̂∗
ν)

2zα

]2
. (4.12)

It is not easy to choose the value α in (4.12). In terms of some limited empirical
evidence, α = 0.05 is suggested by Sitter (1992).

An alternative estimator of σ2
ν(θ)/f2(θ) is obtained by directly estimating

σ2
ν(θ) and f−2(θ):

v∗S = σ̂∗2
ν (θ̂∗)

[ F̂ ∗(θ̂∗ + n−1/2) − F̂ ∗(θ̂∗ − n−1/2)
2n−1/2

]−2
. (4.13)

By Theorem 4, both v∗W (α) and v∗S are consistent.
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Next, we consider the estimation of γ2
ν in (4.6), the asymptotic variance of

the sample low income proportion. Examining (4.6), a substitution estimator of
γ2

ν is

γ̂∗2
ν = σ̂∗2

ν (1
2 µ̂∗) + σ̂∗2

ν (µ̂∗)[f̂(1
2 µ̂∗)f̂−1(µ̂∗)/2]2 − σ̂∗

ν(
1
2 µ̂∗, µ̂∗)f̂(1

2 µ̂∗)f̂−1(µ̂∗),

where
f̂(x) =

√
n[F̂ ∗(x + n−1/2) − F̂ ∗(x − n−1/2)]/2

is an estimator of f(x),

σ̂∗
ν(x, t) = p̂−2

y v∗(x, t) + (1 − p̂−2
y )u∗(x, t),

is an estimator of σν(x, t),

v∗(x, t) =
L∑

h=1

nh

nh − 1

nh∑
i=1

(ζ∗hi − ζ̄∗h)(x)(ζ∗hi − ζ̄∗h)(t),

ζ∗hi(x) =
1
M̂

∑
j

whij[Iy∗
hij

(x) − F̂ ∗(x)], ζ̄∗h(x) =
1
nh

nh∑
i=1

ζ∗hi(x),

u∗(x, t) =
1 − p̂y

M̂3

∑
A

w2
hij

∑
A

whij(Iy∗
hij

− F̂ ∗)(x)(Iy∗
hij

− F̂ ∗)(t),

and σ̂∗2
ν (x) = σ̂ν(x, x) is the same as that in (4.9).

Theorem 5. Assume that C4 holds and that C5 holds with θ = µ and θ = 1
2µ.

Then
γ̂∗2

ν

γ2
ν

→p 1.

Proof. We have shown the consistency of σ̂∗2
ν (1

2 µ̂∗) and σ̂∗2
ν (µ̂∗). Following the

proof of Theorem 4, we can show that

n[σ̂∗
ν(

1
2 µ̂∗, µ̂∗) − σν(1

2µ, µ)] = op(1).

Then the result follows from the consistency of f̂(1
2 µ̂∗) and f̂(µ̂∗) under C4 and

C5.
Based on Theorems 3 and 5, an approximate level 1− 2α confidence interval

for ρ is [ρ̂∗ − zαγ̂∗
ν , ρ̂∗ + zαγ̂∗

ν ].

5. Simulation Results

In this section we present the results from a simulation study comparing the
true asymptotic variance and our variance estimator in the stratified one stage
simple random sampling case.
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The population we used is similar to those in Kovar, Rao and Wu (1988) and
Sitter (1992). There are L = 32 strata in the population. In the hth stratum,
the y-values of the population were generated according to

yhi
i.i.d.∼ N(Ȳh, σ2

h), i = 1, . . . , Nh,

where the population parameters Nh, Ȳh, and σh are given in Table 1.

Table 1. Population parameters and sample sizes

h Nh Ȳh σh h Nh Ȳh σh

1 38 8.6 4.00 17 34 8.6 0.25
2 38 8.7 4.00 18 34 8.4 0.25
3 38 8.5 4.00 19 34 8.5 0.25
4 38 8.3 4.00 20 34 8.8 0.25
5 38 8.9 4.00 21 34 8.4 0.25
6 38 8.8 4.00 22 22 8.7 1.00
7 38 8.2 4.00 23 22 8.6 1.00
8 38 8.6 4.00 24 22 8.5 1.00
9 38 8.6 4.00 25 22 8.4 1.00

10 38 8.4 4.00 26 22 8.8 1.00
11 38 8.4 4.00 27 22 8.9 1.00
12 34 8.5 0.25 28 22 8.3 1.00
13 34 8.1 0.25 29 22 8.2 1.00
14 34 8.4 0.25 30 22 8.9 1.00
15 34 8.3 0.25 31 22 8.4 1.00
16 34 8.6 0.25 32 22 8.6 1.00

After the population was generated, a simple random sample of size nh was
drawn from stratum h, independently across the 32 strata. Two sets of sample
sizes nh were considered: (1) nh = 3 when h = 1, . . . , 11 and nh = 2 when
h = 12, . . . , 32; (2) nh = 6 when h = 1, . . . , 11 and nh = 4 when h = 12, . . . , 32.
(The purpose of using the second set of sample sizes is to see the effect of large
sample sizes, as suggested by a referee.) After the samples were generated, the
respondents {yhi, (h, i) ∈ Ar} were obtained by assuming that the sampled units
responded with equal probability py; and the missing values {yhi, (h, i) ∈ Am}
were imputed by taking an i.i.d. sample from {yhi, (h, i) ∈ Ar}, with selection
probability whi/

∑
Ar

whi for yhi, (h, i) ∈ Ar, where the survey weight whi =
wh = Nh/nh in this special case. This process was repeated 10,000 times in the
simulation.

All the computations were done in a UNIX at the Department of Statistics,
University of Wisconsin-Madison, using IMSL subroutines GENNOR, IGNUIN
and GENUNF for random number generations.



INFERENCE WITH IMPUTED DATA 375

5.1. Inference based on the sample mean ȳ∗

In each simulation iteration, we calculated the following statistics based on

the imputed data set:

ȳ∗h =
1
nh

nh∑
i=1

y∗hi, ȳ∗ =
L∑

h=1

Nh

N
ȳ∗h

(note that M̂ = N in the stratified one stage case),

v∗ =
L∑

h=1

w2
hnh

N2(nh − 1)

nh∑
i=1

(y∗hi − ȳ∗h)2,

u∗ =
(
1 − r

n

) L∑
h=1

nh∑
i=1

w2
h

N2

L∑
h=1

nh∑
i=1

wh

N

(
y∗hi − ȳ∗

)2
,

and v∗S according to (3.8) with p̂y = r/n, where r is the number of respondents.

Table 2 lists, for some values of py, the variance of ȳ∗ (approximated by

the sample variance of the 10,000 simulated values of ȳ∗), and the relative bias

(RB) and mean square error (MSE) of v∗S (based on 10,000 simulated values of

v∗S). In addition, Table 2 also lists the empirical coverage probabilities (NCP and

TCP) of 95% confidence intervals, where NCP is the coverage probability of the

confidence interval obtained by treating (ȳ∗ − Ȳ )/
√

v∗S as the standard normal

random variable, whereas TCP is the coverage probability of the confidence in-

terval obtained by treating (ȳ∗− Ȳ )/
√

v∗S as the t-random variable with r degrees

of freedom.
The results in Table 2 indicates that the variance estimator v∗S performs well.

Its relative bias is under 3% for all cases considered. The coverage probabilities
of the confidence intervals are close to the nominal level, especially for the case
of larger sample size.

Table 2. Simulation result for the sample mean
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Sample Sizes py V (ȳ∗) RB(%) MSE NCP(%) TCP(%)
nh = 3, h = 1, . . . , 11 0.4 0.2864 0.99 0.1913 93.42 94.35
nh = 2, h = 12, . . . , 32 0.5 0.2368 −2.18 0.1277 93.43 94.36

0.6 0.1888 0.09 0.0928 94.26 94.78
0.7 0.1592 −2.02 0.0687 93.91 94.48
0.8 0.1308 −0.17 0.0510 94.13 94.57
0.9 0.1072 0.80 0.0386 94.25 94.63

nh = 6, h = 1, . . . , 11 0.4 0.1410 −0.05 0.0591 94.36 94.77
nh = 4, h = 12, . . . , 32 0.5 0.1111 2.55 0.0413 94.91 95.26

0.6 0.0918 1.05 0.0301 94.86 95.24
0.7 0.0769 1.23 0.0222 94.85 95.22
0.8 0.0647 −0.20 0.0167 94.73 94.94
0.9 0.0552 −2.62 0.0127 94.20 94.36

5.2. Inference based on the sample median θ̂∗

For the sample median, we computed σ̂∗2
ν (x) = v∗S with y∗hi replaced by

I∗yhi
(x),

F̂ ∗(x) =
L∑

h=1

nh∑
i=1

wh

N
Iy∗

hi
(x),

and the v∗S defined in (4.13).

Table 3 lists, for some values of py, the asymptotic variance of θ̂∗, and the

RB and MSE of v∗S . Table 3 also lists the empirical coverage probabilities (NCP)

of the 95% confidence interval

C∗
ν = [(F̂ ∗)−1(p − z.025σ̂

∗
ν), (F̂ ∗)−1(p + z.025σ̂

∗
ν)], (5.1)

and the empirical coverage probabilities (TCP) of the interval obtained by re-

placing z0.05 in (5.1) with the 97.5% percentile of the t-distribution with r degrees

of freedom.

Table 3. Simulation result for the sample median
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Sample Sizes py V (θ̂∗) RB(%) MSE NCP(%) TCP(%)
nh = 3, h = 1, . . . , 11 0.4 0.0374 4.37 0.0291 91.73 92.96
nh = 2, h = 12, . . . , 32 0.5 0.0279 3.59 0.0195 92.77 93.98

0.6 0.0219 1.23 0.0147 93.54 94.11
0.7 0.0167 −2.17 0.0116 94.25 94.42
0.8 0.0131 −8.30 0.0087 94.36 95.13
0.9 0.0095 −4.93 0.0066 95.02 95.34

nh = 6, h = 1, . . . , 11 0.4 0.0154 4.05 0.0140 93.73 93.96
nh = 4, h = 12, . . . , 32 0.5 0.0118 −0.49 0.093 93.77 93.98

0.6 0.0088 −1.41 0.0062 94.00 94.21
0.7 0.0072 −7.91 0.0045 94.50 94.82
0.8 0.0051 0.33 0.0033 94.66 95.10
0.9 0.0039 0.52 0.0024 95.32 95.52

The results in Table 3 indicates that the variance estimator v∗S performs well.
Its relative bias is under 5% except for two cases where the relative bias is about
8%. When py = 0.4, the performances of confidence intervals are not very good
in the smaller sample size case, but are acceptable in the larger sample size case.

We also computed the RB and MSE for the variance estimator v∗W in (4.12).
But its performance is not as good as v∗S . Details are not reported here.
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Appendix

Proof of Theorem 1. By C2 and

v∗S =
p2

y

p̂2
y

(v∗ − u∗)
p2

y

+ u∗,

we only need to show that

n[u∗ − EV∗(ȳ∗)] →p 0 (A.1)

and
n[v∗ − u∗ − p2

yV (ȳr)] →p 0. (A.2)

Under C3 and C4,

E∗(u∗) =
(1 − p̂y)M2

M̂2

(∑
A

w̃2
hij

)(
1 −

∑
Am

w̃2
hij

)∑
Ar

whij(yhij − ȳr)2
/∑

Ar

whij

=
(1 − p̂y)M2

M̂2

(∑
A

w̃2
hij

)∑
Ar

whij(yhij − ȳr)2
/∑

Ar

whij + op

( 1
n

)
.
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By (3.4) and the fact that M̂/M →p 1 and

(1 − p̂y)
(∑

A

w̃2
hij

)/∑
Am

w̃2
hij →p 1,

we conclude that
n[E∗(u∗) − V∗(ȳ∗)] →p 0. (A.3)

Also, by C3, n[V∗(ȳ∗) − EV∗(ȳ∗)] →p 0. Hence (A.1) follows from

n[u∗ − E∗(u∗)] →p 0. (A.4)

Note that

n[u∗ − E∗(u∗)] = Op(1)
[∑

An

w̃hij(y∗hij − ȳ∗)2 − E∗
∑
An

w̃hij(y∗hij − ȳ∗)2
]

= Op(1)
[∑

An

w̃hij(y∗hij − Ȳ )2 − E∗
∑
An

w̃hij(y∗hij − Ȳ )2

−(ȳ∗ − Ȳ )2 + E∗(ȳ∗ − Ȳ )2
]
.

Since ȳ∗ − Ȳ →p 0 and E∗(ȳ∗ − Ȳ )2 = V∗(ȳ∗) + (ȳr − Ȳ )2 = op(1), (A.4) follows
from ∑

A

w̃hij(y∗hij − Ȳ )2 − E∗
∑
A

w̃hij(y∗hij − Ȳ )2 →p 0,

which follows from the Law of Large Numbers (e.g., Krewski and Rao (1981),
Lemma 1) under C3. This proves (A.1).

For (A.2), it suffices to show that

n[E∗(v∗ − u∗) − p2
yV (ȳr)] →p 0 (A.5)

and
n[v∗ − u∗ − E∗(v∗ − u∗)] →p 0. (A.6)

Define

uhi =
∑

j:(h,i,j)∈A

w̃hija
y
hijyhij, ūh =

1
nh

nh∑
i=1

uhi,

vhi =
∑

j:(h,i,j)∈A

w̃hija
y
hij , v̄h =

1
nh

nh∑
i=1

vhi.

A straightforward calculation shows that

V (ȳr) =
1
p2

y

[
V
(∑

A

w̃hija
y
hijyhij

)
+ Ȳ 2V

(∑
A

w̃hija
y
hij

)

− 2Ȳ Cov
(∑

A

w̃hija
y
hijyhij,

∑
A

w̃hija
y
hij

)]
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and

E∗(v∗ − u∗) =
M2

M̂2

[ L∑
h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)2 + ȳr

L∑
h=1

nh

nh − 1

nh∑
i=1

(vhi − v̄h)2

− 2ȳr

L∑
h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)(vhi − v̄h)
]
+ V∗(ȳ∗) − E∗u∗

=
L∑

h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)2 + Ȳ
L∑

h=1

nh

nh − 1

nh∑
i=1

(vhi − v̄h)2

− 2Ȳ
L∑

h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)(vhi − v̄h) + op

( 1
n

)
,

where the last equation follows from (A.3), M/M̂ →p 1 and ȳr − Ȳ →p 0. Hence
(A.5) follows from

n
[ L∑

h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)2 − V
(∑

A

w̃hija
y
hijyhij

)]
→p 0,

n
[ L∑

h=1

nh

nh − 1

nh∑
i=1

(vhi − v̄h)2 − V
(∑

A

w̃hija
y
hij

)]
→p 0,

and

n
[ L∑

h=1

nh

nh − 1

nh∑
i=1

(uhi − ūh)(vhi − v̄h)−Cov
(∑

A

w̃hija
y
hijyhij,

∑
A

w̃hija
y
hij

)]
→p 0,

which are consequences of C1 and the Law of Large Numbers.
By (A.4), (A.6) follows from

n(v∗ − E∗v∗) →p 0. (A.7)

Let

γn1 =
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[∑
j

w̃hij(y∗hij − ȳr) − 1
nh

nh∑
i=1

∑
j

w̃hij(y∗hij − ȳr)
]2

,

γn2 =
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[∑
j

w̃hij(y∗hij − ȳr)

− 1
nh

nh∑
i=1

∑
j

w̃hij(y∗hij − ȳr)
][∑

j

w̃hij − 1
nh

nh∑
i=1

∑
j

w̃hij

]
,
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and

γn3 =
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

(∑
j

w̃hij − 1
nh

nh∑
i=1

∑
j

w̃hij

)2
.

Then
v∗ = γn1 + 2γn2(ȳr − ȳ∗) + γn3(ȳr − ȳ∗)2.

Define

t∗hi =
∑
j

w̃hij(1 − ay
hij)(y

∗
hij − ȳr) and t̄∗h =

1
nh

nh∑
i=1

t∗hi.

Then

γn1 =
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[(t∗hi + uhi − ȳrvhi) − (t̄∗h + ūh − ȳrv̄h)]2

=
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[(uhi − ūh) − ȳr(vhi − v̄h)]2

+
2M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[(uhi − ūh) − ȳr(vhi − v̄h)](t∗hi − t̄∗h)

+
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

(t∗hi − t̄∗h)2

= E∗(v∗) − V∗(ȳ∗) +
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

(t∗hi − t̄∗h)2

+
2M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[(uhi − ūh) − ȳr(vhi − v̄h)](t∗hi − t̄∗h),

where the last equation follows from

E∗(v∗) = V∗(ȳ∗) +
M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

[(uhi − ūh) − ȳr(vhi − v̄h)]2.

From Rao and Shao (1992),

n
[ L∑

h=1

nh

nh − 1

nh∑
i=1

(t∗hi − t̄∗h)2 − V∗(ȳ∗)
]
→p 0

and

n
L∑

h=1

nh

nh − 1

nh∑
i=1

[(uhi − ūh) − ȳr(vhi − v̄h)](t∗hi − t̄∗h) →p 0.
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Thus,
n[γn1 − E∗(v∗)] →p 0. (A.8)

By C4,

γn3 ≤ M2

M̂2

L∑
h=1

nh

nh − 1

nh∑
i=1

(∑
j

w̃hij

)2
= Op

( 1
n

)
,

which and (A.8) imply that

2|γn2| ≤ γn1 + γn3 = Op

( 1
n

)
.

Since E∗ȳ∗ = ȳr and V∗(ȳ∗) = Op( 1
n), we have ȳ∗ − ȳr →p 0. This proves (A.7).

Proof of Lemma 1. Let ην� = θ + cn−3/2
, 
 = −n, . . . , n. Then

sup
|x−θ|≤cn−1/2

|Hν(x)| ≤ max
−n≤�≤n

|Hν(ην�)| + max
−n≤�≤n

|F (ην(�+1)) − F (ην�)|

= max
−n≤�≤n

|Hν(ην�)| + O(n−3/2),

where the last equality follows from C5. Thus, it suffices to show that

max
−n≤�≤n

|Hν(ην�)| = op(n−1/2). (A.9)

Let
Gr

ν(x) =
1
M

∑
Ar

whijIyhij
(x) and qr

ν = Gr
ν(∞).

Then
E∗[F̂ ∗(x)] = Gr

ν/qr
ν = F̂r. (A.10)

Let H∗
ν (x) = F̂ ∗(x) − F̂ ∗(θ) − F̂r(x) + F̂r(θ), and Hr

ν(x) = Gr
ν(x) − Gr

ν(θ) −
qr
ν[F (x)−F (θ)]. Then Hν(x) = H∗

ν (x) + Hr
ν(x)/qr

ν . Under the uniform response
assumption,

qr
ν − py = op(1). (A.11)

Hence (A.9) follows from

max
−n≤�≤n

|H∗
ν (ην�)| = op(n−1/2) and max

−n≤�≤n
|Hr

ν(ην�)| = op(n−1/2). (A.12)

Let P∗ be the probability under the random imputation. Then by Bernstein’s
Inequality and C4,

P∗
{√

n|H∗
ν (ην�)| ≥ ε

}
≤ 2 exp

{
− ε2n−1

2V∗[F̂ ∗(ην�) − F̂ ∗(θ)] + Op(n−3/2)

}
. (A.13)



382 YINZHONG CHEN AND JUN SHAO

for any ε > 0. Let Ihij be the indicator of {θ ≤ y∗hij ≤ ην�} if 
 > 0 and the
indicator of {ην� ≤ y∗hij ≤ θ} if 
 < 0. Since

V∗[F̂ ∗(ην�) − F̂ ∗(θ)] =
1

M̂2

∑
Am

w2
hijV∗(Ihij)

≤ 1
M̂2

∑
Am

w2
hijE∗(Ihij)

=
1

M2M̂2

∑
Am

w2
hij

∑
Ar

whijIhij

/∑
Ar

whij

≤ max
h,i

∑
j

w̃hij|F̂ (ην�) − F̂ (θ)|/qr
ν ,

we obtain that

max
−n≤�≤n

V∗[F̂ ∗(ην�)−F̂ ∗(θ)] ≤ O(n−1)|F̂ (θ+cn−1/2)−F̂ (θ−cn−1/2)| = Op(n−3/2)

by C4-C5 and (A.11), and

P∗
{√

n max
−n≤�≤n

|H∗
ν (ην�)| ≥ ε

}
≤ 4n exp

{
− ε2n−1

Op(n−3/2)

}
= op(1)

by (A.13). This proves the first assertion in (A.12). Similarly, since E[Hr
ν (x)] = 0,

we obtain

P
{√

n|Hr
ν(ην�)| ≥ ε

}
≤ 2 exp

{
− ε2n−1

2V [Hr
ν (ην�)] + O(n−3/2)

}
(A.14)

for any ε > 0, and

max
−n≤�≤n

V [Hr
ν(ην�)] = max

−n≤�≤n

1
M2

L∑
h=1

nh∑
i=1

V
(∑

j

whijδhij

)

≤ max
−n≤�≤n

1
M2

L∑
h=1

nh∑
i=1

E
(∑

j

whijδhij

)2

≤ max
−n≤�≤n

max
h,i

∑
j

w̃hijE
( 1
M

∑
A

whij|δhij |
)

≤ O(n−1) max
−n≤�≤n

|F (ην�) − F (θ)|

= O(n−3/2),

where δhij = Ihij − [F (ην�) − F (θ)] if 
 > 0 and δhij = Ihij − [F (θ) − F (ην�)] if

 < 0. This, and (A.14), imply the second assertion in (A.12).
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Proof of Theorem 2. Define ζν(t) =
√

n[F (θ + tn−1/2)− F̂ ∗(θ + tn−1/2)]/f(θ).
Then (4.2) is the same as

√
n(θ̂∗ − θ) − ζν(0) = op(1), which is implied by

P{√n(θ̂∗ − θ) ≤ t, ζν(0) ≥ t + ε} → 0 and P{√n(θ̂∗ − θ) ≥ t + ε, ζν(0) ≤ t} → 0
(A.15)

for any fixed t �= 0 and ε > 0 (Lemma 1 of Ghosh (1971)). Since

{√n(θ̂∗ − θ) ≥ t} = {F̂ ∗(θ̂∗) ≥ F̂ ∗(θ + tn−1/2)} = {ζν(t) ≥ ην(t)},

where ην(t) =
√

n[F (θ + tn−1/2) − F̂ ∗(θ̂∗)]/f(θ), (A.15) is equivalent to

P{ζν(t) ≤ ην(t), ζν(0) ≥ t + ε} → 0 and P{ζν(t + ε) ≥ ην(t + ε), ζν(0) ≤ t} → 0,

which is implied by
ην(t) − t = op(1) (A.16)

and
ζν(t) − ζν(0) = op(1). (A.17)

By C5,
√

n
F (θ + tn−1/2) − F (θ)

f(θ)
→ t. (A.18)

By C4 and the boundedness of f(θ),

∣∣∣√n
F (θ) − F̂ ∗(θ̂∗)

f(θ)

∣∣∣ ≤
√

n

f(θ)

[ 1
M

+
1
M̂

max
h,i,j

whij

M

]
= Op

( 1√
n

)
. (A.19)

Then (A.16) follows from (A.18)-(A.19) and the definition of ην(t). Note
that

ζν(0) − ζν(t) =
√

nHν(θ + tn−1/2)/f(θ),

where
Hν(x) = F̂ ∗(x) − F̂ ∗(θ) − F (x) + F (θ). (A.20)

Then (A.17) is a consequence of Lemma 1 and the proof for (4.2) is completed.
Note that

E∗[F̂ ∗(x)] =
∑
Ar

whijIyhij
(x)
/∑

Ar

whij = F̂r(x).

Hence

(F̂ ∗ − F )(x) = (F̂r − F )(x) +
∑
Am

whij[Iy∗
hij

− E∗(Iy∗
hij

)](x)
/

M̂. (A.21)
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Applying the Central Limit Theorem for stratified sampling (Krewski and Rao
(1981), Bickel and Freedman (1984) and using C4 and the delta method, we
obtain that

[F̂r(θ) − F (θ)]/σ1ν(θν) → N(0, 1) in distribution, (A.22)

where σ2
1ν(x) is the asymptotic variance of F̂r(x). Similarly, conditional on yhij,

(h, i, j) ∈ A,
∑
Am

whij[Iy∗
hij

− E∗(Iy∗
hij

)](θ)
/

M̂σ2ν(θ) → N(0, 1) in distribution, (A.23)

where σ2
2ν(x) = (1 − py)Gν(x)[1 − Gν(x)]

∑
A w2

hij and Gν(x) = M̂F̂ (x)/M . It
follows from (A.21)-(A.23) and Lemma 1 in Schenker and Welsh (1988) that

F (θ) − F̂ ∗(θ)
σν(θ)

→ N(0, 1) in distribution,

where σ2
ν(x) = σ2

1ν(x) + σ2
2ν(x) is the asymptotic variance of F̂ ∗(x). This and

(4.2) imply (4.3).
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