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Abstract: This paper studies a relationship between orthogonal arrays and orthogo-

nal decompositions of projection matrices. This relation is used for the construction

of orthogonal arrays. As an application of the method, some new mixed-level or-

thogonal arrays of run size 36 are constructed.
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1. Introduction

An n × m matrix A, having ki columns with pi levels, i = 1, . . . , r,m =∑r
i=1 ki, pi �= pj , for i �= j, is called an orthogonal array (OA) of strength d and

size n if each n × d submatrix of A contains all possible 1 × d row vectors with
the same frequency. Unless stated otherwise, we consider orthogonal arrays of
strength 2, using the notation Ln(pk1

1 · · · pkr
r ) for such an array. An orthogonal

array is said to have mixed-level if r ≥ 2. Such an array is often a natural
choice in practice because different factors may require different numbers of levels.
Two- and three- level OA’s, which form popular fractional factorials, have been
discussed at great length in many standard textbooks on experimental design
and analysis, for example Box and Draper (1987). The construction of mixed-
level OA’s has been studied by Wu (1989), Wang and Wu (1991), Wu, Zhang and
Wang (1992), Hedayat, Pu and Stufken (1992) and Ryoh Fuji-Hara (1993). In this
paper, an interesting relationship between orthogonal arrays and decompositions
of projection matrices is presented. By exploring this relationship, we obtain a
method for the construction of orthogonal arrays. Zhang (1989, 1990a, 1990b,
1991a and 1991b) has used this method to construct some mixed-level OA’s of
run size 36, 72, and 100. In this paper the method is further explained and some
new mixed-level OA’s are obtained.

Section 2 contains basic concepts and main theorems while in Section 3 we
describe the method of construction. Some new mixed-level OA’s of run size 36
are constructed in Section 4.
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2. Basic Concepts and Main Theorems

Suppose that an experiment is carried out according to an array A=(aij)n×m

= (a1, . . . , am), and Y = (Y1, . . . , Yn)T is the experimental data vector. In the
analysis of variance S2

j , the sum of squares of the jth factor, is defined as

S2
j =

pj∑
i=1

1
|Iij |(

∑
s∈Iij

Ys)2 − 1
n

(
n∑

s=1

Ys)2, (1)

where Iij = {s : asj = j} and |Iij | is the number of elements in Iij. From (1), S2
j

is a quadratic form in Y and there exists a unique symmetric matrix Aj such that
S2

j = Y T AjY . The matrix Aj is called the matrix image (MI) of the jth column
aj of A, denoted by m(aj) = Aj . The MI of a subarray of A is defined as the sum
of the MI’s of all its columns. In particular, we denote the MI of A by m(A). If a
design is an orthogonal array, then the MI’s of its columns have some interesting
properties. These properties can be used to construct mixed-level OA’s.

Let (r) = (0, . . . , r − 1)T1×r, 1r be the r × 1 vector of 1’s and Ir the identity
matrix of order r. Then

m(1r) = Pr and m((r)) = τr, (2)

where Pr = 1
r1r1T

r and τr = Ir − Pr.
The Kronecker product A ⊗ B is defined as: A ⊗ B = (aijB)sn×tm if A =

(aij)n×m, B = (bij)s×t.

Definition 1. Suppose that p is a prime, and that a and b are OA’s which have
only one column, i.e., a = Ln1(p) = (a1, . . . , an1)

T , b = Ln2(p) = (b1, . . . , bn2)
T .

The Kronecker sum of a and b, denoted a ⊕ b, is defined as

a ⊕ b = Ln1n2(p) = ((a1 + b1), . . . , (a1 + bn2), . . . , (an1 + bn2))
T mod(p)

For example,

(2) ⊕ (2) = (0, 1, 1, 0)T , (3) ⊕ (3) = (0, 1, 2, 1, 2, 0, 2, 0, 1)T .

Theorem 1. For any permutation matrix S and any array L,

m(S(L ⊗ 1r)) = S(m(L) ⊗ Pr)ST , and m(S(1r ⊗ L)) = S(Pr ⊗ m(L))ST .

Theorem 2. Let A be an OA of strength 1, i.e.,

A = (a1, . . . , am) = (S1(1r1 ⊗ (p1)), . . . , Sm(1rm ⊗ (pm))),

where ripi = n and Si is a permutation matrix, for i = 1, . . . ,m.

The following statements are equivalent.
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(1) A is an OA of strength 2.
(2) The MI of A is a projection matrix.
(3) The MI’s of any two columns of A are orthogonal, i.e., m(ai)m(aj) = 0(i �=

j).
(4) The projection matrix τn can be decomposed as τn = m(a1)+· · ·+m(am)+∆,

where rk(∆) = n − 1 − ∑m
j=1(pj − 1) is the rank of the matrix ∆.

Definition 2. An OA A is said to be saturated if
∑m

j=1(pj − 1) = n − 1 (or,
equivalently, m(A) = τn).

Corollary 1. Let (L,H) and K be OA’s of run size n. Then (K,H) is an OA
if m(K) ≤ m(L), where m(K) ≤ m(L) means that the difference m(K) − m(L)
is nonnegative definite.

Corollary 2. Suppose L and H are orthogonal arrays. Then K = (L,H) is
also an OA if m(L) and m(H) are orthogonal, i.e., m(L)m(H) = 0. In this case
m(K) = m(L) + m(H).

These theorems and corollaries can be found in Zhang (1991b, 1992 and
1993).

3. A General Method for Constructing OA’s by Decompositions of
the Projection Matrix τn

Our procedure of constructing mixed-level OA’s by using decompositions of
the projection matrix τn consists of the following three steps:
Step 1. Orthogonally decompose the projection matrix τn : τn = A1 + · · · + Ak,

where AiAj = 0(i �= j).
Step 2. Find an OA Li such that m(Li) ≤ Ai.
Step 3. Lay out the new OA L by Corollaries 1 and 2: L = (L1, . . . , Lk1)(k1 ≤ k).

In applying Step 1, the following orthogonal decompositions of τn are very
useful, τn·k = In ⊗ τk + τn ⊗Pk = τn ⊗Pk + Pn ⊗ τk + τn ⊗ τk = τn ⊗ Ik + Pn ⊗ τk,

τp·r·q = τp ⊗ Ir ⊗ Pq + Pp ⊗ τrq + τp ⊗ Ir ⊗ τq. (3)

These equations are easy to verify from τn = In − Pn, Pnk = Pn ⊗ Pk and Ink =
In ⊗ Ik.

The following theorem plays a very useful role in the procedure.

Theorem 3. Suppose τn1 =
∑

j SjAST
j and τn2 =

∑
j TjBT T

j are orthogonal de-
compositions of τn1 and τn2, respectively, where the Sj’s and Tj ’s are permutation
matrices and n = n1n2. Then τn1n2 can be orthogonally decomposed into

τn1n2 =
∑
j

(Sj ⊗ Tj)(A ⊗ Pn2 + In1 ⊗ B)(ST
j ⊗ T T

j ). (4)
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If there exists an OA H such that m(H) ≤ In1 ⊗ B + A ⊗ Pn2 , then

L = ((S1 ⊗ T1)H, (S2 ⊗ T2)H, . . .)

is also an OA.

Proof. From (3) we have

τn1n2 = τn1 ⊗ Pn2 + In1 ⊗ τn2 .

Since Pn2 = TjPn2T
T
j and In1 = SjIn1S

T
j hold for all j, we get

τn1n2 =
∑
j

(SjAST
j ) ⊗ (TjPn2T

T
j ) +

∑
j

(SjIn1S
T
j ) ⊗ (TjBT T

j ).

Using the matrix property (ABC)⊗(DEF ) = (A⊗D)(B⊗E)(C⊗F ), we obtain

τn1n2 =
∑
j

(Sj ⊗ Tj)(A ⊗ Pn2 + In1 ⊗ B)(ST
j ⊗ T T

j ).

Thus (4) holds.
Since the decompositions of both τn1 and τn2 are orthogonal, the decompo-

sition of τn1n2 in (4) is orthogonal. By Theorem 1, we have

m((Sj⊗Tj)H) = (Sj⊗Tj)m(H)(ST
j ⊗T T

j ) ≤ (Sj⊗Tj)(A⊗Pn2+In1⊗B)(ST
j ⊗T T

j ),

So L is an OA.

4. Constructions of OA’s of Run Size 36

4.1. Construction of OA L36(3 · 227)

By the definition of an OA, we may assume without loss of generality that

L9(34) = [S1(13 ⊗ (3)), . . . , S4(13 ⊗ (3))],

and
L4(23) = [Q1((2) ⊗ 12), . . . , Q3((2) ⊗ 12)],

where Si(i = 1, . . . , 4) and Qj(j = 1, 2, 3) are permutation matrices (See Table 3).
Since L9(34) and L4(23) are saturated OA’s, from (2), Theorem 1 and Theorem
2, we have

τ9 =
4∑

i=1

Si(P3 ⊗ τ3)ST
i ,

and

τ4 =
3∑

i=1

Qi(τ2 ⊗ P2)QT
i . (5)
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From (3), we have
τ36 = τ9 ⊗ I4 + P9 ⊗ τ4.

By Theorem 3, we have

τ36 =
3∑

i=1

(Si ⊗Qi)(P3 ⊗ τ3 ⊗ I4 + P9 ⊗ τ2 ⊗P2)(ST
i ⊗QT

i ) + [S4(P3 ⊗ τ3)ST
4 ]⊗ I4.

Using the properties I4 = I4I4I4, (ABC) ⊗ (DEF ) = (A ⊗ D)(B ⊗ E)(C ⊗ F )
and I4 = P4 + τ4, we obtain

τ36 =
3∑

i=1

(Si ⊗ Qi)(P3 ⊗ (τ3 ⊗ I4 + P3 ⊗ τ2 ⊗ P2))(ST
i ⊗ QT

i )

+(S4 ⊗ I4)(P3 ⊗ τ3 ⊗ P4)(ST
4 ⊗ I4) + (S4 ⊗ I4)(P3 ⊗ τ3 ⊗ τ4)(ST

4 ⊗ I4). (6)

The above decompositions are orthogonal because of the orthogonality in each
step. Now we want to find an OA whose MI is less than or equal to τ3⊗I4 +P3⊗
τ2 ⊗P2. Each of the OA’s L12(211), L12(3 · 24) and L12(6 · 22) in Table 4 contains
the two columns 16 ⊗ (2) and 13 ⊗ ((2) ⊕ (2)). Deleting these two columns from
the three OA’s, we obtain OA’s L12(29), L12(3 ·22) and L12(6), respectively. The
MI’s of these arrays are less than or equal to τ3 ⊗ I4 + P3 ⊗ τ2 ⊗ P2, since

τ3 ⊗ I4 + P3 ⊗ τ2 ⊗ P2 = τ12 − P6 ⊗ τ2 − P3 ⊗ τ2 ⊗ τ2.

By (6) and Theorems 1, 2 and 3, we obtain OA’s L36(3 ·227) as follows (See Table
1):

L36(3 · 227) = [(S1 ⊗ Q1)(13 ⊗ L12(29)), (S2 ⊗ Q2)(13 ⊗ L12(29)),

(S3 ⊗ Q3)(13 ⊗ L12(29), (S4 ⊗ I4)(13 ⊗ (3) ⊗ I4)]. (7)

Furthermore, replacing the L12(29)’s in (7) by L12(3 · 22) and L12(6), we can
construct OA’s such as L36(32 ·220), L36(33 ·213), L36(34 ·26), L36(6·32 ·211), L36(6·
33 · 24), L36(62 · 32 · 22).

4.2. Construction of L36(62 · 38 · 2)
Suppose

L9(34) = (13 ⊗ (3), (3) ⊗ 13, a, b).

By (2) and Theorem 2, we have m(L9(34)) = τ9 and

m((a, b)) = τ9 − P3 ⊗ τ3 − τ3 ⊗ P3 = τ3 ⊗ τ3.

From the definition of an OA, there exists a 9 × 9 permutation matrix T such
that

(13 ⊗ (3), (3) ⊗ 13) = T (a, b).
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So the MI of (13 ⊗ (3), (3) ⊗ 13), i.e. the MI of T (a, b), is T (τ3 ⊗ τ3)T T .

Table 1 and Table 2.

Table 1. OA L36(3 · 227) Table 2. OA L36(62 · 38 · 2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 2 1 2 1 1
0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 2 1 2 1 0 0 0 0 0 1
1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 2 1 2 1 1 2 1 2 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 2 2 0 1 2 2 0 1 2 0 0
1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 2 2 0 1 2 3 2 0 0 1 1
0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 3 1 2 2 0 2 0 1 2 0 1
1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 3 1 2 2 0 3 2 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 2 4 1 1 0 2 4 0 0 2 1 0
1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 2 4 1 1 0 2 5 2 1 0 0 1
0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 2 5 0 2 1 1 4 0 0 2 1 1
1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 0 2 5 0 2 1 1 5 2 1 0 0 0
0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 4 2 2 1 0 0 2 2 2 2 0
0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 4 2 2 1 0 1 1 0 1 0 1
1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 5 1 0 2 2 0 2 2 2 2 1
1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 5 1 0 2 2 1 1 0 1 0 0
0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 2 2 0 1 2 0
0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 2 0 1 1 1 1 3 1 2 2 0 1
1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 2 1 0 2 0 2 2 2 0 1 2 1
1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 2 1 0 2 0 2 3 1 2 2 0 0
0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 2 0 1 2 0 4 2 2 1 0 0
0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 2 0 1 2 0 5 1 0 2 2 1
1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 3 2 0 0 1 4 2 2 1 0 1
1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 3 2 0 0 1 5 1 0 2 2 0
1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 2 2 1 2 0 1 0 1 1 1 1 0
0 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 2 2 1 2 0 1 1 0 2 0 2 1
1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 2 3 0 1 1 2 0 1 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 2 3 0 1 1 2 1 0 2 0 2 0
1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 4 0 0 2 1 2 1 2 0 1 0
0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 4 0 0 2 1 3 0 1 1 2 1
1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 5 2 1 0 0 2 1 2 0 1 1
0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 5 2 1 0 0 3 0 1 1 2 0
1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2 4 1 1 0 2 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 2 2 2 2 5 0 2 1 1 1
1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 4 1 1 0 2 1
0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 5 0 2 1 1 0
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Therefore

τ9 =
2∑

i=1

Ti(τ3 ⊗ τ3)T T
i , (8)

where T1 = I9, T2 = T (See Table 3).

Table 3. The permutation matrices used in the course of construction

S1 =




1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1




S2 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




S3 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0




S4 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




Q1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 Q2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 Q3 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




T1 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




T2 =




1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0




From the decomposition of τ36 in (3), we have

τ36 = I9 ⊗ τ4 + τ9 ⊗ P4.
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It follows from Theorem 3, (5) and (8) that

τ36 =
2∑

i=1

(Ti ⊗Qi)(I9 ⊗ τ2 ⊗P2 + τ3 ⊗ τ3 ⊗P4)(T T
i ⊗QT

i ) + I9 ⊗ [Q3(τ2 ⊗P2)QT
3 ].

Table 4. The known OA’s used in this paper

The OA L12(211) The OA L12(3 · 24) The OA L12(6 · 22)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1
0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1
1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 2 0 0
1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 2 1 1
0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 3 0 1
1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 3 1 0
0 0 1 0 1 1 0 0 1 1 1 2 0 0 1 0 4 0 0
1 1 0 1 0 1 0 0 1 1 0 2 1 1 0 1 4 1 1
0 1 1 1 1 0 0 1 1 0 0 2 0 1 1 1 5 0 1
1 0 0 0 1 1 1 1 1 0 0 2 1 0 0 0 5 1 0

The OA L18(6 · 36) The OA L9(34) The OA L4(23)
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 1 2 1 0 1 1 1 0 1 1
2 0 1 2 0 1 2 0 2 2 2 1 0 1
3 0 1 1 2 2 0 1 0 1 2 1 1 0
4 0 2 1 1 0 2 1 1 2 0
5 0 2 0 2 1 1 1 2 0 1
4 1 0 2 2 1 0 2 0 2 1
5 1 0 1 0 2 2 2 1 0 2
0 1 1 1 1 1 1 2 2 1 0
1 1 1 0 2 0 2
2 1 2 0 1 2 0
3 1 2 2 0 0 1
2 2 0 1 2 0 1
3 2 0 0 1 1 2
4 2 1 0 0 2 1
5 2 1 2 1 0 0
0 2 2 2 2 2 2
1 2 2 1 0 1 0
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Using the properties I9 = I9I9I9, (ABC)⊗(DEF ) = (A⊗D)(B⊗E)(C⊗F )
and I9 = P9 + τ9, we obtain

τ36 =
2∑

i=1

(Ti ⊗ Qi)(I9 ⊗ τ2 ⊗ P2 + τ3 ⊗ τ3 ⊗ P4)(T T
i ⊗ QT

i )

+(I9 ⊗ Q3)(P9 ⊗ τ2 ⊗ P2)(I9 ⊗ QT
3 )+(I9 ⊗ Q3)(τ9 ⊗ τ2 ⊗ P2)(I9 ⊗ QT

3 ). (9)

Now we find an OA whose MI is I9⊗τ2⊗P2+τ3⊗τ3⊗P4. The OA L18(6·36)
in Table 4 contains the two columns (3)⊗ 16 and 13 ⊗ (3) ⊗ 12. An L18(6 · 34) is
obtained by deleting these two columns. Then

m(L18(6 · 34)) = τ18 − τ3 ⊗ P6 − P3 ⊗ τ3 ⊗ P2 = I9 ⊗ τ2 + τ3 ⊗ τ3 ⊗ P2.

From (9) and Theorems 1, 2 and 3, we can lay out a new OA L36(62 · 38 · 2) =
[(T1 ⊗Q1)(L18(6 · 34)⊗ 12), (T2 ⊗Q2)(L18(6 · 34)⊗ 12), (I9 ⊗Q3)(19 ⊗ (2)⊗ 12)].
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