ORTHOGONAL ARRAYS OBTAINED BY ORTHOGONAL DECOMPOSITION OF PROJECTION MATRICES

Zhang Yingshan*, Lu Yiqiang and Pang Shanqi*
*Henan Normal University and PLA's College of Electrionic Technology
Abstract: This paper studies a relationship between orthogonal arrays and orthogonal decompositions of projection matrices. This relation is used for the construction of orthogonal arrays. As an application of the method, some new mixed-level orthogonal arrays of run size 36 are constructed.

Key words and phrases: Kronecker product, mixed-level orthogonal array, permutation matrix, projection matrix.

1. Introduction

An $n \times m$ matrix A, having k_{i} columns with p_{i} levels, $i=1, \ldots, r, m=$ $\sum_{i=1}^{r} k_{i}, p_{i} \neq p_{j}$, for $i \neq j$, is called an orthogonal array (OA) of strength d and size n if each $n \times d$ submatrix of A contains all possible $1 \times d$ row vectors with the same frequency. Unless stated otherwise, we consider orthogonal arrays of strength 2 , using the notation $L_{n}\left(p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\right)$ for such an array. An orthogonal array is said to have mixed-level if $r \geq 2$. Such an array is often a natural choice in practice because different factors may require different numbers of levels. Two- and three- level OA's, which form popular fractional factorials, have been discussed at great length in many standard textbooks on experimental design and analysis, for example Box and Draper (1987). The construction of mixedlevel OA's has been studied by Wu (1989), Wang and Wu (1991), Wu, Zhang and Wang (1992), Hedayat, Pu and Stufken (1992) and Ryoh Fuji-Hara (1993). In this paper, an interesting relationship between orthogonal arrays and decompositions of projection matrices is presented. By exploring this relationship, we obtain a method for the construction of orthogonal arrays. Zhang (1989, 1990a, 1990b, 1991a and 1991b) has used this method to construct some mixed-level OA's of run size 36,72 , and 100 . In this paper the method is further explained and some new mixed-level OA's are obtained.

Section 2 contains basic concepts and main theorems while in Section 3 we describe the method of construction. Some new mixed-level OA's of run size 36 are constructed in Section 4.

2. Basic Concepts and Main Theorems

Suppose that an experiment is carried out according to an array $A=\left(a_{i j}\right)_{n \times m}$ $=\left(a_{1}, \ldots, a_{m}\right)$, and $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ is the experimental data vector. In the analysis of variance S_{j}^{2}, the sum of squares of the j th factor, is defined as

$$
\begin{equation*}
S_{j}^{2}=\sum_{i=1}^{p_{j}} \frac{1}{\left|I_{i j}\right|}\left(\sum_{s \in I_{i j}} Y_{s}\right)^{2}-\frac{1}{n}\left(\sum_{s=1}^{n} Y_{s}\right)^{2} \tag{1}
\end{equation*}
$$

where $I_{i j}=\left\{s: a_{s j}=j\right\}$ and $\left|I_{i j}\right|$ is the number of elements in $I_{i j}$. From (1), S_{j}^{2} is a quadratic form in Y and there exists a unique symmetric matrix A_{j} such that $S_{j}^{2}=Y^{T} A_{j} Y$. The matrix A_{j} is called the matrix image (MI) of the j th column a_{j} of A, denoted by $m\left(a_{j}\right)=A_{j}$. The MI of a subarray of A is defined as the sum of the MI's of all its columns. In particular, we denote the MI of A by $m(A)$. If a design is an orthogonal array, then the MI's of its columns have some interesting properties. These properties can be used to construct mixed-level OA's.

Let $(r)=(0, \ldots, r-1)_{1 \times r}^{T}, 1_{r}$ be the $r \times 1$ vector of 1 's and I_{r} the identity matrix of order r. Then

$$
\begin{equation*}
m\left(1_{r}\right)=P_{r} \text { and } m((r))=\tau_{r} \tag{2}
\end{equation*}
$$

where $P_{r}=\frac{1}{r} 1_{r} 1_{r}^{T}$ and $\tau_{r}=I_{r}-P_{r}$.
The Kronecker product $A \otimes B$ is defined as: $A \otimes B=\left(a_{i j} B\right)_{s n \times t m}$ if $A=$ $\left(a_{i j}\right)_{n \times m}, B=\left(b_{i j}\right)_{s \times t}$.
Definition 1. Suppose that p is a prime, and that a and b are OA's which have only one column, i.e., $a=L_{n_{1}}(p)=\left(a_{1}, \ldots, a_{n_{1}}\right)^{T}, b=L_{n_{2}}(p)=\left(b_{1}, \ldots, b_{n_{2}}\right)^{T}$. The Kronecker sum of a and b, denoted $a \oplus b$, is defined as

$$
a \oplus b=L_{n_{1} n_{2}}(p)=\left(\left(a_{1}+b_{1}\right), \ldots,\left(a_{1}+b_{n_{2}}\right), \ldots,\left(a_{n_{1}}+b_{n_{2}}\right)\right)^{T} \quad \bmod (p)
$$

For example,

$$
(2) \oplus(2)=(0,1,1,0)^{T}, \quad(3) \oplus(3)=(0,1,2,1,2,0,2,0,1)^{T}
$$

Theorem 1. For any permutation matrix S and any array L,

$$
m\left(S\left(L \otimes 1_{r}\right)\right)=S\left(m(L) \otimes P_{r}\right) S^{T}, \quad \text { and } \quad m\left(S\left(1_{r} \otimes L\right)\right)=S\left(P_{r} \otimes m(L)\right) S^{T}
$$

Theorem 2. Let A be an $O A$ of strength 1, i.e.,

$$
A=\left(a_{1}, \ldots, a_{m}\right)=\left(S_{1}\left(1_{r_{1}} \otimes\left(p_{1}\right)\right), \ldots, S_{m}\left(1_{r_{m}} \otimes\left(p_{m}\right)\right)\right)
$$

where $r_{i} p_{i}=n$ and S_{i} is a permutation matrix, for $i=1, \ldots, m$.
The following statements are equivalent.
(1) A is an $O A$ of strength 2.
(2) The MI of A is a projection matrix.
(3) The MI's of any two columns of A are orthogonal, i.e., $m\left(a_{i}\right) m\left(a_{j}\right)=0(i \neq$ j).
(4) The projection matrix τ_{n} can be decomposed as $\tau_{n}=m\left(a_{1}\right)+\cdots+m\left(a_{m}\right)+\Delta$, where $r k(\Delta)=n-1-\sum_{j=1}^{m}\left(p_{j}-1\right)$ is the rank of the matrix Δ.
Definition 2. An OA A is said to be saturated if $\sum_{j=1}^{m}\left(p_{j}-1\right)=n-1$ (or, equivalently, $m(A)=\tau_{n}$).

Corollary 1. Let (L, H) and K be $O A$'s of run size n. Then (K, H) is an $O A$ if $m(K) \leq m(L)$, where $m(K) \leq m(L)$ means that the difference $m(K)-m(L)$ is nonnegative definite.

Corollary 2. Suppose L and H are orthogonal arrays. Then $K=(L, H)$ is also an $O A$ if $m(L)$ and $m(H)$ are orthogonal, i.e., $m(L) m(H)=0$. In this case $m(K)=m(L)+m(H)$.

These theorems and corollaries can be found in Zhang (1991b, 1992 and 1993).

3. A General Method for Constructing OA's by Decompositions of the Projection Matrix τ_{n}

Our procedure of constructing mixed-level OA's by using decompositions of the projection matrix τ_{n} consists of the following three steps:
Step 1. Orthogonally decompose the projection matrix $\tau_{n}: \tau_{n}=A_{1}+\cdots+A_{k}$, where $A_{i} A_{j}=0(i \neq j)$.
Step 2. Find an OA L_{i} such that $m\left(L_{i}\right) \leq A_{i}$.
Step 3. Lay out the new OA L by Corollaries 1 and 2: $L=\left(L_{1}, \ldots, L_{k_{1}}\right)\left(k_{1} \leq k\right)$.
In applying Step 1, the following orthogonal decompositions of τ_{n} are very useful, $\tau_{n \cdot k}=I_{n} \otimes \tau_{k}+\tau_{n} \otimes P_{k}=\tau_{n} \otimes P_{k}+P_{n} \otimes \tau_{k}+\tau_{n} \otimes \tau_{k}=\tau_{n} \otimes I_{k}+P_{n} \otimes \tau_{k}$,

$$
\begin{equation*}
\tau_{p \cdot r \cdot q}=\tau_{p} \otimes I_{r} \otimes P_{q}+P_{p} \otimes \tau_{r q}+\tau_{p} \otimes I_{r} \otimes \tau_{q} \tag{3}
\end{equation*}
$$

These equations are easy to verify from $\tau_{n}=I_{n}-P_{n}, P_{n k}=P_{n} \otimes P_{k}$ and $I_{n k}=$ $I_{n} \otimes I_{k}$.

The following theorem plays a very useful role in the procedure.
Theorem 3. Suppose $\tau_{n_{1}}=\sum_{j} S_{j} A S_{j}^{T}$ and $\tau_{n_{2}}=\sum_{j} T_{j} B T_{j}^{T}$ are orthogonal decompositions of $\tau_{n_{1}}$ and $\tau_{n_{2}}$, respectively, where the S_{j} 's and T_{j} 's are permutation matrices and $n=n_{1} n_{2}$. Then $\tau_{n_{1} n_{2}}$ can be orthogonally decomposed into

$$
\begin{equation*}
\tau_{n_{1} n_{2}}=\sum_{j}\left(S_{j} \otimes T_{j}\right)\left(A \otimes P_{n_{2}}+I_{n_{1}} \otimes B\right)\left(S_{j}^{T} \otimes T_{j}^{T}\right) \tag{4}
\end{equation*}
$$

If there exists an OA H such that $m(H) \leq I_{n_{1}} \otimes B+A \otimes P_{n_{2}}$, then

$$
L=\left(\left(S_{1} \otimes T_{1}\right) H,\left(S_{2} \otimes T_{2}\right) H, \ldots\right)
$$

is also an OA.
Proof. From (3) we have

$$
\tau_{n_{1} n_{2}}=\tau_{n_{1}} \otimes P_{n_{2}}+I_{n_{1}} \otimes \tau_{n_{2}}
$$

Since $P_{n_{2}}=T_{j} P_{n_{2}} T_{j}^{T}$ and $I_{n_{1}}=S_{j} I_{n_{1}} S_{j}^{T}$ hold for all j, we get

$$
\tau_{n_{1} n_{2}}=\sum_{j}\left(S_{j} A S_{j}^{T}\right) \otimes\left(T_{j} P_{n_{2}} T_{j}^{T}\right)+\sum_{j}\left(S_{j} I_{n_{1}} S_{j}^{T}\right) \otimes\left(T_{j} B T_{j}^{T}\right)
$$

Using the matrix property $(A B C) \otimes(D E F)=(A \otimes D)(B \otimes E)(C \otimes F)$, we obtain

$$
\tau_{n_{1} n_{2}}=\sum_{j}\left(S_{j} \otimes T_{j}\right)\left(A \otimes P_{n_{2}}+I_{n_{1}} \otimes B\right)\left(S_{j}^{T} \otimes T_{j}^{T}\right)
$$

Thus (4) holds.
Since the decompositions of both $\tau_{n_{1}}$ and $\tau_{n_{2}}$ are orthogonal, the decomposition of $\tau_{n_{1} n_{2}}$ in (4) is orthogonal. By Theorem 1, we have
$m\left(\left(S_{j} \otimes T_{j}\right) H\right)=\left(S_{j} \otimes T_{j}\right) m(H)\left(S_{j}^{T} \otimes T_{j}^{T}\right) \leq\left(S_{j} \otimes T_{j}\right)\left(A \otimes P_{n_{2}}+I_{n_{1}} \otimes B\right)\left(S_{j}^{T} \otimes T_{j}^{T}\right)$,
So L is an OA.

4. Constructions of OA's of Run Size 36

4.1. Construction of OA $L_{36}\left(3 \cdot 2^{27}\right)$

By the definition of an OA, we may assume without loss of generality that

$$
L_{9}\left(3^{4}\right)=\left[S_{1}\left(1_{3} \otimes(3)\right), \ldots, S_{4}\left(1_{3} \otimes(3)\right)\right]
$$

and

$$
L_{4}\left(2^{3}\right)=\left[Q_{1}\left((2) \otimes 1_{2}\right), \ldots, Q_{3}\left((2) \otimes 1_{2}\right)\right]
$$

where $S_{i}(i=1, \ldots, 4)$ and $Q_{j}(j=1,2,3)$ are permutation matrices (See Table 3). Since $L_{9}\left(3^{4}\right)$ and $L_{4}\left(2^{3}\right)$ are saturated OA's, from (2), Theorem 1 and Theorem 2 , we have

$$
\tau_{9}=\sum_{i=1}^{4} S_{i}\left(P_{3} \otimes \tau_{3}\right) S_{i}^{T}
$$

and

$$
\begin{equation*}
\tau_{4}=\sum_{i=1}^{3} Q_{i}\left(\tau_{2} \otimes P_{2}\right) Q_{i}^{T} \tag{5}
\end{equation*}
$$

From (3), we have

$$
\tau_{36}=\tau_{9} \otimes I_{4}+P_{9} \otimes \tau_{4}
$$

By Theorem 3, we have
$\tau_{36}=\sum_{i=1}^{3}\left(S_{i} \otimes Q_{i}\right)\left(P_{3} \otimes \tau_{3} \otimes I_{4}+P_{9} \otimes \tau_{2} \otimes P_{2}\right)\left(S_{i}^{T} \otimes Q_{i}^{T}\right)+\left[S_{4}\left(P_{3} \otimes \tau_{3}\right) S_{4}^{T}\right] \otimes I_{4}$.
Using the properties $I_{4}=I_{4} I_{4} I_{4},(A B C) \otimes(D E F)=(A \otimes D)(B \otimes E)(C \otimes F)$ and $I_{4}=P_{4}+\tau_{4}$, we obtain

$$
\begin{aligned}
\tau_{36}= & \sum_{i=1}^{3}\left(S_{i} \otimes Q_{i}\right)\left(P_{3} \otimes\left(\tau_{3} \otimes I_{4}+P_{3} \otimes \tau_{2} \otimes P_{2}\right)\right)\left(S_{i}^{T} \otimes Q_{i}^{T}\right) \\
& +\left(S_{4} \otimes I_{4}\right)\left(P_{3} \otimes \tau_{3} \otimes P_{4}\right)\left(S_{4}^{T} \otimes I_{4}\right)+\left(S_{4} \otimes I_{4}\right)\left(P_{3} \otimes \tau_{3} \otimes \tau_{4}\right)\left(S_{4}^{T} \otimes I_{4}\right) .
\end{aligned}
$$

The above decompositions are orthogonal because of the orthogonality in each step. Now we want to find an OA whose MI is less than or equal to $\tau_{3} \otimes I_{4}+P_{3} \otimes$ $\tau_{2} \otimes P_{2}$. Each of the OA's $L_{12}\left(2^{11}\right), L_{12}\left(3 \cdot 2^{4}\right)$ and $L_{12}\left(6 \cdot 2^{2}\right)$ in Table 4 contains the two columns $1_{6} \otimes(2)$ and $1_{3} \otimes((2) \oplus(2))$. Deleting these two columns from the three OA's, we obtain OA's $L_{12}\left(2^{9}\right), L_{12}\left(3 \cdot 2^{2}\right)$ and $L_{12}(6)$, respectively. The MI's of these arrays are less than or equal to $\tau_{3} \otimes I_{4}+P_{3} \otimes \tau_{2} \otimes P_{2}$, since

$$
\tau_{3} \otimes I_{4}+P_{3} \otimes \tau_{2} \otimes P_{2}=\tau_{12}-P_{6} \otimes \tau_{2}-P_{3} \otimes \tau_{2} \otimes \tau_{2}
$$

By (6) and Theorems 1, 2 and 3, we obtain OA's $L_{36}\left(3 \cdot 2^{27}\right)$ as follows (See Table 1):

$$
\begin{align*}
& L_{36}\left(3 \cdot 2^{27}\right)=\left[\left(S_{1} \otimes Q_{1}\right)\left(1_{3} \otimes L_{12}\left(2^{9}\right)\right),\left(S_{2} \otimes Q_{2}\right)\left(1_{3} \otimes L_{12}\left(2^{9}\right)\right),\right. \\
&\left(S_{3} \otimes Q_{3}\right)\left(1_{3} \otimes L_{12}\left(2^{9}\right),\left(S_{4} \otimes I_{4}\right)\left(1_{3} \otimes(3) \otimes I_{4}\right)\right] . \tag{7}
\end{align*}
$$

Furthermore, replacing the $L_{12}\left(2^{9}\right)^{\prime}$'s in (7) by $L_{12}\left(3 \cdot 2^{2}\right)$ and $L_{12}(6)$, we can construct OA's such as $L_{36}\left(3^{2} \cdot 2^{20}\right), L_{36}\left(3^{3} \cdot 2^{13}\right), L_{36}\left(3^{4} \cdot 2^{6}\right), L_{36}\left(6 \cdot 3^{2} \cdot 2^{11}\right), L_{36}(6$. $\left.3^{3} \cdot 2^{4}\right), L_{36}\left(6^{2} \cdot 3^{2} \cdot 2^{2}\right)$.
4.2. Construction of $L_{36}\left(6^{2} \cdot 3^{8} \cdot 2\right)$

Suppose

$$
L_{9}\left(3^{4}\right)=\left(1_{3} \otimes(3),(3) \otimes 1_{3}, a, b\right) .
$$

By (2) and Theorem 2, we have $m\left(L_{9}\left(3^{4}\right)\right)=\tau_{9}$ and

$$
m((a, b))=\tau_{9}-P_{3} \otimes \tau_{3}-\tau_{3} \otimes P_{3}=\tau_{3} \otimes \tau_{3}
$$

From the definition of an OA, there exists a 9×9 permutation matrix T such that

$$
\left(1_{3} \otimes(3),(3) \otimes 1_{3}\right)=T(a, b)
$$

So the MI of $\left(1_{3} \otimes(3),(3) \otimes 1_{3}\right)$, i.e. the MI of $T(a, b)$, is $T\left(\tau_{3} \otimes \tau_{3}\right) T^{T}$.

Table 1 and Table 2.

Table 1. OA $L_{36}\left(3 \cdot 2^{27}\right)$	Table 2. OA $L_{36}\left(6^{2} \cdot 3^{8} \cdot 2\right)$
0000000000000000000000000000	00000000000
1000101010111100010111100010	00000121211
0111100011000101011110100100	12121000001
1110100101110100101000101010	12121121210
0000000000100111110100111111	22012201200
1000101011001110101001110101	22012320011
0111100010010010111101010011	31220201201
1110100101101010010010010111	31220320010
0000000001011001111011001112	41102400210
1000101011110011001110011002	41102521001
0111100010101001100011111002	50211400211
1110100100011111000101001102	50211521000
0100111110000000001011001111	42210022220
0010010110111100011110011001	42210110101
1001110101000101010011111001	51022022221
1101010011110100100101001101	51022110100
0100111110100111110000000002	01111220120
0010010111001110100111100012	01111312201
1001110100010010111110100102	10202220121
1101010011101010011000101012	10202312200
0100111111011001110100111110	20120422100
0010010111110011001001110100	20120510221
1001110100101001101101010010	32001422101
1101010010011111000010010110	32001510220
1011001110000000000100111112	21201011110
0101001100111100011001110102	21201102021
1110011001000101011101010012	30112011111
0011111001110100100010010112	30112102020
1011001110100111111011001110	40021212010
0101001101001110101110011000	40021301121
1110011000010010110011111000	52100212011
0011111001101010010101001100	52100301120
1011001111011001110000000001	02222411020
0101001101110011000111100011	02222502111
1110011000101001101110100101	11010411021
0011111000011111001000101011	11010502110

Therefore

$$
\begin{equation*}
\tau_{9}=\sum_{i=1}^{2} T_{i}\left(\tau_{3} \otimes \tau_{3}\right) T_{i}^{T} \tag{8}
\end{equation*}
$$

where $T_{1}=I_{9}, T_{2}=T($ See Table 3$)$.

Table 3. The permutation matrices used in the course of construction

$$
\begin{aligned}
& S_{1}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& S_{2}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& S_{3}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \quad S_{4}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& Q_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad Q_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad Q_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& T_{1}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad T_{2}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

From the decomposition of τ_{36} in (3), we have

$$
\tau_{36}=I_{9} \otimes \tau_{4}+\tau_{9} \otimes P_{4}
$$

It follows from Theorem 3, (5) and (8) that

$$
\tau_{36}=\sum_{i=1}^{2}\left(T_{i} \otimes Q_{i}\right)\left(I_{9} \otimes \tau_{2} \otimes P_{2}+\tau_{3} \otimes \tau_{3} \otimes P_{4}\right)\left(T_{i}^{T} \otimes Q_{i}^{T}\right)+I_{9} \otimes\left[Q_{3}\left(\tau_{2} \otimes P_{2}\right) Q_{3}^{T}\right]
$$

Table 4. The known OA's used in this paper

The OA $L_{12}\left(2^{11}\right)$	The OA $L_{12}\left(3 \cdot 2^{4}\right)$	The OA $L_{12}\left(6 \cdot 2^{2}\right)$
00000000000	00000	000
11100010101	01110	011
01011110001	00101	101
10111010010	01011	110
00010011111	10001	200
11001001011	11100	211
01100111010	10110	301
10110101001	11011	310
00101100111	20010	400
11010100110	21101	411
01111001100	20111	501
10001111100	21000	510

The OA $L_{18}\left(6 \cdot 3^{6}\right)$	The OA $L_{9}\left(3^{4}\right)$	The OA $L_{4}\left(2^{3}\right)$
0000000	0000	000
1002121	0111	011
2012012	0222	101
3011220	1012	110
4021102	1120	
5020211	1201	
4102210	2021	
5101022	2102	
0111111	2210	
1110202		
2120120		
3122001		
2201201		
3200112		
4210021		
5212100		
0222222		
1221010		

Using the properties $I_{9}=I_{9} I_{9} I_{9},(A B C) \otimes(D E F)=(A \otimes D)(B \otimes E)(C \otimes F)$ and $I_{9}=P_{9}+\tau_{9}$, we obtain

$$
\begin{aligned}
\tau_{36}= & \sum_{i=1}^{2}\left(T_{i} \otimes Q_{i}\right)\left(I_{9} \otimes \tau_{2} \otimes P_{2}+\tau_{3} \otimes \tau_{3} \otimes P_{4}\right)\left(T_{i}^{T} \otimes Q_{i}^{T}\right) \\
& +\left(I_{9} \otimes Q_{3}\right)\left(P_{9} \otimes \tau_{2} \otimes P_{2}\right)\left(I_{9} \otimes Q_{3}^{T}\right)+\left(I_{9} \otimes Q_{3}\right)\left(\tau_{9} \otimes \tau_{2} \otimes P_{2}\right)\left(I_{9} \otimes Q_{3}^{T}\right) .(9)
\end{aligned}
$$

Now we find an OA whose MI is $I_{9} \otimes \tau_{2} \otimes P_{2}+\tau_{3} \otimes \tau_{3} \otimes P_{4}$. The OA $L_{18}\left(6 \cdot 3^{6}\right)$ in Table 4 contains the two columns (3) $\otimes 1_{6}$ and $1_{3} \otimes(3) \otimes 1_{2}$. An $L_{18}\left(6 \cdot 3^{4}\right)$ is obtained by deleting these two columns. Then

$$
m\left(L_{18}\left(6 \cdot 3^{4}\right)\right)=\tau_{18}-\tau_{3} \otimes P_{6}-P_{3} \otimes \tau_{3} \otimes P_{2}=I_{9} \otimes \tau_{2}+\tau_{3} \otimes \tau_{3} \otimes P_{2}
$$

From (9) and Theorems 1, 2 and 3, we can lay out a new OA $L_{36}\left(6^{2} \cdot 3^{8} \cdot 2\right)=$ $\left[\left(T_{1} \otimes Q_{1}\right)\left(L_{18}\left(6 \cdot 3^{4}\right) \otimes 1_{2}\right),\left(T_{2} \otimes Q_{2}\right)\left(L_{18}\left(6 \cdot 3^{4}\right) \otimes 1_{2}\right),\left(I_{9} \otimes Q_{3}\right)\left(1_{9} \otimes(2) \otimes 1_{2}\right)\right]$.

Acknowledgement

We are grateful to the associate editor and referees for their constructive suggestions. This work was supported by the National Education Committee (96JAQ910002) and Foundation of National Social Sciences Plan (97BTJ002) in China.

References

Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces. John Wiley, New York.
Hedayat, A. S., Pu, Kewei and Stufken, John (1992). On the construction of asymmetrical orthogonal arrays. Ann. Statist. 20, 2142-2152.
Ryoh, Fuji-Hara (1993). Orthogonal array from Baer Subplanes. Utilitas Math. 43, 65-70.
Wu, C. F. J., Zhang, R. and Wang, R. (1992). Construction of asymmetrical orthogonal array of the type OA $\left(s^{k}, s^{m}\left(s^{r_{1}}\right)^{n_{1}} \cdots\left(s^{r_{t}}\right)^{n_{t}}\right)$. Statist. Sinica 2, 203-219.
Wu, C. F. J. (1989). Construction of $2^{m} 4^{n}$ design via group scheme. Ann. Statist. 17, 1880-1885.
Wang, J. C. and Wu, C. F. J. (1991). An approach for the construction of asymmetrical orthogonal arrays. J. Amer. Statist. Assoc. 6, 450-456.
Zhang, Y. S. (1989). Asymmetrical orthogonal array with run size 100. Chinese Science Bulletin 23, 1835-1836.
Zhang, Y. S. (1990a). Orthogonal arrays with run size 36. J. Henan Normal University 4, 1-5.
Zhang, Y. S. (1990b). Orthogonal array $L_{100}\left(20 \cdot 5^{20}\right)$. J. Henan Normal University 4, 93-93.
Zhang, Y. S. (1991a). The orthogonal arrays $L_{72}\left(24 \cdot 3^{24}\right)$. Chinese J. Application of Statistics and Management 3, 45-45.
Zhang, Y. S. (1991b). Asymmetrical orthogonal design by multi-matrix methods. J. Chinese Statist. Assoc. 2, 197-218.
Zhang, Y. S. (1992). Orthogonal array and matrices. J. Math. Research And Exposition 3, 438-440.

Zhang, Y. S. (1993). Theory of Multilateral Matrix. Chinese Statistic Press.

Department of Mathematics, Henan Normal University, Xinxiang, 453002.
E-mail: guozm@public.zz.ha.cn
PLA's College of Electronic Technology, Zhengzhou, 450004.
E-mail: guozm@public.zz.ha.cn
Department of Mathematics, Henan Normal University, Xinxiang, 453002.
E-mail: guozm@public.zz.ha.cn
(Received November 1995; accepted July 1998)

