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Abstract: Epidemiologists use Spearman’s rank correlation, ρ̂s, and the quantile

correlation, ρ̂q, to measure the agreement between the bivariate ranks and the

bivariate quantile-categories of bivariate continuous data, respectively. In this paper

we explore the relationship between the finite and asymptotic means and variances

of these statistics. We show that the asymptotic means and variances of ρ̂q converge

to the same limits as those of ρ̂s, as the number of quantile-categories increases.

Also, these point estimates have distributions derived from the “empirical bivariate

quantile-partitioned” (EBQP) distribution (Borkowf, Gail, Carroll and Gill (1997)),

so we can use nonparametric EBQP methods to estimate the finite variances of

these statistics from data and to compute the asymptotic variance of ρ̂q for any

underlying bivariate distribution that satisfies certain regularity conditions. These

results imply that we can numerically approximate the asymptotic variance of ρ̂s,

for which an explicit formula is not available except in special cases, to a degree of

accuracy limited only by computing power.

Key words and phrases: Agreement, empirical bivariate quantile-partitioned (EBQP)

distribution, epidemiology, nonparametric, quantile correlation, Spearman’s rank

correlation.

1. Introduction

Spearman’s rank correlation, ρs, (Spearman (1904), (1906)) has become one
of the most commonly used nonparametric statistics in epidemiological studies.
We can easily compute point estimates of this statistic, ρ̂s(t), where t denotes
the sample size, from the bivariate ranks of any bivariate data set. Furthermore,
for any given underlying bivariate distribution, we can compute the finite and
asymptotic means of ρ̂s(t) by adapting the methods that Moran (1948) developed
for the bivariate normal (BVN) distribution with correlation ρ.

By contrast, explicit formulas for the finite and asymptotic variances of ρ̂s(t)
are not available except in special cases, such as independence or bivariate nor-
mality. Under independence, Var {ρ̂s(t)} = (t − 1)−1 (Pearson (1907)). For the
BVN(ρ) distribution, Kendall (1949) extended Moran’s methods for means to
construct a complicated polynomial approximation of the asymptotic variance of
ρ̂s(t) as a function of even powers of ρ up to order 8. Subsequently, David, Kendall
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and Stuart (1951) and Fieller, Hartley and Pearson (1957) extended Kendall’s re-
sults to construct polynomial approximations of the asymptotic variance of ρ̂s(t)
as a function of even powers of ρ up to orders 10 and 12, respectively. David and
Mallows (1961) developed an even more complicated approximation formula for
the finite variance of ρ̂s(t) as a function of both sample size t and correlation ρ,
accurate to 5 decimal places for moderate sample sizes and correlations |ρ| ≤ 0.8.

These previous methods are not quite satisfactory because, even for the BVN
distribution, they require dozens of polynomial expansions of complicated expres-
sions, and these expansions need to be reworked to greater powers in order to
obtain greater precision. Also, these methods are generally impractical to ex-
tend to other bivariate distributions, especially those that lack the symmetry
and other well-established mathematical properties of the BVN distribution. By
contrast, the methods that we propose in this paper are conceptually simpler and
computationally easier to implement. These new methods can be applied to a
broad range of bivariate distributions that satisfy certain regularity conditions,
and their precision only depends on the available computing power. Further-
more, with due alteration of details, these methods can also be adapted for other
measures of agreement calculated from bivariate ranks, such as Kendall’s tau.

We can gain further knowledge about the finite and asymptotic means and
variances of the rank correlation, ρ̂s(t), by exploring its relationship to the quan-
tile correlation, ρ̂q(d, t), where d denotes the number of quantile-categories. To
construct the quantile correlation, we choose the number of quantile-categories
into which we wish to partition the original bivariate measurements. We then
calculate the correlation of these bivariate quantile-categories. For example, if
t = 100, and we choose to partition the bivariate measurements into quintile-
categories, we obtain d = 5 quintile-categories of each set of marginal measure-
ments with m = 20 observations in each category.

The relationship between ρ̂s(t) and ρ̂q(d, t) may seem obvious, but so far as
we know, no one has exploited this relationship to study finite and asymptotic
means and variances of these statistics. It also proves to be technically difficult to
construct bounds on the absolute differences between their means and variances,
even with appropriate regularity conditions. Furthermore, these statistics can
behave quite differently for certain bivariate distributions (such as the three
squares distribution, discussed below), and these cases have important theoretical
implications.

Because we use the bivariate ranks and the empirical bivariate quantile-
categories to define ρ̂s(t) and ρ̂q(d, t), respectively, these statistics have dis-
tributions derived from the “empirical bivariate quantile-partitioned” (EBQP)
distribution (Borkowf, Gail, Carroll and Gill (1997)). The EBQP distribution
describes the distribution of two-way contingency tables with categories defined
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by the empirical quantiles of the marginal data. The use of the random em-
pirical quantiles as category cutpoints creates tables with fixed marginal totals,
unlike multinomial tables which have fixed category cutpoints and thus random
marginal totals. Furthermore, the asymptotic distribution of EBQP tables, and
hence of statistics calculated from these tables, depends not only on their asymp-
totic cell proportions, but also on the conditional distributions evaluated at the
corresponding population bivariate quantiles. We can use nonparametric EBQP
methods to estimate the finite variances of these statistics and to calculate the
asymptotic variance of ρ̂q(d, t) for any underlying bivariate distribution that sat-
isfies certain regularity conditions.

Unfortunately, we cannot use EBQP methods to compute the asymptotic
variance of ρ̂s(t) directly. We can show, however, that the asymptotic vari-
ances of {ρ̂q(d, t)} converge to the asymptotic variance of ρ̂s(t) as the number
of quantile-categories increases (d → ∞). Thus, we can numerically approxi-
mate the asymptotic variance of ρ̂s(t) to a degree of accuracy limited only by
computing power.

In this paper we define ρ̂s(t) and ρ̂q(d, t) in mathematical notation and show
that these statistics can be computed from EBQP tables. We also define special
notation for the finite and asymptotic means and variances of these statistics
(Section 2). Next, we study the general relationship between the finite and
asymptotic means and variances of ρ̂s(t) and ρ̂q(d, t), and consider some specific
results for certain underlying bivariate distributions, including the BVN distri-
bution (Sections 3 and 4). We present an example from nutritional epidemiology
to demonstrate how we can apply these theoretical results to analyze real data
(Section 5). Finally, we discuss these results and suggest some further areas of
improvement (Section 6).

2. Preliminary Notation and Definitions

2.1. Notation for calculating ρ̂s(t) and ρ̂q(d, t)

Suppose we collect continuous bivariate data (Xk, Yk), k = 1, . . . , t, indepen-
dently and identically distributed from some distribution F . Let F (x, y) have
marginal distributions G(x) and H(y), and conditional distributions G(x|y) and
H(y|x) defined everywhere in an open domain. Furthermore, let g(x) = G′(x)
and h(y) = H ′(y) exist and be positive everywhere in the open domain. These
regularity conditions guarantee that standard EBQP theory will hold for all
EBQP tables with finite dimensions.

To define Spearman’s rank correlation and the quantile correlation we bring
in the following notation. Using the indicator function I{·}, define the empirical
rank functions for the marginal data as Rx(x) =

∑t
k=1 I{Xk ≤ x} and Ry(y) =∑t

k=1 I{Yk ≤ y}. Because g(x) and h(y) exist everywhere, ties occur in the
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marginal data with probability zero, and thus we can rank every observation
uniquely. Note that the lowest (highest) rank corresponds to 1 (t).

Next, we define the mean (MR) and variance (VR) of the marginal ranks,
and the covariance (CR) and squared difference (DR) of the bivariate ranks as

MR = t−1
t∑

k=1

Rx(Xk) = t−1
t∑

k=1

Ry(Yk), (2.1)

VR = t−1
t∑

k=1

{Rx(Xk) − MR}2 = t−1
t∑

k=1

{Ry(Yk) − MR}2, (2.2)

CR = t−1
t∑

k=1

{Rx(Xk) − MR}{Ry(Yk) − MR}, (2.3)

DR = t−1
t∑

k=1

{Rx(Xk) − Ry(Yk)}2. (2.4)

Note that MR = 1
2(t + 1) and VR = 1

12 (t2 − 1) given that no ties occur,
while CR and DR are random. Furthermore, these terms satisfy the relationship
DR = 2VR − 2CR. Using this relationship, we can write the point estimate of ρs

as
ρ̂s(t) = CRV −1

R = (VR − 1
2
DR)V −1

R = 1 − 1
2
DRV −1

R .

In turn, using VR = 1
12(t2 − 1), we can rewrite this formula as

ρ̂s(t) = 1 − 6DR(t2 − 1)−1. (2.5)

Now, suppose that instead of t distinct marginal ranks, we wish to parti-
tion the marginal data into d quantile-categories. Let �x� denote the smallest
integer greater than or equal to x, and let m = �t/d�. Then, each marginal
quantile-category will have either m or (m − 1) observations. We define the
empirical quantile-category functions as Qx(Xk) = �Rx(Xk)d/t� and Qy(Yk) =
�Ry(Yk)d/t�.

Next, we define MQ, VQ, CQ and DQ in a fashion analogous to equations
(2.1) through (2.4). Thus, we can write the point estimate of ρq(d) with d

quantile-categories as

ρ̂q(d, t) = CQV −1
Q = (VQ − 1

2
DQ)V −1

Q = 1 − 1
2
DQV −1

Q .

With balanced data (i.e., m = t/d is an integer), MQ = 1
2(d + 1) and VQ =

1
12(d2 − 1). In this case, we can rewrite this formula as

ρ̂q(d, t) = 1 − 6DQ(d2 − 1)−1. (2.6)
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Note that for balanced data, the sample quantile correlation ρ̂q(d, t) is al-
gebraically equivalent to the weighted kappa statistic κ̂w(d, t) for d × d ta-
bles (Spitzer, Cohen, Fleiss and Endicott (1967)) with quadratic weights wij =
1 − (i − j)2/(d − 1)2. These weights are chosen to make κ̂w(d, t) equivalent to
the interaclass correlation with the quantile-categories as outcome scores (Fleiss
and Cohen (1973)).

We set some additional notation that will be useful for the proofs in the
following sections. Define the remainder functions as Px(Xk) = Rx(Xk) −
m{Qx(Xk)−1} and Py(Yk) = Ry(Yk)−m{Qy(Yk)−1}. We also define Mp, Vp, Cp

and Dp in a fashion analogous to equations (2.1) through (2.4) above, and the
mixed difference term (DQP ) between the quantile-categories and the remainders
as

DQP = t−1
t∑

k=1

{Qx(Xk) − Qy(Yk)}{Px(Xk) − Py(Yk)}. (2.7)

Finally, we note that the four difference terms DR,DQ,Dp and DQP satisfy
the relationship

DR = m2DQ + Dp + 2mDQP . (2.8)

2.2. The relationship between ρ̂s(t) and ρ̂q(d, t) and the EBQP distri-
bution

We now demonstrate that the difference terms DR and DQ can be calculated
from appropriately constructed EBQP tables. Using the indicator function I{·},
define the empirical cell proportions {pR

ij} (i, j = 1, . . . , t) for the bivariate ranks
by

PR
ij = t−1

t∑

k=1

I{Rx(Xk) = i}I{Ry(Yk) = j}.

These proportions represent the frequency with which the pairs of ranks occur
in a particular data set. Similarly, define the empirical cell proportions {pQ

ij}
(i, j = 1, . . . , d) for the bivariate quantile-categories by

pQ
ij = t−1

t∑

k=1

I{Qx(Xk) = i}I{Qy(Yk) = j}.

These proportions represent the frequency with which the pairs of quantile-
categories occur in a particular data set. We can show algebraically that

DR =
t∑

i=1

t∑

j=1

(i − j)2pR
ij,

DQ =
d∑

i=1

d∑

j=1

(i − j)2pQ
ij.
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Because the categories of {pR
ij} and {pQ

ij} are defined by the bivariate ranks
and the bivariate quantile-categories, respectively, these empirical proportions
have the EBQP distribution (Borkowf, Gail, Carroll and Gill (1997)). In turn,
quantities calculated from these proportions, such as DR,DQ, ρ̂s(t) and ρ̂q(d, t),
also have distributions readily derived from the EBQP distribution. With more
effort, we can compute these quantities from appropriately constructed EBQP
tables when ties occur in the bivariate ranks, a complication that we consider
elsewhere (Borkowf, submitted).

2.3. Several underlying bivariate distributions for the original data

In order to study the relationships between ρ̂s(t) and ρ̂q(d, t), we consider
several underlying bivariate distributions. Let (X,Y ) have the standard BVN
distribution with means 0, variances 1, and correlation ρ. Then (eX , eY ) has
the standard bivariate log-normal (BLN) distribution with shape parameter ρ,
(|X|, |Y |) has the standard bivariate half-normal (BHN) distribution with shape
parameter, ρ, and (X2, Y 2) has the standard bivariate chi-squared (BCS) distri-
bution with correlation ω = ρ2 (Johnson and Kotz (1972)).

We also consider the three squares (TS) distribution, which represents the
case in which the data occur in three clusters, as sometimes happens in epidemi-
ological studies (Borkowf, Gail, Carroll and Gill (1997)). The TS distribution
has density 3 on each of three squares placed in a 3 × 3 grid within the unit
square (like the light squares in the logo of the International Biometric Society),
and 0 elsewhere. The lower left square is [0, 1

3 ]× [0, 1
3 ], the middle right square is

(2
3 , 1]×(1

3 , 2
3 ], and the upper center square is (1

3 , 2
3 ]×(2

3 , 1]. The variates X and Y

are each distributed uniformly on [0,1], but X and Y are dependent, with correla-
tion 4/9. Note that the TS distribution does not satisfy the necessary regularity
conditions for the standard EBQP theory at the marginal tertiles. This theory
still appears to hold, however, if we define the improper conditional distributions
G(x|y) = 1

2G(x|y−ε)+ 1
2G(x|y+ε) and H(y|x) = 1

2H(y|x−ε)+ 1
2H(y|x+ε), with

0 < ε < d−1, at the marginal tertiles. We use the TS distribution to demonstrate
how pathologically the finite and asymptotic variances {σ2

q (d, t)} and {σ2
q (d)}

can behave.
In addition to the above underlying bivariate distributions, we mention sev-

eral other distributions that prove to be useful for establishing boundary condi-
tions. First, under independence (denoted H0), the cell proportions {pR

ij} and
{pQ

ij} have the multivariate hypergeometric (MH) distribution (Plackett (1981)).
In turn, quantities calculated from these proportions, including ρ̂s(t) and ρ̂q(d, t),
have distributions readily derived from the MH distribution. Second, by defini-
tion, under perfect rank agreement (PRA) the set of all possible data points falls
on a monotonic increasing line, while under perfect rank disagreement (PRD)
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the set of all possible data points falls on a monotonic decreasing line. Thus,
under PRA (PRD), ρ̂s(t) = ρ̂q(d, t) = 1(−1).

We now consider two important properties of ρ̂s(t) and ρ̂q(d, t) that allow
us to broaden the results for these statistics beyond a particular distribution.
First, these statistics are invariant to monotonic increasing transformations of the
marginal data. Thus, results that apply to the standard BVN (BCS) distribution
also apply to all BVN and BLN (all BCS and BHN) distributions with the same
correlation/shape parameter, regardless of their location and scale parameters.
Second, by symmetry, if we keep X and define a new variable Z = −Y , then
ρ̂xz

s (t) = −ρ̂xy
s (t) and ρ̂xz

q (d, t) = −ρ̂xy
q (d, t), and hence the means of the new

statistics will be the negatives of the original means, but the variances will be
unchanged. Thus, without loss of generality, we can study distributions with
positive correlations, and obtain corresponding results for negative correlations
accordingly.

2.4. Notation for the finite and asymptotic means and variances of
ρ̂s(t) and ρ̂q(d, t)

We now define some notation for the finite and asymptotic means and vari-
ances of ρ̂s(t) and ρ̂q(d, t). First, let ρs(t) = E{ρ̂s(t)}, ρs = limt→∞ ρs(t),
ρq(d, t)=E{ρ̂q(d, t)}, ρq(d)=limt→∞ ρq(d, t) with fixed d, and ρq =limd→∞ ρq(d).

Moran (1948) proved for the BVN(ρ) distribution that ρs(t) = 6
π (t+1)−1{(t−

2)arcsin(1
2ρ)+arcsin(ρ)}, and hence, as Pearson (1907) showed, ρs = 6

πarcsin(1
2ρ).

Next, by adapting the methods that Moran developed for the BVN distribu-
tion, we can show for any underlying bivariate distributions F (x, y) with marginal
distributions G(x) and H(y),

ρs(t) = 12(t + 1)−1[(t − 2)E{G(X)H(Y )} + E{F (X,Y )} − 1
4
(t − 1)],

and hence
ρs = 12E{G(X)H(Y )} − 3 = Corr {G(X),H(Y )}.

Tables 1(a) and 2(a) show the finite means {ρs(2)} and {ρs(1000)} and the
asymptotic means {ρs} for the BVN, BCS, and TS distributions with selected
correlations. Note that ρs(2) < ρs(t) < ρs(t+1) < ρs for these distributions with
positive correlations for all t. Note too that under independence (PRA) (PRD),
ρs(t) = ρs = ρq(d, t) = ρq(d) = ρq = 0(1)(−1).

By contrast an explicit formula for ρq(d, t), d < t, is generally not available.
However, we may use EBQP methods to calculate ρq(d). In Section 3 we compute
bounds for the absolute difference between ρ̂s(t) and ρ̂q(d, t). In turn, we use this
result to show that ρq(d) → ρs as d → ∞, and hence that ρq = ρs. That is, the
asymptotic limit of the quantile correlation, which we cannot calculate directly
by EBQP methods, is Spearman’s rank correlation.
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Table 1. Parameters related to the finite and asymptotic means of Spear-
man’s rank correlation, ρ̂s(t), and the quantile correlation, ρ̂q(d, t), for un-
derlying BVN distributions.

Distribution (correlation)

BVN BVN BVN BVN BVN
0.0 0.25 0.5 0.75 0.9

(a) Finite and asymptotic means of Spearman’s rank correlation, ρ̂s(t):

ρs(2) 0.0 0.1609 0.3333 0.5399 0.7129

ρs(1000) 0.0 0.2391 0.4821 0.7336 0.8909

ρs 0.0 0.2394 0.4826 0.7341 0.8915

(b) Asymptotic means of the quantile correlation, ρ̂q(d, t):

d

2 0.0 0.1609 0.3333 0.5399 0.7129

3 0.0 0.1997 0.4084 0.6390 0.7984

4 0.0 0.2152 0.4378 0.6774 0.8356

5 0.0 0.2230 0.4525 0.6963 0.8543

6 0.0 0.2275 0.4609 0.7071 0.8649

7 0.0 0.2304 0.4662 0.7139 0.8716

8 0.0 0.2323 0.4697 0.7183 0.8760

9 0.0 0.2336 0.4722 0.7215 0.8791

10 0.0 0.2346 0.4740 0.7238 0.8814

15 0.0 0.2371 0.4786 0.7293 0.8868

20 0.0 0.2380 0.4802 0.7314 0.8888

25 0.0 0.2385 0.4810 0.7324 0.8898

30 0.0 0.2387 0.4815 0.7329 0.8903

35 0.0 0.2389 0.4818 0.7332 0.8906

40 0.0 0.2390 0.4820 0.7334 0.8908

Next, define the variances σ2
s(t)=Var {t 1

2 ρ̂s(t)}, σ2
s =limt→∞ σ2

s(t), σ2
q(d, t) =

Var {t 1
2 ρ̂q(d, t)}, σ2

q(d) = limt→∞ σ2
q(d, t) with fixed d, and σ2

q = limd→∞ σ2
q (d).

Explicit formulas for the finite variance σ2
s(t) and the asymptotic variance

σ2
s are not available except in special cases, such as independence and bivariate

normality. We can theoretically use EBQP methods to estimate σ2
s(t) = σ2

q (t, t)
directly, but current computing power limits us to small sample sizes (about
t ≤ 20) (Borkowf, submitted).
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Table 2. Parameters related to the finite and asymptotic means of Spearman’s
rank correlation, ρ̂s(t), and the quantile correlation, ρ̂q(d, t), for underlying
BCS and TS distributions.

Distribution (correlation)

BCS BCS BCS BCS TS
0.25 0.5 0.75 0.9 0.44

(a) Finite and asymptotic means of Spearman’s rank correlation, ρ̂s(t):

ρs(2) 0.1111 0.2500 0.4444 0.6323 0.2222

ρs(1000) 0.1660 0.3680 0.6260 0.8263 0.4438

ρs 0.1661 0.3683 0.6265 0.8269 0.4444

(b) Asymptotic means of the quantile correlation, ρ̂q(d, t):

d

2 0.1064 0.2539 0.4742 0.6743 0.3333

3 0.1348 0.3116 0.5556 0.7530 0.5000

4 0.1466 0.3342 0.5853 0.7838 0.4167

5 0.1527 0.3455 0.5995 0.7987 0.4267

6 0.1563 0.3520 0.6074 0.8070 0.4571

7 0.1586 0.3560 0.6123 0.8121 0.4354

8 0.1602 0.3587 0.6155 0.8155 0.4375

9 0.1613 0.3606 0.6177 0.8178 0.4500

10 0.1621 0.3620 0.6194 0.8195 0.4400

15 0.1642 0.3654 0.6233 0.8236 0.4464

20 0.1650 0.3666 0.6247 0.8250 0.4433

25 0.1654 0.3672 0.6253 0.8257 0.4437

30 0.1656 0.3676 0.6257 0.8260 0.4449

35 0.1657 0.3678 0.6259 0.8263 0.4441

40 0.1658 0.3679 0.6260 0.8264 0.4442

Table 3(a) shows the approximated finite variances {σ2
s(1000)} (David and

Mallows (1961)) and asymptotic variances {σ2
s} (Fieller, Hartley and Pearson

(1957)) for the BVN distribution with selected correlations. Tables 3(a) and
4(a) show the simulated finite variance {σ̄2

s(1000)} for the BVN, BCS and TS
distributions with selected correlations. For the BVN model, these simulations
support the accuracy of the approximated variances for |ρ| ≤ 0.8, but suggest
that the approximated variances for ρ = 0.9 are much less accurate. Note that
under independence, σ2

s(t) = σ2
q (d, t) = t(t − 1)−1 and σ2

s = σ2
q (d) = σ2

q = 1,
while under both PRA and PRD, σ2

s(t) = σ2
s = σ2

q(d, t) = σ2
q(d) = σ2

q = 0.
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Table 3. Finite and asymptotic variances of Spearman’s rank correlation,
ρ̂s(t), and the quantile correlation, ρ̂q(d, t), for underlying BVN distributions.

Distribution (correlation)

BVN BVN BVN BVN BVN
0.0 0.25 0.5 0.75 0.9

(a) Finite and asymptotic variances of Spearman’s rank correlation, ρ̂s(t) :∗

σ2
s(1000) 0.0010 0.9046 0.6322 0.2537 0.0542

σ2
s 1.0 0.9035 0.6309 0.2526 0.0559

σ̄2
s(1000) 1.0046 0.9085 0.6316 0.2539 0.0559

SD 0.0042 0.0055 0.0028 0.0010 0.0002

(b) Asymptotic means of the quantile correlation, ρ̂q(d, t):

d

2 1.0 0.9741 0.8889 0.7085 0.4918

3 1.0 0.9418 0.7565 0.4141 0.1545

4 1.0 0.9278 0.7065 0.3392 0.0994

5 1.0 0.9204 0.6818 0.3073 0.0809

6 1.0 0.9160 0.6678 0.2904 0.0721

7 1.0 0.9132 0.6590 0.2804 0.0672

8 1.0 0.9113 0.6530 0.2739 0.0642

9 1.0 0.9099 0.6488 0.2695 0.0623

10 1.0 0.9088 0.6457 0.2663 0.0609

15 1.0 0.9062 0.6380 0.2587 0.0577

20 1.0 0.9051 0.6351 0.2561 0.0566

25 1.0 0.9046 0.6337 0.2548 0.0562

30 1.0 0.9043 0.6329 0.2541 0.0559

35 1.0 0.9041 0.6324 0.2537 0.0557

40 1.0 0.9040 0.6320 0.2534 0.0556

∗The finite variance σ2
s(1000) (David and Mallows (1961)) and the asymptotic variances σ2

s

(Fieller, Hartley and Pearson (1957)) are accurate to 5 decimal places for |ρ| ≤ 0.8, but they

appear to be accurate to only 2 and 3 decimal places, respectively, for ρ = 0.9. Also, the simu-

lated finite variances σ2
s(1000) and their standard deviations (SDs) are the means and standard

deviations of 10 repetitions of the variances of 100,000 simulated values ρ̂s(1000) computed from

BVN data sets of size 1000.

Similarly, an explicit formula for the finite variance σ2
q (d, t) is generally not

available. We can theoretically use EBQP methods to estimate σ2
q (d, t), but

current computing power limits us to moderate numbers of quantile-categories
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(about d ≤ 20) (Borkowf, Gail, Carroll and Gill (1997)). Furthermore, for un-
derlying bivariate distributions that satisfy certain regularity conditions, we can
use EBQP theory to calculate σ2

q (d) and hence to approximate σ2
q numerically.

Table 4. Finite and asymptotic variances of Spearman’s rank correlation,
ρ̂s(t), and the quantile correlation, ρ̂q(d, t), for underlying BCS and TS dis-
tributions.

Distribution (correlation)

BCS BCS BCS BCS TS
0.25 0.5 0.75 0.9 0.44

(a) Simulated variances of Spearman’s rank correlation, ρ̂s(t):∗

σ2
s(1000) 0.9850 0.8179 0.4363 0.1286 0.9006

SD 0.0046 0.0050 0.0015 0.0005 0.0044

(b) Asymptotic variances of the quantile correlation, ρ̂q(d, t):∗∗

d

2 0.9967 0.9696 0.8262 0.5707 3.5556

3 0.9924 0.9045 0.5825 0.2195 1.1250

4 0.9912 0.8737 0.5123 0.1690 0.3747

5 0.9904 0.8566 0.4826 0.1516 1.6649

6 0.9897 0.8463 0.4673 0.1435 0.9478

7 0.9872 0.8395 0.4584 0.1390 0.5513

8 0.9887 0.8347 0.4527 0.1362 1.3359

9 0.9884 0.8314 0.4489 0.1344 0.9213

10 0.9881 0.8288 0.4461 0.1331 0.6416

15 0.9871 0.8224 0.4398 0.1302 0.9083

20 0.9866 0.8199 0.4377 0.1292 1.0593

25 0.9863 0.8187 0.4367 0.1287 0.7888

30 0.9862 0.8181 0.4361 0.1285 0.9030

35 0.9861 0.8176 0.4358 0.1283 0.9891

40 0.9860 0.8174 0.4356 0.1282 0.8295

∗The simulated finite variances σ2
s(1000) and their standard deviations (SDs) are the means

and standard deviations of 10 repetitions of the variances of 100,000 simulated values ρ̂s(1000)

computed from BVN data sets of size 1000.
∗∗The asymptotic variances σ2

q(d) for the TS distribution for d = 10, . . . , 40 are: (10) 0.6416,

1.2040, 0.9124, 0.6952, 1.1333, (15) 0.9083, 0.7306, 1.0893, 0.9061, 0.7557, (20) 1.0593, 0.9048,

0.7743, 1.0375, 0.9040, (25) 0.7888, 1.0210, 0.9034, 0.8002, 1.0081, (30) 0.9030, 0.8096, 0.9976,

0.9027, 0.8174, (35) 0.9891, 0.9025, 0.8239, 0.9819, 0.9023, (40) 0.8295.
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In Section 4 we compute bounds for the absolute difference between σ2
s(t)

and σ2
q (d, t) under some regularity conditions. In turn, we use this result to show

that σ2
q (d) → σ2

s as d → ∞, and hence that σ2
q = σ2

s . That is, we can use EBQP
methods to approximate numerically the asymptotic variance of Spearman’s rank
correlation.

3. The Relationship Between the Point Estimates ρ̂s(t) and ρ̂q(d, t) and
Their Means

In this section we present several results concerning the relationship between
the point estimates ρ̂s(t) and ρ̂q(d, t) and between their finite and asymptotic
means. To simplify the complicated calculations in Sections 3 and 4, we assume
that we are dealing with balanced data (i.e., m = t/d is an integer). The fi-
nite results in these sections hold approximately for unbalanced data, but the
asymptotic results are unchanged.

Theorem 1. For any distribution F and for all 2 ≤ d ≤ t = dm,

|ρ̂s(t) − ρ̂q(d, t)| < 2{1 + (d + 1)(m + 2)m−1}d−2. (3.1)

Proof. See Appendix A.

This theorem gives the maximum difference between ρ̂s(t) and ρ̂q(d, t), and
in practice the actual difference tends to be much smaller. Using this theorem
for the relationship between these point estimates, we now prove the following
relationship between their finite and asymptotic means.

Corollary 1. For any distribution F and for all 2 ≤ d ≤ t,
(i) |ρs(t) − ρq(d, t)| < 2{1 + (d + 1)(m + 2)m−1}d−2;
(ii) |ρs − ρq(d)| ≤ 2(d + 2)d−2;
(iii) ρs = ρq.

Proof. Result (i) follows immediately from Theorem 1 by taking expectations.
Result (ii) follows from (i) as m → ∞ with d constant. Result (iii) follows from
(ii) as d → ∞.

Comment. In the special case where d = 2, Kruskal (1958) gave the more
precise inequality 3

16{1 + ρq(2)}3 − 1 ≤ ρs ≤ 1 − 3
16{1 − ρq(2)}3. Kruskal’s

methods employ the fact that 2 × 2 EBQP tables have one free cell, and thus
these methods cannot be used for d > 2.

Corollary 1(i) shows that ρq(d) converges to ρs rather slowly (order d−1),
but for certain underlying bivariate distributions the rate of convergence is much
faster (order d−2). Consider the following definition and property.
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Definition 1. A conditional distribution G(x|y) is stochastically nondecreasing
if y1 ≤ y2 implies that P (X > x|Y = y1) = 1 − G(x|y1) ≤ 1 − G(x|y2) = P (X >

x|Y = y2) for all x.

Property 1. Let F (x, y) be a distribution with stochastically nondecreasing
conditional distributions G(x|y) and H(y|x).

The BVN, BLN, BHN and BCS distributions with nonnegative correlations
satisfy Property 1, but the TS distribution does not. For those distributions
that satisfy Property 1, we obtain the following theorem with tighter bounds
for the difference between the finite means ρs(t) and ρq(d, t) than those given in
Corollary 1(i).

Theorem 2. For any distribution F that satisfies Property 1 and for all 2 ≤
d ≤ t,

−d−2 ≤ ρs(t) − ρq(d, t) ≤ {1 + 2(m + 1)m−1}d−2. (3.2)

Proof. See Appendix A.

Corollary 2. For any distribution F that satisfies Property 1 and for all 2 ≤ d,

0 ≤ ρs − ρq(d) ≤ 3d−2.

Proof. This result follows from Theorem 2 as m → ∞ with d constant, and
from the observation that ρ̂q(d, t) is asymptotically “biased towards the null” as
an estimator of ρs for these distributions, so 0 ≤ ρq(d) ≤ ρs.

Tables 1(b) and 2(b) show {ρq(d)} for the standard BVN, BCS and TS dis-
tributions for selected quantile-categories. For the BVN and BCS distributions,
the ρq(d) do indeed appear to converge rapidly to ρs (order d−2), as Corollary
2 predicts. Furthermore, by the invariance and symmetry properties of ρ̂s(t)
and ρ̂q(d, t), these results apply to all BVN, BHN, BCS and BLN distributions,
regardless of their location, scale, and correlation/shape parameters.

4. The Relationship Between the Finite and Asymptotic Variances of
ρ̂s(t) and ρ̂q(d, t)

The bounds for the difference between the finite variances σ2
s(t) and σ2

q(d, t)
are more difficult to calculate. While σ2

s(t) achieves its maximum value of t(t −
1)−1 under independence, σ2

q (d, t) can have values that exceed t(t − 1)−1 for
certain pathological distributions, including the TS distribution (and the nicked
square distribution; e.g. Borkowf, Gail, Carroll and Gill (1997)). Let dc(F )
denote the smallest dimension such that σ2

q (d) ≤ 1 for all d ≥ dc(F ). For
distributions that satisfy Property 1, dc(F ) = 2, while for the TS distribution
dc(F ) = 30.
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Theorem 3. For any distribution F and for all dc(F ) ≤ d ≤ t,

|σ2
q (d, t) − σ2

s(t)| < (2
√

2d3 + 4d2 − 3)d−4t(t − 1)−1. (4.1)

Proof. See Appendix A.

Once again, this theorem gives the maximum difference between σ2
s(t) and

σ2
q(d, t), and in practice the actual difference tends to be much smaller. Using

this theorem for the absolute difference between these finite variances, we prove
the following relationships between the corresponding asymptotic variances.

Corollary 3. For any distribution F and for all dc(F ) ≤ d,
(i) |σ2

q (d) − σ2
s | ≤ (2

√
2d3 + 4d2 − 3)d−4;

(ii) σ2
q = σ2

s .

Proof. Result (i) follows from Theorem 3 as m → ∞ with d constant. Result
(ii) follows from (i) as d → ∞.

For those distributions that satisfy Property 1, we obtain the following theo-
rem with tighter bounds for the difference between the finite variances σ2

s(t) and
σ2

q(d, t) than those given in Theorem 3.

Theorem 4. For any distribution F that satisfies Property 1 and for all 2 ≤
d ≤ t,

−(2d2 + 1)d−4t(t − 1)−1 < σ2
q (d, t) − σ2

s(t)

< {2(
√

2 + 1)d2 + 2
√

2d − (2
√

2 + 1)}d−4t(t − 1)−1. (4.2)

Proof. See Appendix A.

Corollary 4. For any distribution F that satisfies Property 1 and for all 2 ≤ d,

0 ≤ σ2
q (d) − σ2

s ≤ {2(
√

2 + 1)d2 + 2
√

2d(2
√

2 + 1)}d−4.

Proof. This result follows from Theorem 4 as m → ∞ with d constant, and
from the observation that for these distributions, 0 ≤ σ2

s ≤ σ2
q (d).

Tables 1(b) and 2(b) show {σ2
q (d)} for the standard BVN, BCS and TS dis-

tributions for selected quantile-categories. For the BVN and BCS distributions,
the σ2

q(d) do indeed appear to converge rapidly to σ2
s (order d−2), as Corollary

4 predicts. Furthermore, by the invariance and symmetry properties of ρ̂s(t)
and ρ̂q(d, t), these results apply to all BVN, BHN, BCS and BLN distributions,
regardless of their location, scale, and correlation/shape parameters.

By contrast, for the TS distributions, σ2
q(d) converges more slowly to σ2

s for
the TS distribution and some values of σ2

q(d) even exceed 1! We observe that
these values seem to form three subsequences, one each for d = 3k, d = 3k + 1,
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and d = 3k + 2. The variances for this first subsequence are defined using the
improper conditional distributions at the marginal tertiles mentioned above, and
they appear to converge most rapidly to the unknown asymptotic variance σ2

s ,
which should be close to the simulated variance σ2

s(1000) = 0.9006. This result
reflects the fact that when d = 3k, the EBQP estimation methods take account
of the unusual features of the TS distribution at the tertiles. At the same time,
the second and third subsequences appear to converge more slowly from below
and above, respectively. Thus, we can use the subsequence with d = 3k to
approximate σ2

s most rapidly.

5. An Example from Nutritional Epidemiology

Pietinen, et al. (1988) conducted an extensive study on Finnish men aged
55-69 to test the reproducibility and validity of several methods of measuring
the intake of food items and nutrients. In the validation part of the study, the
total fat intake (in grams) of 157 men was measured by two methods. First, the
subjects kept prospective “food records” to record the foods they consumed on
12 two-day periods during a 6 month interval. Second, the subjects completed
retrospective “food use questionnaires” to estimate how much of certain foods
they had consumed during the previous year.

Because both sets of marginal data were skewed to the right, we used natural
logarithms to transform these data. Let X and Y denote the log-transformed
food record and food use questionnaire measurements, respectively. The means
and standard deviations of these measurements (in log-grams) are x = 4.6051,
sx = 0.2372, y = 4.5657, and sy = 0.3792, and the sample correlation is ρ̂ =
0.5598.

We performed a series of graphical tests (not shown) to study the underlying
bivariate distribution of the fat intake data. We created scatter plots of the
data on both the original and natural logarithm scales. We also created normal
probability plots of the marginal data and linear combinations of the marginal
data. Together, these graphical tests suggest that the log-transformed data are
consistent with the BVN distribution, and hence the original data are consistent
with the BLN distribution.

In Sections 3 and 4 we assumed that ties occur with probability zero. How-
ever, in the fat intake data set there were indeed 12 ties in the X variable
and 9 ties in the Y variable. We added tiny random errors to the marginal
data to break these ties and computed a sample Spearman’s rank correlation
of ρ̂s(157) = 0.5620 with no ties. By comparison, if we use the formula for ρs

that assigns tied observation midranks rather than breaking the ties, we compute
ρ̂s(157) = 0.5622 (e.g., Borkowf, submitted). We have found through extensive
simulations with BVN data that a moderate amount of rounding breaking ties
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usually has only a small impact on the point estimates and estimated variances
of ρs, ρq(d), and other measures of agreement calculated from EBQP tables.

Table 5. Point estimates and estimated variances of the quantile correlation
for the fat intake data for various table dimensions, and the corresponding
asymptotic values under the BVN model with ρ̂ = 0.5598.∗

empirical results BVN model

d m ρ̂q(d, t) σ̂2
q (d, t) ρq(d) σ2

q(d)

2 79 0.3885 0.8642 0.3783 0.8569
3 53 0.4762 0.7187 0.4610 0.6902
4 40 0.5082 0.6215 0.4932 0.6307
5 32 0.5414 0.7694 0.5092 0.6022
6 27 0.5382 0.6184 0.5184 0.5862
7 23 0.5534 0.5662 0.5241 0.5762
8 20 0.5651 0.5191 0.5280 0.5696
9 18 0.5316 0.5862 0.5307 0.5649
10 16 0.5468 0.6138 0.5326 0.5615
11 15 0.5632 0.5497 0.5341 0.5589
12 14 0.5590 0.5379 0.5353 0.5569
13 13 0.5644 0.5539 0.5362 0.5553
14 12 0.5569 0.5561 0.5369 0.5541
15 11 0.5642 0.5452 0.5375 0.5530
16 10 0.5668 0.5128 0.5380 0.5522
17 10 0.5671 0.5143 0.5384 0.5514
18 9 0.5555 0.5316 0.5388 0.5508
19 9 0.5530 0.5546 0.5391 0.5503
20 8 0.5537 0.5402 0.5393 0.5499
157 1 0.5620 c.c. c.c. c.c.
∞ n.a. n.a. n.a. 0.5418 0.5454

∗Note that ρ̂q(157, 157) = ρ̂s(157) = 0.5620. Also, under the BVN model with ρ̂ = 0.5598, we

compute ρs = 0.5418 (Moran (1948)) and σ2
s = 0.5454 (Fieller, Hartley and Pearson (1957)).

Abbreviations: c.c.=cannot calculate with current computing resources, n.a.=not applicable.

We also computed the sample quantile correlations ρ̂q(d, 157) and their esti-
mated variances σ̂2

q (d, 157) for d = 2, . . . , 20 (Table 5). We observe that ρ̂q(d, 157)
rapidly approaches ρ̂s(157) = 0.5620, and the differences ρ̂s(157)− ρ̂q(d, 157) fall
well within the conservative bounds of Theorem 1. The σ̂2

q(d, 157) are more
variable, but presumably approach σ̂2

s(157), which we cannot estimate directly
because of limited computing power. Under the BVN model with ρ = 0.5598,
we calculate σ2

s(157) = 0.5544 (David and Mallows (1961)), and the differences
σ2

s(157) − σ̂2
q(d, 157) also fall well within the conservative bounds of Theorem 3.

Nonparametrically, we can also estimate the finite variance σ2
q (20, 157) from a
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20 × 20 EBQP table by σ̂2
q (20, 157) = 0.5402, and then use this variance as an

approximation for the desired finite variance σ̂2
s(157).

In turn, we can construct a large sample (1−α)100% confidence interval for
ρs of the form ρ̂s(t) ± Φ−1(1 − α/2){σ̂2

q (d, t)/t}1/2, where Φ denotes the stan-
dard normal distribution. For the fat intake data, we compute a 95% confidence
interval for ρs of (0.4470, 0.6770), which shows that a moderate degree of agree-
ment exists between the ranks given by the two methods of measuring fat intake.
Borkowf (submitted) discusses the construction of small sample confidence inter-
vals for ρs using the t-distribution and Fisher’s z-transformation.

For comparison, we can use the sample correlation ρ̂ = 0.5598 to calculate
{ρq(d)} and {σ2

q (d)} under the BVN model (Table 5). These asymptotic means
and variances are comparable with the sample values that we estimated from the
data. Furthermore, for the BVN distribution with ρ = 0.5598 and t = 157, we
calculate ρs(157) = 0.5387 and ρs = 0.5418 (Moran (1948)), σ2

s(157) = 0.5544
(David and Mallows (1961)), and σ2

s = 0.5454 (Fieller, Hartley and Pearson
(1957)). We observe that ρq(d) and σ2

q(d) appear to converge rapidly to ρs and
σ2

s , as we expect.

6. Discussion

In this paper we have shown that Spearman’s rank correlation, ρ̂s(t), and the
quantile correlation, ρ̂q(d, t), have distributions derived from the EBQP distribu-
tion. Thus, we can use EBQP methods to estimate the finite variances σ2

s(t) and
σ2

q(d, t) and to compute the asymptotic variances σ2
q(d). We have proved that the

asymptotic means of the quantile correlation converge to the asymptotic mean
of Spearman’s rank correlation, i.e., ρq(d) → ρs as d → ∞ for all underlying
bivariate distributions. We have also proved that the asymptotic variances of
the quantile correlation converge to the asymptotic variance of Spearman’s rank
correlation, i.e., σ2

q (d) → σ2
s as d → ∞ for all underlying bivariate distributions

that satisfy certain regularity conditions. We note that while these means and
variances converge slowly in general (order d−1), they converge more rapidly for
distributions that satisfy Property 1 (order d−2), including the BVN, BLN, BHN
and BCS distributions. Indeed, in epidemiological studies we should perform
graphical tests to determine whether the data appear to come from an underly-
ing distribution that satisfies Property 1.

We also note that standard EBQP theory assumes that ties occur with prob-
ability zero. Nevertheless, we have found it quite satisfactory in practice to break
ties by adding tiny random errors to the original bivariate data when there are
only a moderate number of ties in the data. Alternatively, for small sample sizes
(t ≤ 20) we can construct EBQP tables that take these ties into account without
breaking them (Borkowf, submitted).
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In addition, the results for the finite means and variances that we proved
in Sections 3 and 4 hold approximately for unbalanced data, but the asymptotic
results are unchanged. In practice, we need to adjust EBQP estimation methods
slightly to accommodate unbalanced data, and it is preferable to use balanced
data for reasons of esthetics and estimation.

At present, due to limits in computing power, we can only calculate the
covariances of d × d EBQP tables for d ≤ 20 directly from data using matrix
algebra in the GAUSS 3.0 programming language (Aptech Systems Inc. (1992))
on a Pentium 133MHz processor. For a given distribution F , we can calculate
the asymptotic covariances of d×d EBQP tables for d ≤ 40 by iterative methods,
but the calculations become prohibitively slow for larger tables. We expect that
as computer technology continues to evolve in the next decade, we will be able
to compute the covariances of even larger EBQP tables, and thus compute σ̂2

s(t),
σ̂2

q(d, t), and σ2
q(d) for larger values of d and t.

For most epidemiological studies, the observation that σ2
q(d) converge rapidly

to σ2
s for distributions that satisfy Property 1 justifies the current practice of

collapsing large EBQP tables by combining consecutive rows and columns to
create smaller tables. For examples, given a sample size of t, we can construct
a smaller d × d EBQP table with m = �t/d� or (m − 1) observations in each
row and column in order to estimate σ2

q(d, t). We can then use σ̂2
q (d, t) as an

approximation for the desired finite variance σ̂2
s(t). We can, of course, compute

ρ̂s(t) and ρ̂q(d, t) in the usual manner and, when these point estimates are close,
the estimated variances will also tend to be close, even for small values of d.

The author can provide a computer program (EpiQuant 1.0) to estimate the
covariances of EBQP tables from bivariate data and to calculate the asymptotic
covariance of EBQP tables for the BVN distribution. In turn, the variances
of measures of agreement calculated from such tables can be computed from
these covariance matrices by the delta method (Bishop, Fienberg and Holland
(1975)). This program is written as a batch file in the GAUSS 3.0 programming
language (Aptech Systems Inc. (1992)) and comes with a brief technical note to
explain its use (Borkowf (1997)). (Readers may contact the author by e-mail:
borkowfc@gwgate.nhlbi.nih.gov.)
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Appendix A. Proofs of Theorems

Proof of Theorem 1. First, we compute bounds for the four difference terms
from which we compute ρ̂s(t) and ρ̂q(d, t). For any distribution F , the difference
terms DR, DQ and Dp achieve their minimum (maximum) values under PRA
(PRD). Thus,

0 ≤ DR ≤ 1
3
(t2 − 1),

0 ≤ DQ ≤ 1
3
(d2 − 1), (A.1)

0 ≤ Dp ≤ 1
3
(m2 − 1). (A.2)

By contrast, the bounds for DQP require more effort to compute. First, since
the elements of the pairs {Qx(Xk), Px(Xk)} and {Qy(Yk), Py(Yk)} are always
independent,

t−1
t∑

k=1

Qx(Xk)Px(Xk) = t−1
t∑

k=1

Qy(Yk)Py(Yk) =
1
4
(d + 1)(m + 1). (A.3)

However, the elements of the pairs {Qx(Xk), Py(Yk)} and {Qy(Yk), Px(Xk)}
usually are not independent. We also find that

1
6
(d + 1)(m + 1) < t−1

t∑

k=1

Qx(Xk)Py(Yk) <
1
3
(d + 1)(m + 1), (A.4)

1
6
(d + 1)(m + 1) < t−1

t∑

k=1

Qy(Yk)Px(Xk) <
1
3
(d + 1)(m + 1). (A.5)

We can then use equations (2.7) and (A.3) through (A.5) to show that

−1
6
(d + 1)(m + 1) < DQP <

1
6
(d + 1)(m + 1). (A.6)

The difference term DQP approaches its extrema only in rare cases.
Next, we can use equations (2.5), (2.6) and (2.8) to expand ∆M = ρ̂s(t) −

ρ̂q(d, t) as the decomposition

∆M = {1 − 6DR(t2 − 1)−1} − {1 − 6DQ(d2 − 1)−1}
= −6(m2DQ + Dp + 2mDQP )(t2 − 1)−1 + 6DQ(d2 − 1)−1

= 6DQ{(d2 − 1)−1 − m2(t2 − 1)−1} − 6(DP + 2mDQP )(t2 − 1)−1

= T1 + T2 + T3, (A.7)

where T1 = 6DQ{(d2 − 1)−1 − m2(t2 − 1)−1}, T2 = −6DP (t2 − 1)−1, and T3 =
−12mDQP (t2 − 1)−1.
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Also, we have the inequality (for all 2 ≤ d < t),

0 < (d2 − 1)−1 − m2(t2 − 1)−1 < d−2(d2 − 1)−1. (A.8)

We can then use equations (A.1) and (A.8), (A.2) and (A.6) to compute
bounds for the three terms in equation (A.7), respectively. Thus,

0 ≤ T1 < 6{1
3
(d2 − 1)}{d−2(d2 − 1)−1} = 2d−2, (A.9)

0 ≥ T2 ≥ −6{1
3
(m2 − 1)}{(t2 − 1)−1 > −2d−2, (A.10)

|T3| ≤ 12m{1
6
(d + 1)(m + 1)}(t2 − 1)−1 < 2(d + 1)d−2{(m + 2)m−1}. (A.11)

Together, equations (A.7) and (A.9) through (A.11) yield statement (3.1),
as we wished to prove.

Proof of Theorem 2. First, we can compute even tighter bounds for the four
difference terms. Under independence (H0), the empirical cell proportions {pR

ij}
and {pQ

ij} have the MH distribution, and hence the difference terms DR,DQ,DP

and DQP have related distributions. Thus, we calculate E(DR|H0) = 1
6(t2 − 1),

E(DQ|H0)= 1
6(d2−1), E(DP |H0)= 1

6(m2−1), and E(DQP |H0)=0. Correspond-
ing to equation (2.8), these expectations satisfy the relationship E(DR|H0) =
m2E(DQ|H0) + E(DP |H0).

Next, the difference terms DR, DQ and DP achieve their minimum (maxi-
mum) values under PRA (independence) for all 2 ≤ d ≤ t. Thus,

0 ≤ E(DR) ≤ E(DR|H0),

0 ≤ E(DQ) ≤ E(DQ|H0), (A.12)

0 ≤ E(DP ) ≤ E(DP |H0). (A.13)

Furthermore, we calculate that

0 ≤ Corr {Qx(Xk), Py(Yk)} ≤ Corr {Rx(Xk), Py(Yk)} < d−1, (A.14)

0 ≤ Corr {Qy(Yk), Px(Xk)} ≤ Corr {Ry(Yk), Px(Xk)} < d−1, (A.15)

where Corr {Rx(Xk), Py(Yk)} and Corr {Ry(Yk), Px(Xk)} approach their mini-
mum (maximum) values under independence (PRA). We can also use equations
(2.7) and (A.3) to show that

E(DQP ) = −Cov {Qx(Xk), Py(Yk)} − Cov {Qy(Yk), Px(Xk)}. (A.16)

Then, we can use equations (A.14) through (A.16) to show that

E(DQP |H0) ≥ E(DQP ) > −2d−1(VQVP )
1
2 > −1

6
m. (A.17)
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We can use equations (A.8) and (A.12), (A.13) and (A.17) to compute tighter
bounds for the expectations of the three terms in equation (A.7), respectively.
Thus,

0 ≤ E(T1) < 6{1
6
(d2 − 1)}{d−2(d2 − 1)−1} = d−2, (A.18)

0 ≥ E(T2) ≥ −6{1
6
(m2 − 1)}(t2 − 1)−1 > d−2, (A.19)

0 ≤ E(T3) < −12m(−1
6
m)(t2 − 1)−1 < 2d−2{(m + 1)m−1}. (A.20)

Together, equations (A.7) and (A.18) through (A.20) yield statement (3.2),
as we wished to prove.

Proof of Theorem 3. First, we compute bounds for the variances of the four
difference terms from which we compute ρ̂s(t) and ρ̂q(d, t). Under independence
(H0), the difference terms DR, DQ, DP and DQP have distributions related to
the MH distribution. Thus, we calculate

Var (DR|H0) =
1
36

(t2 − 1)2(t − 1)−1, Var (DQ|H0) =
1
36

(d2 − 1)2(t − 1)−1,

Var (DP |H0) =
1
36

(m2 − 1)2(t − 1)−1, and

Var (DQP |H0) =
1
72

(d2 − 1)(m2 − 1)(t − 1)−1.

Corresponding to equation (2.8), these variances satisfy the relationship
Var (DR|H0) = m4Var (DQ|H0) + Var (DP |H0) + 4m2Var (DQP |H0).

Next, for any distribution F , the variances of the difference terms achieve
their minimum (maximum) values under PRA/PRD (independence). Thus,

0 ≤ Var (DR) ≤ Var (DR|H0),
0 ≤ Var (DQ) ≤ Var (DQ|H0), (A.21)

0 ≤ Var (DP ) ≤ Var (DP |H0), (A.22)
0 ≤ Var (DQP ) ≤ Var (DQP |H0). (A.23)

Furthermore, since |Cov (A,B)| ≤ {Var (A)Var (B)} 1
2 , we can use the above

bounds on the variances of the difference terms to compute the bounds on their
covariances. Thus,

|Cov (DQ,DP )| ≤ 1
36

(d2 − 1)(m2 − 1)(t − 1)−1, (A.24)

|Cov (DQ,DQP )| <

√
2

72
(d2 − 1)dm(t − 1)−1, (A.25)

|Cov (DP ,DQP )| ≤
√

2
72

(m2 − 1)dm(t − 1)−1. (A.26)
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Next, corresponding to equation (2.8), the variances and covariances of the
difference terms satisfy the relationship

Var (DR) = m4Var (DQ) + Var (DP ) + 4m2Var (DQP )

+2m2Cov (DQ,DP )+4m3Cov (DQ,DQP )+4m Cov (DP ,DQP ). (A.27)

We can then use equations (2.5), (2.6) and (A.27) to expand ∆V = σ2
q(d, t)−

σ2
s(t) as the decomposition

∆V = 36tVar (DQ)(d2 − 1)−2 − 36tVar (DR)(t2 − 1)−2

= T4 + T5 + T6, (A.28)

where T4 = 36tVar (DQ){(d2 − 1)−2 − m4(t2 − 1)−2},
T5 = −36t{Var (DP ) + 4m2Var (DQP )}(t2 − 1)−2, and

T6 = −36t{2m2 Cov (DQ,DP )+4m3 Cov (DQ,DQP )

+4m Cov (DP ,DPQ)}(t2 − 1)−2.

Also, we have the inequality (for all 2 ≤ d < t),

0 < (d2 − 1)−2 − m4(t2 − 1)−2 < (2d2 − 1)d−4(d2 − 1)−2. (A.29)

We can then use equations (A.21) through (A.26) and (A.29) to compute
bounds for the three terms in equation (A.28). Thus,

0 ≤ T4 < 36t{ 1
36

(d2 − 1)2(t − 1)−1}{(2d2 − 1)d−4(d2 − 1)−2}
< (2d2 − 1)d−4t(t − 1)−1, (A.30)

0 ≥ T5 ≥ −36t{ 1
36

(m2 − 1)2 +
1
18

m2(d2 − 1)(m2 − 1)}(t2 − 1)−2(t − 1)−1

> −(2d2 − 1)d−4t(t − 1)−1, (A.31)

|T6| < 36t{ 1
18

m2(d2 − 1)(m2 − 1) +
√

2
18

m3(d2 − 1)dm

+
√

2
18

m(m2 − 1)dm}(t2 − 1)−2(t − 1)−1

< (2
√

2d3 + 2d2 − 2)d−4t(t − 1)−1. (A.32)

Together, equations (A.28) and (A.30) through (A.32) yield statement (4.1),
as we wished to prove.

Proof. of Theorem 4. First, we can use equations (A.14) and (A.15) to show
that

0 ≤ Cov (DQ,DP )<d−2{Var (DQ)Var (DP )} 1
2 <

1
36

(m2 − 1)(t − 1)−1, (A.33)
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0 ≥ Cov (DQ,DQP )>d−1{Var (DQ)Var (DQP )} 1
2>−

√
2

72
(d2−1)m(t−1)−1, (A.34)

0 ≥ Cov (DP ,DQP )>−{Var (DP )Var (DQP )} 1
2>−

√
2

72
(m2−1)dm(t−1)−1.(A.35)

Next, we can use equations (A.33) through (A.35) to compute tighter bounds
for the third term (T6) in equation (A.28). Thus,

−36t{ 1
18

m2(m2 − 1)}(t2 − 1)−2(t − 1)−1 < T6

< 36t{
√

2
18

m3(d2 − 1)m +
√

2
18

m(m2 − 1)dm}(t2 − 1)−2(t − 1)−1,

which implies that

−2d−4t(t − 1)−1 < T6 < 2
√

2(d2 + d − 1)d−4t(t − 1)−1. (A.36)

Together, equations (A.28), (A.30), (A.31) and (A.36) yield statement (4.2),
as we wished to prove.
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