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Abstract: We introduce Domain Splitting as a new tool for regression analysis.

This device corresponds to splitting the domain of a regression function into m

subdomains, where m is varied, and fitting a linear model on each subdomain. The

residual sums of squares from these various fits are compared graphically. Domain

Splitting provides a visual diagnostic, as well as a model-independent estimate of

the error variance. We investigate the asymptotic behavior of Domain Splitting for

the cases of an underlying linear model and that of a smooth regression function.

The asymptotic findings are illustrated in simulations and examples.

Key words and phrases: Diagnostic plot, goodness-of-fit, linear model, model selec-

tion, smooth regression, variance estimation.

1. Introduction

Consider the fixed design regression model

yi = g(xi) + εi, i = 1, . . . , n,

with a “smooth” regression function g on �p, p ≥ 1, and i.i.d. errors εi. If a linear
model provides a reasonable fit to the data, say g(x) = α+βTx, this would usually
be preferred over the alternative, a regression function which is only smooth. In
the latter case, one has to resort to nonparametric regression procedures and to
deal with the associated problems of bias assessment and bandwidth choice. This
is particularly cumbersome in higher dimensions.

A related question is how to find a good estimate of the variance of the
errors. Such variance estimates are needed for such tasks as the construction of
confidence regions, model-based tests, model selection procedures, and signal-to-
noise ratio determination. Some of these applications are related to estimating
the “functional correlation”, ρ2 = 1 −Var (ε)/{Var (ε) +

∫
[g(x) − ∫

g(y)dy]2dx},
for the case of equidistant data. Having found a good estimator σ̂2 of Var (εi),
and using the sample variance s2

y of the data y1, . . . , yn, one may then estimate
ρ2 for regular designs by ρ̂2 = 1 − σ̂2/s2

y. The classical variance estimate under
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the linear model assumption is the Mean Square due to Error (MSE). Given least
squares estimates α̂ and β̂ of the parameters α, β, the MSE is defined as

MSE =
1

n − (p + 1)

n∑
i=1

e2
i ,

where ei = yi − (α̂ + β̂T xi) are the residuals. This is a standard output of
regression routines.

On the other hand, for smooth regression models the MSE is biased as a
variance estimator. Alternative variance estimators for the smooth regression
case, based on difference schemes, were proposed by Rice (1984). This approach
was further developed by Gasser, Sroka and Jennen-Steinmetz (1986), Hall, Kay
and Titterington (1990), and Müller and Stadtmüller (1987, 1993), among others.
MSE’s derived from local nonparametric fits have been considered by Buckley,
Eagleson and Silverman (1988). Another proposal by Breiman and Meisel (1976),
to fit local planes on subdomains for obtaining estimates of σ2, is also of interest
in this context and will be further discussed and contrasted with our proposal
in Section 6. Other related approaches are piecewise polynomial regression trees
and the SUPPORT algorithm (Chaudhuri, Huang, Loh and Yao (1994)); the
emphasis in the latter is, however, on multidimensional regression modelling
and less on diagnostics and error variance estimation as in this paper. We also
note connections to the piecewise fitting of step functions (Yao and Au (1989)),
although the choice of the locations of the jumps is not an issue here, as jump
locations are chosen equidistantly by design.

The proposed Domain Splitting method provides an alternative approach to
variance estimation. Compelling results on the use of the Domain Splitting con-
cept for the purpose of variance estimation can be found in Section 5. A second
goal is a visual diagnostic assessment of the model fit of a supposed parametric
model such as a linear model. Visual checks for goodness-of-fit have retained their
popularity, because they allow one to gather useful information about the nature
of possible deviations from an assumed model, compare for instance Mansfield
and Conerly (1987). A p-value obtained from a formal inference based goodness-
of-fit test alone (compare, e.g., Eubank and Spiegelman (1990), among others) is
often less informative.

The basic idea of Domain Splitting can be briefly summarized as follows:
split the domain on which the regression data are collected into an increasing
number of smaller subdomains. An assumed parametric model is fitted on each
of the subdomains, including the original global domain. For each of these fits,
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one obtains the MSE as defined above, but calculated separately for each subdo-
main. Plotting these various MSE’s versus the number (size) of the corresponding
subdomains then provides the visualization of Domain Splitting. We call this the
Domain Splitting Plot. Biases will inflate the MSE’s for large subdomains, but
less so for small subdomains, if the supposed model does not fit. Bias corre-
sponding to lack of fit will then reveal itself as a downwards trend in the Domain
Splitting Plot as the number of subdomains increases.

A formal definition of Domain Splitting is given in the next section (Section
2), and two simple simulation examples are discussed. Asymptotic properties
of these plots, which aid in their interpretation, are provided in Section 3. The
application of Domain Splitting for variance estimation is explored in Section 5,
and simulation results are reported there. Section 4 is devoted to a discussion
of practical aspects of the multivariate case. We conclude with a discussion of
some pertinent issues and extensions in Section 6. Details of proofs and auxiliary
results are compiled in Appendix A, and the extension to the multivariate case
can be found in Appendix B.

2. The Domain Splitting Principle

Assume we observe data generated by a fixed design regression model

(M0) yi = g(xi) + εi, 1 ≤ i ≤ n.

We consider here the one-dimensional case with xi ∈ �. The domain of the
model is defined as the range of the xi. We assume that the measurement grid
xi = xi,n, 1 ≤ i ≤ n, is generated by a regular design density in the sense of Sacks
and Ylvisaker (1970), and so need not be equidistant. More precisely,

(M1) There exists a distribution function F with compact support D, three times
continuously differentiable on its support, such that xi = xi,n = F−1((i −
1)/(n − 1)), 1 ≤ i ≤ n.

Without loss of generality, we take D = [0, 1] and then require that the design
density f = F ′ satisfies

(M2) f(x) > 0 for x ∈ int(D).

The “smoothness” of the regression function g is measured by its differentiability:

(M3) The regression function g is twice continuously differentiable on the domain
D.
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For the errors εi = εi,n, we need the existence of fourth moments. Some of
our results include the case of heteroscedastic errors, while for other results,
homoscedasticity is needed. More specifically, we require that

(M4) The errors εi = εi,n, 1 ≤ i ≤ n, are independent. There exist functions
σ2(x), µ3(x) and µ4(x), twice continuously differentiable on D, such that

E(εi,n) = 0, E(ε2
i,n) = σ2(xi,n), E(ε3

i,n) = µ3(xi,n), E(ε4
i,n) = µ4(xi,n).

This condition allows us to include the heteroscedastic case. In this case, the
variance target is the average variance

σ2 =
∫

D
σ2(x)f(x)dx,

f being the design density. This simplifies to the usual error variance σ2 =
Var (εi) for the homoscedastic case. For some of the following results we will
invoke the more restrictive condition:

(M5) The errors εi = εi,n are independent and identically distributed, with
E(εi,n) = 0, E(ε2

i,n) = σ2, E(ε3
i,n) = 0 and E(ε4

i,n) = 3σ4.

The simple linear regression model, which we use to illustrate Domain Split-
ting, is

(L) There exist constants α, β such that g(x) = α + βx, x ∈ D.

We will omit indices n whenever feasible to simplify the notation. Consider
m = 1, 2, . . . , [n3 ], where [x] is the largest integer smaller or equal to x. Define
a triangular scheme of left open and right closed domain splitting intervals or
subdomains Djm = (F−1((j − 1)/m), F−1(j/m)], 1 < j ≤ m, 1 ≤ m ≤ [n3 ],
D1m = [F−1(0), F−1(m−1)], so that always D11 = [0, 1] = D. Note that the
important special case of an equidistant regression design is characterized by
F (x) = x. In this case, Djm = ((j − 1)/m, j/m], j = 1, . . . ,m.

In general, xi ∈ Djm if and only if j−1
m < i−1

n−1 ≤ j
m . Define subdomain

centers sjm for the subdomains Djm by

sjm = n−1
jm

∑
xi∈Djm

xi, 1 ≤ j ≤ m, 1 ≤ m ≤ [
n

3
],

where
njm =

∑
xi∈Djm

1
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is the number of xi falling into Djm.
Now fit the subdomain simple regression models

gjm(x) = αjm + βjm(x − sjm), x ∈ Djm, 1 ≤ j ≤ m, 1 ≤ m ≤ [
n

3
] (2.1)

to the data on each subdomain, by ordinary least squares.
Setting

SSjm(α, β) =
∑

xi∈Djm

{
Yi − [α + β(xi − sjm)]

}2
, (2.2)

one has the subdomain least squares estimates

(α̂jm, β̂jm) = argmin
α,β

SSjm(α, β). (2.3)

Define the subdomain error mean squares

σ̂2
jm = MSEjm = (dfjm)−1 SSjm(α̂jm, β̂jm), 1 ≤ j ≤ m, (2.4)

where dfjm = njm − 2 are the error degrees of freedom on each subdomain.
These are the MSE’s over each subdomain when splitting the domain into m

subdomains.
We define the average subdomain error mean squares by

σ̂2
m = MSEm =

m∑
j=1

(
dfjmσ̂2

jm

)
/ (n − 2m) , (2.5)

Notice that
m∑

j=1
dfjm = n − 2m.

The results obtained by splitting the domain and fitting the models on the
subdomains can be visually summarized in the Domain Splitting Plot.

(DSP) The Domain Splitting Plot (DSP) consists of two parts:

(a) A plot formed by the 1
2 [n3 ]([n3 ] + 1) points (x, y) defined by their x-and y-

coordinates (
m, σ̂2

1m

)
, . . . ,

(
m, σ̂2

mm

)
, 1 ≤ m ≤ [

n

3
].

(b) A graph consisting of lines connecting the points (m, σ̂2
m), 1 ≤ m ≤ [n3 ]. The

two parts are shown simultaneously on one plot.
To demonstrate the concept of the Domain Splitting Plot, we discuss two

simple examples. Both are for simulated regression data with yi = g(xi)+εi, i =
1, . . . , 100, where the εi ∼ 0.5∗N (0, 1). The design density is f(x) = 1

21[−1,1](x),
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i.e., the locations of the observations are spaced equidistantly on the domain
D = [−1, 1].

Example 1. The regression function is g1(x) = x. The proposed Domain
Splitting Plot for these data is in Figure 1. The maximal number of possible
subdomains is here [n3 ] = 33. In this case we know that the best fit is obtained
by fitting one global regression line, corresponding to the choice m = 1.

E
rror

M
ean

Squares

Number of Subdomains

Figure 1. Domain Splitting Plot for 100 simulated data points generated
from the simple linear model yi = xi + 0.5∗N (0, 1) (Example 1).

The dots in the scatterplot of Figure 1 correspond to the various observed
values of σ̂2

jm = MSEjm (subdomain error mean squares, see (2.4)) obtained
over the subdomains. They provide an indication of the degree of variability of
the individual σ̂2

jm values.
The average subdomain error mean squares σ̂2

m are connected by the solid
graph in Figure 1. The graph appears fairly flat, with increasing random fluc-
tuation towards larger values for m starting from m ≈ 10. This behavior of
the graph in the Domain Splitting Plot is typical for cases where the assumed
regression model provides an adequate global fit to the data. We observe that, in
this case, all of the σ̂2

m
′s are unbiased estimators of the error variance σ2. Con-

sequently, the graph in the Domain Splitting Plot will not show any systematic
trend. However, the variation in the σ̂2

jm
′s increases with m, as for larger m the

individual σ̂2
jm

′s are based on shorter spans of data. This increased variation of
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individual σ̂2
jm

′s translates into increased variation of the averaged σ̂2
m

′s, as m

increases.
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Figure 2. Domain Splitting Plot for 100 simulated data points generated
from the model yi = sin(2πxi) + 0.5∗N (0, 1) (Example 2).

Example 2. Here the regression function is the nonlinear function g2(x) =
sin(2πx). Figure 2 displays the Domain Splitting Plot . The lack of fit of a simple
linear regression function is revealed in the Domain Splitting Plot of Figure 2
by a strongly declining initial trend in the solid graph connecting the average
subdomain error mean squares for m between 1 and 10, say. This trend reflects
the bias in the σ̂2

m
′s when we employ them as estimates of σ2 for small values

of m. This bias arises as the residual sums of squares pick up a component
measuring the distance between the true regression function and its projection
on the assumed parametric function, in addition to the sum of squared errors.
As m increases this bias becomes negligible and the graph flattens out towards
the right, as seen in Figure 1. For values of m larger than about 17, the graph is
dominated by random fluctuations.

We demonstrate next that the behavior of the Domain Splitting Plots in
Examples 1 and 2 is in accordance with asymptotic predictions.

3. Asymptotic Behavior

We note that the least squares estimates α̂jm, β̂jm for the coefficients αjm,
βjm of the subdomain regression models are given as solutions of the normal
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equations

α̂jm = n−1
jm

∑
xi∈Djm

yi, β̂jm =
∑

xi∈Djm

yi(xi − sjm)/vjm,

where
njm =

∑
xi∈Djm

1, vjm =
∑

xi∈Djm

(xi − sjm)2.

The asymptotic behavior of these solutions and of average subdomain error mean
squares σ̂2

m (2.5) which are displayed in the Domain Splitting Plot graph (DSP
graph) as a function of m is analyzed in detail in the Appendix.

We investigate the asymptotic trend of the DSP graph by means of a bias
approximation (Theorem 1), the behavior of E(σ̂2

m) (Theorem 2) and of Var (σ̂2
m)

(Theorem 3). The bias contained in σ̂2
m as estimator of σ2, where σ2 = Var (εi)

in the homoscedastic case, and σ2 =
∫
D σ2(x)f(x)dx in the heteroscedastic case,

needs to be quantified. For this purpose, define

B(m,n) =
1
n

m∑
j=1

{
min
αj ,βj

∑
xi∈Djm

[g(xi) − (αj + βj(xi − sjm))]2
}
, (3.1)

where m is the number of splits considered and n is the number of data points.
This expression can be interpreted as the sum of the lengths of the projections of
g on subdomains Djm onto the space orthogonal to the mean space spanned by
the model, and is a measure of the deviation of g from the simple linear model
on the subdomains. The proofs of the following results are in the Appendix.

Theorem 1. Assume (M0)-(M4). Then, as m ≤ n/3,
(a) B(m,n) = O( 1

m4 + m
n ) as m → ∞.

(b) If in addition the design is equidistant, i.e., f ≡ c0 for a constant c0 > 0,

B(m,n) =
1

720c3
om

4

∫
D

g(2)(x)2dx + o

(
1

m4

)
+ O

(
m

n

)
. (3.2)

This result relates B(m,n) to the behavior of the second derivative g(2) of
the regression function. A similar but more complex result holds for the case of
a nonequidistant design. Analogous results hold for the multivariate situation.

Theorem 2. Under (M0)-(M4), as n → ∞,
(a) for m → ∞ and for a possibly heteroscedastic model,

E(σ̂2
m) =

n

n − 2m
B(m,n) +

∫
D

σ2(x)f(x)dx(1 + o(1)); (3.3)
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(b) for arbitrary m and a homoscedastic model,

E(σ̂2
m) =

n

n − 2m
B(m,n) + σ2. (3.4)

Unbiasedness of σ̂2
m as an estimator of σ2 = Var (εi,n) in the homoscedas-

tic case, or of σ2 =
∫

σ2(x)f(x)dx in the heteroscedastic case, is equivalent to
B(m,n) → 0 as n → ∞. If

∫
[g(2)(x)]2dx 
= 0, this usually requires that m → ∞,

as seen from (3.2). In the homoscedastic case, the rate of convergence of the bias
of σ̂2

m is seen to be O(m−4).
Regarding the variability of DSP graphs, we obtain under the additional

homoscedasticity/normal moments assumption (M5) the following exact result.

Theorem 3. Assume (M0)-(M5). Then, for any m,n,

Var (σ̂2
m) =

2σ2

n − 2m

[
2n

n − 2m
B(m,n) + σ2

]
. (3.5)

This indicates that Var (σ̂2
m) is monotonously increasing as m increases,

whenever B(m,n) = 0 or B(m,n) << σ2, usually the case for large m → [n3 ] in
view of Theorem 1. With Theorem 1 we find Var (σ̂2

m) ∼ n/(m4(n − 2m)2) +
1/(n−2m), and this is of order n−1. A more complicated expression for Var (σ̂2

m)
in the general heteroscedastic case is given in (A.23) of the Appendix.

We note that under (M0)-(M5), Theorem 2(b) and (3.5) together imply that

Var (σ̂2
m) =

2σ2

n − 2m

[
E(σ̂2

m) +
n

n − 2m
B(m,n)

]
. (3.6)

This implies that whenever B(m,n) can be neglected,
(

n

2
− m

)
Var (σ̂2

m) = σ2E(σ̂2
m), (3.7)

which indicates that the σ̂2
m should behave like quasi-Poisson random variables

with overdispersion factor 2σ2/(n − 2m).

4. Multivariate Case and Data Illustrations

Domain Splitting can be extended to the multivariate case. The details of
this extension are described in Appendix B.

As a multivariate example for d = 2, illustrating how the Domain Splitting
works in a two-dimensional situation, we consider the DSP for data simulated
from the model yi = −0.5x1i + x2i + 2 sin(2πx1i) cos(πx2i) + εi, i = 1, . . . , 200,
in Figure 3. Here εi ∼ 0.5 ∗ N (0, 1). Domain Splitting shows a sharp decline in
the graph and in this example does indicate problems with the fit, while classical
residual plots do not pinpoint the lack of fit in the model.
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Figure 3. Domain Splitting Plot for two-dimensional data simulated from the
model yi = −0.5x1i + x2i + 2 sin(2πx1i) cos(πx2i)+ 0.5∗N (0, 1). (a) Residual
plot versus predicted (b) Residual plot versus x1(c) Residual plot versus x2

(d) Residual plot versus x1x2 (e) Domain Splitting Plot.
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Figure 4. Domain Splitting Plot for two-dimensional Cherry Tree Data with
n = 31. (a) Residual plot versus predicted (b) Residual plot versus x1(c)
Residual plot versus x2 (d) Residual plot versus x1x2 (e) Domain Splitting
Plot.
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We can apply the technique to the Cherry Tree Data in Hand, Daly, Lunn,
McConway and Ostrowski (1994). Here n = 31, and both the Domain Splitting
Plot (DSP) and residual plots indicate that there are problems with the fit (Fig-
ure 4).
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Figure 5. Domain Splitting Plot for infant growth data, n = 30. (a) Scatter-
plot: age in days on x-axis, height in cm on y-axis.(b) Residual plot versus
predicted (c) Domain Splitting Plot.

Another data example of interest in this context is infant growth, where one ques-
tion is whether growth is linear over a one-month period in males of approximately 2-3
months (see Heinrichs, Munson, Counts, Cutler and Baron (1994), for a discussion of
an underlying scientific controversy on the nature of infant growth). A scatterplot of
the data, the residual plot after fitting a simple linear regression line, and the DSP are
shown in Figure 5. We note that the declining trend of the DSP indicates departure
from the linear model assumption. The DSP graph shows a flat plateau only for seven
or more subdomains. The large subdomain error mean squares observed for four or six
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subdomains are caused by the cluster of three low lying points with predictor values
around 85 days, seen in the scatterplot of Figure 5a.

5. Variance Estimation Via Domain Splitting

We note that the Domain Splitting principle provides a multitude of possible
error variance estimates, namely σ̂2

1, σ̂
2
2 , . . . , σ̂

2
m. Once the number of splits m has

been chosen, the corresponding σ̂2
m (average subdomain mean squared error for

this particular m, see (2.5)) is the natural estimator for σ2. A simple non-
automatic way to choose m is to view the Domain Splitting Plot (DSP) and to
decide visually where an initial downward trend due to bias has ended, then take
the smallest m where this is the case. Although this method appears to work
quite well, it is desirable to provide a fully automatic implementation for the
purpose of estimating the error variance. A heuristic approach which we found
to work well is based on the following idea, which attempts to mimic the way a
statistician might proceed.

Find the smallest m∗ such that σ̂2
m changes as little as possible in the window

m∗ ≤ m ≤ m∗ + mw, for a suitably chosen window size mw; m∗ will mark the
beginning of a “flat” part of the DSP graph. Then find the smallest m, m ≤ m∗,
such that the difference between σ̂2

m∗ and σ̂2
m is reasonably small.

We implement this idea by choosing mw = 4 and defining Rm = max{σ̂2
m, . . . ,

σ̂2
m+4}−min{σ̂2

m, . . . , σ̂2
m+4}, then finding m∗ = argmin1≤m≤[n/3]−4 Rm. Then we

compare σ̂2
m and σ̂2

m∗ by calculating Fm = [(n−2m)σ̂2
m−(n−2m∗)σ̂2

m∗ ]/(2m∗−2m)

σ̂2
m∗

for
1 ≤ m ≤ m∗ − 1, and set

m̂ = argmin
1≤m≤m∗

arg min {Fm ≤ F2m∗−2m;n−2m∗;0.95} , (5.1)

where F2m∗−2m;n−2m∗;0.95 is the .95 quantile of the F distribution with 2m∗−2m
and n−2m∗ degrees of freedom. If Fm > F2m∗−2m;n−2m∗;0.95 for all 1 ≤ m < m∗,
choose m̂ = m∗. The resulting error variance estimate is

σ̂2
m̂ =

1
n − 2m̂

m̂∑
j=1

(njm̂ − 2)σ̂2
jm̂. (5.2)

(We also investigated the choice m̂′ = m∗, but found that this m̂′ was sometimes
located in a part of the DSP graph where the variance started to increase. The
second step of choosing m̂ ≤ m∗ has a beneficial effect on the quality of the
resulting variance estimates.)

Applying this procedure to the data of Example 1 as seen in Figure 1
(described in Section 2), one obtains m̂ = 1 and the variance estimate σ̂2 =
σ̂2

1 = 0.277 (true value σ2 = 0.25). For Example 2 (see Section 2, Figure 2),
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this procedure yields m̂ = 12 (with m∗ = 14) and an error variance estimate
σ̂2 = σ̂2

12 = 0.247 (true value σ2 = 0.25). For the human infant growth data
in Figure 5, one finds m̂ = 3 (with m∗ = 5) and an error variance estimate
σ̂2 = σ̂2

3 = 0.035. The analogous procedure for the two-dimensional case applied
to the cherry tree data (see Figure 4) yields σ̂2 = σ̂2

2 = 7.24.
The proposed criterion (5.1) for selecting m was evaluated in a simulation

study. Assumed sample sizes were n = 100, 200 and 500, and N = 100 Monte
Carlo runs were made. Consider the case of a simple linear model y = x +
0.5∗N (0, 1), with xi equidistant in [−1, 1] (compare Example 1). The correct
choice here is m = 1, as the simple linear model is the true model. Using (5.1),
the distribution of the estimated m̂′s is listed in Table 1.

Table 1. Observed frequencies of estimates m̂ (5.1) for various sample sizes
in the case of a simple linear model, for N = 100 Monte Carlo runs.

Estimate m̂ = 1 2 3 4 5 ≥ 6
Frequency for n = 100 96 2 0 1 1 0
Frequency for n = 200 94 1 2 1 2 0
Frequency for n = 500 96 3 0 1 0 0

For the situation corresponding to Example 2, where the underlying function
is y = sin(2πx) + 0.5∗N (0, 1), we find the distribution of estimates for m̂ (5.1)
in Table 2. The format is the same as in Table 1, where again sample sizes
n = 100, 200, 500 are considered and N = 100 Monte Carlo runs are made.

Table 2. Observed frequencies of estimates m̂ (5.1) for various sample sizes
in the case of a nonlinear sine function, for N = 100 Monte Carlo runs.

Estimate m̂ = ≤ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
Frequency
for n = 100

0 5 57 22 11 3 1 0 0 1 0 0 0 0 0

Frequency
for n = 200

0 0 34 36 17 8 3 1 0 1 0 0 0 0 0

Frequency
for n = 500

0 0 7 26 23 21 13 4 1 1 2 1 0 1 0

Inspecting the distribution of the values of m̂, the need to split the domain in
this case is well-recognized when using criterion (5.1). We note that the means
of estimates m̂ increase with n.

To study the practical behavior of the Domain Splitting variance estimator
(5.2), we compared the following methods in a simulation study:
(a) Choosing m = 1, i.e., using the classical error mean square σ̂2

1 ;
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(b) Choosing m = [n3 ], assuming nonlinearity of unspecified degree, and using
σ̂2

[n/3]. This corresponds essentially to the prescription of a difference scheme
for error variance estimation, such as the one proposed by Rice (1984), and
variants thereof due to Gasser, Sroka and Jennen-Steinmetz (1986), Hall, Kay
and Titterington (1990), as well as others.

(c) Choosing the proposed Domain Splitting variance estimator σ̂2
m̂ of (5.1).

The results for the case of Example 1, are listed in Table 3, and for Example
2, in Table 4.

Table 3. Estimated error variances from simulation in the case of a simple
linear model: means, standard deviations and mean squared errors (MSE) of
estimated variances for choices m = 1, m = m̂ and m = [n/3] are compared
for sample sizes n = 100, 200, 500 for N = 100 Monte Carlo runs. True
variance σ2 = 0.25.

Mean Standard Deviation MSE
m = 1 m = m̂ m = [n/3] m = 1 m = m̂ m = [n/3] m = 1 m = m̂ m = [n/3]

n = 100 : .249 .248 .255 .0346 .0349 .0553 .00120 .00122 .00309
n = 200 : .250 .249 .256 .0247 .0249 .0450 .00060 .00062 .00206
n = 500 : .250 .249 .250 .0155 .0155 .0265 .00024 .00024 .00070

Table 4. Same as Table 4 for the case of a nonlinear sine function. True
variance σ2 = 0.25.

Mean Standard Deviation MSE
m = 1 m = m̂ m = [n/3] m = 1 m = m̂ m = [n/3] m = 1 m = m̂ m = [n/3]

n = 100 : .673 .262 .255 .0706 .0447 .0553 .18353 .00216 .00308
n = 200 : .680 .259 .256 .0483 .0271 .0450 .18733 .00081 .00206
n = 500 : .669 .253 .250 .0377 .0173 .0265 .17691 .00031 .00070

We find that in the case of the linear model (Table 3) the loss for not knowing
that m = 1, and instead using m = m̂, is negligible in terms of MSE. However
using m = [n/3] in this situation, which amounts to a difference scheme variance
estimator, would lead to a MSE about three times as big. This is due to a
substantially larger variance of these (essentially unbiased) estimates.

In contrast, we see from Table 4 that using m = 1 in the case of a nonlin-
ear model will be punished by a 100-fold increase in MSE as compared to the
proposed choice m = m̂. The choice m = [n/3] again suffers from unnecessarily
large variability as compared to m = m̂, although it is orders of magnitude better
than m = 1. The picture emerges that, although for the case of an underlying
simple linear regression model the choice m = 1 is optimal, using m = m̂ as
protection against bias costs very little in terms of increased variance. On the
other hand, using the difference scheme choice m = [n/3] as an insurance against
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bias is routinely associated with higher cost in terms of variance. This makes the
recommendation to use m = m̂ and σ̂2

m̂ as variance estimate quite compelling.

6. Discussion

We have seen that the concept of domain splitting leads to superior error
variance estimates for smooth nonparametric regression functions. It also pro-
vides the Domain Splitting Plot, a useful graphical tool for regression diagnostics
in one or higher dimensions.

The idea of Breiman and Meisel (1976), for the estimation of the intrinsic
variability of data in a nonlinear regression model by approximating the regres-
sion function with “piecewise linear patches”, is a precursor of both regression
trees as well as the domain splitting approach which is explored in this paper.
Breiman and Meisel suggested fitting a parametric model by least squares on
subsets of the domain which could potentially be split further into two smaller
subsets of approximately equal size by a dividing hyperplane. The residual vari-
ance is estimated by combining the residual sums of squares of the linear models
fitted on the various subdomains appropriately.

The main difference between our approach and the method of Breiman and
Meisel is that, in the latter method, a sequential splitting strategy is proposed
to arrive at the best segmentation and a good estimate for the residual variance.
In our approach, we simultaneously consider an entire sequence of segmentations
and the residual variances estimated for the various segments. We introduced the
Domain Splitting Plot as a graphical device, for several reasons to find the “best”
segmentation in the sequence of segmentations, for use as a model diagnostic,
and ultimately for variance estimation. We also provided a variety of asymptotic
results, including the mean squared error of the various variance estimates, to
lend support to the graphical procedure. The resulting variance estimates were
compared with alternative classes of difference based variance estimates, and
were found to compare quite favorably.

We now discuss various extensions and potential applications of the Domain
Splitting principle introduced in this paper. First of all, one may consider the
application to piecewise continuous rather than smooth regression functions. As
the number of subdomains increases, the cutpoints defining the subdomains will
eventually come arbitrarily close to the locations of discontinuities of the regres-
sion function, and the Domain Splitting Plot will indicate that point by turning
from a decline to a flat part. The asymptotic analysis of this case is similar to
the one given above for the smooth case.

On the other hand, given a suitable number of subdomains, one might fit
functions which are linear on the various subdomains of the data. The squared
residuals from that fit would lead to very good variance estimates and, if the
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discontinuities in the fit are not of much concern, this approach can provide a
good fit to the data (the smoothing parameter choice would be implicitly based
on the Domain Splitting Plot). As a variant, one could apply a simple kernel
smoother in a second step with a suitably small bandwidth, smoothing over the
discontinuous fit in order to obtain a smooth function or surface estimate.

A referee suggested unequal subdomains, choosing higher resolution on in-
tervals where the regression function varies more rapidly and less on the flat
parts. This seemingly attractive method may lead to better fits to the data, and
it corresponds roughly to the idea of local smoothing parameter choice in non-
parametric regression. While such a modification detracts somewhat from the
overall simplicity of Domain Splitting Plots, versions of such a method would not
be too difficult to implement. For instance, one could create sub-DSPs for given
subdomains and subject the further splitting of such subdomains to the behavior
of these sub-DSPs. However, this would add substantial complexity to graphi-
cal interpretation, and for splitting with different resolution a modification of a
method with sequential random splitting such as CART, SUPPORT, or Breiman
and Meisel’s (1976) method may be more appropriate.

We note that instead of fitting simple linear regression lines or planes on the
subdomains, an alternative is to fit other parametric models such as quadratic
functions or surfaces, as was already suggested by Breiman and Meisel (1976).
This is of interest when the goal is to find a piecewise parametric approximation
to the unknown regression function.

The level of resolution in terms of the number of subdomains determined
visually, or according to criterion (5.1), contains implicit information about the
smoothness of the regression function as measured in terms of

∫
D g(2)(x)2dx.

Since B(m,n), is closely related to
∫
D g(2)(x)2dx, (3.2), the behavior of σ̂2

m when
regressed against E(σ̂2

m) as given in (3.4) can provide such information. Together
with σ̂2

m, this may lead to useful new plug-in bandwidth selection formulas for
nonparametric regression. We conclude from these considerations that the po-
tential applications of the Domain Splitting approach extend beyond variance
estimation, goodness-of-fit diagnostics and piecewise linear approximation.
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Appendix A. Auxiliary Results and Proofs

This section contains proofs of the results stated in Section 3. The basic
assumptions (M0)-(M4) are assumed to hold, and the notation introduced in
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Section 2 is used throughout. We first establish auxiliary results regarding the
representation of functions on subdomains Djm by orthonormal polynomials.
The first of these is a well-known result and the proof is omitted.

Lemma 1. Let φ�, � ≥ 0, be a system of orthonormal polynomials on L2(Djm),
where Djm = (F−1((j − 1)/m), F−1(j/m)], i.e., φ� is a polynomial of degree
�, and the φ� satisfy ∫

Djm

φ�(x)φk(x)dx = δ�k, (A.1)

δ�k = 1{�=k} being the Kronecker symbol. Let

g(x) = Σλ�φ�(x), x ∈ Djm, (A.2)

be the unique representation of the function g on Djm in this orthonormal system.
Then it holds for any polynomial pk of degree k that

∫
(g(x) −

k∑
�=0

λ�φ�(x))2dx ≤
∫

(g(x) − pk(x))2 dx. (A.3)

Lemma 2. For 1 ≤ j ≤ m,

min
α,β

∫
Djm

(g(x) − (α + β(x − sjm)))2 dx =
g(2)(sjm)2

720m5f5(sjm)
+ o(

1
m5

), as m → ∞.

Proof. Let ajm = 1
2

(
F−1(j/m) − F−1((j − 1)/m)

)
and xjm = F−1((j−1)/m)+

ajm, so that Djm = (xjm − ajm, xjm + ajm]. From (A.2) and (A.3) we find

min
α,β

∫
Djm

(g(x) − (α + β(x − sjm)))2dx =
∞∑

�=2

λ2
� , (A.4)

where
λ� =

∫
Djm

g(x)φ�(x)dx. (A.5)

By a Taylor expansion, using (M3),

g(x) =
2∑

i=0

g(i)(xjm)
i!

(x − xjm)i + R(x), x ∈ Djm,

where R(x) = o((x − xjm)2). With (M2),

∞∑
�=3

λ2
� ≤

∫
Djm

R2(x)dx = o

(
1

m5

)
, (A.6)
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and

λ2
2 =

g(2)(xjm)2

4

[ ∫
Djm

(x − xjm)2φ2(x)dx
]2

+ o
([ ∫

Djm

(x − xjm)2φ2(x)dx
]2)

.

(A.7)
We find for the relation of the normalized Legendre polynomials φ̄� on [−1, 1]

with the normalized Legendre polynomials φ� on Djm, that

φ�(x) =
1√
ajm

φ̄�

(x − xjm

ajm

)
, x ∈ Djm. (A.8)

Further, according to Abramowitz and Stegun (1964),

φ̄2(x) =
√

5
8
(−1 + 3x2), x ∈ [−1, 1]. (A.9)

From (A.7)-(A.9), one obtains {∫Djm
(x − xjm)2φ2(x)dx}2 = 8

45a5
jm, and with

(M1), (M2),

λ2
2 =

1
720

[g(2)(xjm)]2
( 1
mf(xjm)

)5
+ o(

1
m5

). (A.10)

Here we observe that F−1(j/m) − F−1((j − 1)/m) = [mf(xjm)]−1(1 + o(1))
implies ajm = [2mf(xjm)]−1 + o(m−1). Lemma 2 follows from the continuity of
g(2)(·)/f5(·).
Proof of Theorem 1. A useful approximation for Lipschitz continuous func-
tions H is (see (M1), (M2)) n−1 ∑

xi∈Djm
H(xi) =

∫
Djm

H(x)f(x)dx + O(n−1).
We conclude n−1 ∑

xi∈Djm
(g(xi) − (α + β(xi − sjm)))2 =

∫
Djm

(g(x) − (α +
β(x − sjm)))2f(x)dx + O(n−1). One finds that the O(·)-term is uniform in
1 ≤ j ≤ m, in m, and on compact sets (α, β). Lemma 2 then implies for
the equidistant case (f ≡ co), minα,β n−1 ∑

xi∈Djm
[g(xi) − (α + β(xi − sjm))]2 =

co[g(2)(sjm)]2[720m5c5
o]
−1 + o(m−5) + O(n−1), as n ≤ m → ∞. Theorem 1(b)

follows by summation, and Theorem 1(a) by a Taylor expansion of g around
sjm within Djm, which gives minα,β

∫
Djm

[g(x) − α + β(x − sjm)]2f(x)dx =
O{∫Djm

[g(2)(sjm)(x − sjm)2 + o((x − sjm)2)]2f(x)dx} = O(m−5).

Proof of Theorem 2. It is useful to introduce some matrix notation. We
fix m and j (1 ≤ j ≤ m) and rewrite model (M0) restricted to subdomain Djm

as follows:
y∗i = g(x∗

i ) + ε∗i , i = 1, . . . , njm,

where the x∗
i are an enumeration of all xi ∈ Djm, and y∗i , ε∗i are the correspond-

ing concomitants. We then define njm-vectors Yjm = (y∗1, . . . , y∗njm
)T , Ejm =
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(ε∗1, . . . , ε∗njm
)T , Gjm = (g(x∗

1), . . . , g(x∗
njm

))T , where AT denotes the transpose of
a vector or matrix A. Let

Xjm =




1 x∗
1

...
...

1 x∗
njm




denote the njm × 2 design matrix of the simple linear model on subdomain Djm.
Model (M0) can then be written as Yjm = Gjm + Ejm, 1 ≤ j ≤ m. The hat
matrix corresponding to projecting on the mean space Djm is the njm × njm

matrix Hjm = Xjm(XT
jmXjm)−1XT

jm, with Ŷjm = HjmYjm, where Ŷjm denotes
the vector of fitted values with i-th element ŷ∗i = α̂ + β̂(x∗

i − sjm), 1 ≤ i ≤ njm

(see Cook and Weisberg (1982), p.11). The projection on the orthogonal space
is Ajm = Injm×njm −Hjm, where I�×� denotes the �-dimensional identity matrix.

Note that
AT

jm = Ajm, A2
jm = Ajm. (A.11)

Defining vjm =
∑

x∗
i ∈Djm

(x∗
i − sjm)2, and writing Ajm = (a�k)1≤�,k≤njm

, we
find (compare Cook and Weisberg (1982), p.12)

a�k = δ�k − 1
njm

− (x∗
� − sjm)(x∗

k − sjm)
vjm

, 1 ≤ �, k ≤ njm. (A.12)

Note that by definition of the subdomains

njm =
n

m
(1 + o(1)), (A.13)

which implies

vjm =
∑

x∗
i ∈Djm

x∗2
i − njms2

jm=n
{ ∫

Djm

x2f(x)dx − m
[ ∫

Djm

xf(x)dx
]2}

(1 + o(1)).

(A.14)
We obtain for σ̂2

m, (2.5),

σ̂2
m =

1
n − 2m

m∑
j=1

{ET
jmAT

jmAjmEjm + 2GT
jmAT

jmAjmEjm + GT
jmAT

jmAjmGjm},

(A.15)
and for B(m,n), (3.1),

B(m,n) =
1
n

m∑
j=1

GT
jmAT

jmAjmGjm. (A.16)

By (A.11)-(A.16),

σ̂2
m =

n

n − 2m
B(m,n) +

1
n − 2m

m∑
j=1

{
ET

jmAjmEjm + 2GT
jmAjmEjm

}
, (A.17)
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and, using (M4),

Eσ̂2
m =

n

n − 2m
B(m,n) +

1
n − 2m

m∑
j=1

E
{(

ET
jmAjmEjm

)}

=
n

n − 2m
B(m,n)+

1
n − 2m

m∑
j=1

( ∑
xi∈Djm

(
1− 1

njm
− (xi − sjm)2

vjm

)
σ2(xi)

)
.

(A.18)

Using (M1), (M2), (A.13), (A.14), and Riemann sum approximations,
m∑

j=1

∑
xi∈Djm

σ2(xi)
njm

= m

∫
σ2(x)f(x)dx(1 + o(1)), (A.19)

m∑
j=1

∑
xi∈Djm

(xi − sjm)2

vjm
σ2(xi)

=
m∑

j=1

∫
Djm

(
x − m

∫
Djm

yf(y)dy
)2

σ2(x)f(x)dx

∫
Djm

(
x − m

∫
Djm

yf(y)dy
)2

f(x)dx
(1 + o(1)). (A.20)

When m → ∞, using the mean value theorem for integration,
m∑

j=1

∑
xi∈Djm

(xi − sjm)2

vjm
σ2(xi) = m

∫
σ2(x)f(x)dx(1 + o(1)). (A.21)

When the homoscedastic case applies, we find
m∑

j=1

∑
xi∈Djm

(
1 − 1

njm
− (xi − sjm)2

vjm

)
σ2 = (n − 2m)σ2. (A.22)

This completes the proof.

Proof of Theorem 3. Let C = AjmGjm, C = (c∗1, . . . , c∗njm
)T , with Ajm having

the elements a�k as in (A.12). Denote by Tr(M) the trace of a matrix M . We
find

Var
(
ET

jmAjmEjm

)
=

njm∑
�=1

a2
��

(
µ4(x∗

� ) − 3σ2(x∗
� )

)
+ 2

njm∑
�,k=1

a2
�kσ

2(x∗
� )σ

2(x∗
k),

Var
(
GT

jmAjmEjm

)
=

njm∑
�=1

c∗2� σ2(x∗
� ),

Cov
(
ET

jmAjmEjm, GT
jmAjmEjm

)
=

njm∑
�=1

a��c
∗
�µ3(x∗

� ),



592 HANS-GEORG MÜLLER AND PENG-LIANG ZHAO

which together imply

Var (σ̂2
m) =

1
(n − 2m)2

{ m∑
j=1

[ ∑
x∗

�
∈Djm

(
1− 1

njm
− (x∗

� − sjm)2

vjm

)2
(µ4(x∗

� )−3σ2(x∗
� ))

+2
∑

x∗
�
,x∗

k
∈Djm

(
δ�k − 1

njm
− (x∗

� − sjm)(x∗
k − sjm)

vjm

)2
σ2(x∗

� )σ
2(x∗

k)

+4
∑

x∗
�
∈Djm

[ ∑
x∗

k
∈Djm

(
δ�k − 1

njm
− (x∗

�−sjm)(x∗
k−sjm)

vjm

)
g(x∗

k)
]2

σ2(x∗
� )

+4
∑

x∗
�
∈Djm

(
1 − 1

njm
− (x∗

� − sjm)2

vjm

)[ ∑
x∗

k
∈Djm

(
δ�k − 1

njm

−(x∗
� − sjm)(x∗

k − sjm)
vjm

)
g(x∗

k)
]
µ3(x∗

� )
]}

. (A.23)

Observing that

m∑
j=1

∑
x∗

�
,x∗

k
∈Djm

(
δ�k − 1

njm
− (x∗

� − sjm)(x∗
k − sjm)

vjm

)2
σ4 = σ4

m∑
j=1

∑
x∗

�
,x∗

k
∈Djm

a2
�k

= σ4
m∑

i=1

Tr(A2
jm) = σ4

m∑
i=1

Tr(Ajm) = σ4
m∑

i=1

(njm − 2) = σ4(n − 2m),

we find that under (M5), (A.23) simplifies to (3.6).

Appendix B. The Multivariate Case

We use the same general notation as in Section 2. Assume d ≥ 1 is the
dimension of the vector of predictor variables X, and that the values of the
predictors are in

d
X
�=1

D(�) = D ⊂ �d,

where D(�) includes the domain of the �th predictor variable, � = 1, . . . , d. Con-
sider partitioning sets D

(�)
γ�,α� of D(�), where γ�, α� are integers, 1 ≤ γ� ≤ α�, such

that
α�⋃

γ�=1

D(�)
γ�,α�

= D(�) and D(�)
γ�,α�

∩ D
(�)
γ′

�
,α�

= ∅

for γ� 
= γ′
�. Given a number α� ≥ 1 of partitioning sets for D(�), the partitioning

sets D
(�)
γ�,α� , 1 ≤ γ� ≤ α�, for D(�) can be chosen to be of equal size or so as to

have approximately equal numbers of observations in them (in analogy to the
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univariate case). Given α = (α1, . . . , αd), and γ = (γ1, . . . , γd), 1 ≤ γ� ≤ α�, 1 ≤
� ≤ d, we define a partition of D by means of the partitioning sets

Dγα =
d
X
�=1

D(�)
γ�,α�

.

Consider the sequence of partition-inducing multiindices α1 = (1, . . . , 1), α2 =
(2, 1, . . . , 1), α3 = (2, 2, 1, . . . , 1), . . . ,αd+1 = (2, . . . , 2), multiindices αd+2 =
(3, 2, . . . , 2), . . . , α2d+1 = (3, . . . , 3), . . ., and the associated sequence of integers
m1 = α1! = 1,m2 = α2! = 2,m3 = α3! = 4, . . . ,mj = αj !, . . ., where α! =

∏
α�

if α = (α1, . . . , αd). The jth element in this sequence defines a partition of D

consisting of mj = αj ! partitioning sets Dγαj
, 1 ≤ γ� ≤ αj�, which we re-index

and denote as D1m, . . . ,Dmm, for all m contained in the sequence m1,m2, . . . , as
long as m ≤ [ n

d+2 ].
As an illustration of this multivariate partitioning scheme, consider the

two dimensional case d = 2 with n = 25 and D(1) = D(2) = [0, 1], so that
D = [0, 1]2. Assuming that the domain splits lead to equal size-subdomains,
we find m = 9 and the partitioning sequence D1 , 9 = {D},α1 = (1, 1), m1 =
1; D2 , 9 = {[0, 1

2 ] × [0, 1], [12 , 1] × [0, 1]},α2 = (2, 1), m2 = 2; D3 , 9 = {[0, 1
2 ] ×

[0, 1
2 ], [0, 1

2 ] × [12 , 1], [12 , 1] × [0, 1
2 ], [12 , 1] × [12 , 1]},α3 = (2, 2), m3 = 4; D4 , 9 =

{[0, 1
3 ] × [0, 1

2 ], [0, 1
3 ] × [12 , 1], [13 , 2

3 ] × [0, 1
2 ], [13 , 2

3 ] × [12 , 1], [23 , 1] × [0, 1
2 ], [23 , 1] ×

[12 , 1]},α4 = (3, 2), m4 = 6.
We obtain the d-dimensional version of the DSP by plotting σ̂2

jm versus m,
where σ̂2

jm is as in (2.4), with SSjm replaced by

SSjm(α,β) =
∑

Xi∈Djm

{
yi −

[
α + βT (X i − sjm)

]}2
.

We note that other orderings of the sequence α1,α2 · · ·, are also possible and
could be used alternatively. A further constraint is that each of the partitioning
sets Djm contains at least (d + 2) observations. Should one of the partitioning
sets Dγαj

contain less than (d + 2) observations, a possible strategy is as follows:
Given the partition inducing αj−1, we obtain the next such index αj in such
a way that (i) αjp = αj−1,p + 1 for a p, 1 ≤ p ≤ d, whereas αjq = αj−1,q for
1 ≤ q ≤ d, q 
= p; (ii) all Dγαj

have at least (d + 2) observations; (iii) p is the
smallest index which achieves (i) and (ii). If no such αj exists, the DSP stops at
m = αj−1!.
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