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Abstract: Kernel estimators of the density function and the hazard function based

on the product-limit estimator are considered when the data are subject to left

truncation. Several asymptotic uniformly strong and weak representations for these

estimators are established. Making use of these results we obtain the large sample

properties of the kernel density and hazard function estimators. The results can be

extended to the case of left truncated and right censored data.
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1. Introduction

In many survival studies a subject may not be included in the study if the
time origin of its lifetime, called the onset time, precedes the starting time of
the study. Such subjects are called left truncated. In this paper we study kernel
estimators of density and hazard functions based on the product-limit estima-
tor (Lynden-Bell (1971)) when the data is subject to random truncation. Let
(Xi, Yi), 1 ≤ i ≤ N , be a sequence of independent identically distributed random
vectors in the plane such that Xi is independent of Yi. The marginal distribution
functions of Xi and Yi are given by F (t) = P (X ≤ t) and G(t) = P (Y ≤ t),
respectively. Let f denote the density function of F .

In the random left truncation model one observes only those pairs (Xi, Yi) for
which Xi ≥ Yi but nothing is observed otherwise. Left truncation is a frequent
cause of incomplete data. It may occur if the time origin, X0, of the lifetime
precedes the time origin of the study, X1. To be precise, when Y ′ = X1−X0 > X,
where X is the lifetime of interest, the case is not observed at all (we do not even
know its existence). An important example of such a model arises in the analysis
of survival data of patients infected by the AIDS virus from contaminated blood
transfusions (Chen, Chao and Lo (1995) and Lagakos, Barraj and De Gruttola
(1988)). A feature of HIV (AIDS) development is the induction period between
infection with the AIDS virus and the onset of clinical AIDS. The data collected
on persons infected by contaminated blood transfusions provide a unique source
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of information on the induction period. Of persons infected in this way, only those
who have developed AIDS can be identified. Let Y denote the chronological time
of infection and X∗ denote the induction period and assume they are independent.
Suppose that one can only observe a random sample of patients who are infected
and develop AIDS in some chronological time interval [0, b]. Let X = b − X∗.
Then the pair (X,Y ) is observed if and only if 0 ≤ Y ≤ X(≤ b).

Another example arises in astronomy. As briefly explained in Woodroofe
(1985) and Chen, Chao and Lo (1995), the absolute and apparent luminosities of
an astronomical object are defined in terms of its brightness at a fixed distance
from Earth. The magnitude is defined to be the negative logarithm of luminosity.
Since one can only observe those objects which are bright enough the apparent
magnitude must be small enough, say less than or equal to some constant a. It
is well accepted in cosmology that the apparent magnitude can be expressed as
the sum of a function of redshift, denoted by X ′, and the absolute magnitude,
denoted by Y ′, and that the redshift and the absolute magnitude may be assumed
to be independent. If we let X = −X ′ and Y = Y ′ − a, the condition for
the observability of a celestial object becomes X ≥ Y . This yields the model
described above.

Many other important examples can be found in econometrics (Tobin (1958),
Amemiya (1985) and Tsui, Jewell and Wu (1988)) and in astronomy (Lynden-Bell
(1971) and Jackson (1974)).

We regard the observed samples Xi, Yi, i = 1, . . . , n as being generated by a
large sample of independent random variables Xj , Yj, j = 1, . . . , N, where n =
n(N) is given by

∑N
j=1 I{Xj ≥ Yj}. We assume that α = P (Y ≤ X) > 0. Now,

given n, we may consider the observed data to be the outcome of an i.i.d. sample
with distribution function

H∗(x, y) = P (X ≤ x, Y ≤ y|Y ≤ X) = α−1
∫ x

−∞
G(y ∧ z)dF (z),

where a∧ b = min(a, b)(a ∨ b = max(a, b) below). It follows from the SLLN that
n/N → α a.s. as N → ∞. Let

F ∗(x) = H∗(x,∞) = α−1
∫ x

−∞
G(z)dF (z)

and
G∗(y) = H∗(∞, y) = α−1

∫ ∞

−∞
G(y ∧ z)dF (z)

be the marginals of H∗. The observed X’s and Y ’s thus have distribution func-
tions F ∗ and G∗, respectively. For simplicity of presentation, we assume that X

and Y are nonnegative random variables.



KERNEL DENSITY AND HAZARD FUNCTION 523

The quantity Λ(x) = − log(1 − F (t)) is the cumulative hazard function. It
plays an important role in the truncation model. For any distribution function
L, take the left and right endpoints of its support to be aL = inf{x : L(x) > 0}
and TL = sup{x : L(x) < 1}.

Woodroofe (1985) pointed out that F can be estimated only if aG ≤ aF and
showed that

Λ(x) =
∫ x

aF

dF ∗(z)
C(z)

, aF < x < TF ,

with C(z) = G∗(z)−F ∗(z) = α−1G(z)(1−F (z)), aF < x < TF . Note that C(z)
is consistently estimated by Cn(z) = n−1 ∑n

i=1 I(Yi ≤ z ≤ Xi), while the above
representation of Λ in terms of F ∗ and C suggests estimation of Λ by

Λn(x) =
∫ x

aF

dF ∗
n(z)

Cn(z)
= n−1

∑
i:Xi≤x

C−1
n (Xi).

The nonparametric maximum likelihood estimator (MLE) of F was derived
by Lynden-Bell (1971) and is given by

1 − F̂n(x) =
∏

{i:Xi≤x}

′ [
1 − rn(Xi)

nCn(Xi)

]
, (1.1)

where rn(x) =
∑n

i=1 I(j ≤ n : Xj = x), Cn(x) = n−1 ∑n
j=1 I(Yj ≤ x ≤ Xj) and∏′ extends over all pointwise distinct X1, . . . ,Xn. Nicoll and Segal (1980) derived

MLEs for grouped data; and Bhattacharya, Chernoff and Yang (1983) derived
MLEs from a conditional likelihood function of certain counts, given the observed
X-values. Bhattacharya, Chernoff and Yang (1983) constructed nonparametric
estimators of regression parameters in linear models, and showed the asymptotic
normality of the estimation error, properly normalized. Bhattacharya (1983) also
considered the asymptotic distribution of a goodness-of-fit statistic with a view
towards testing hypotheses about regression parameters.

In the left truncation model, F̂n(x) has been generally accepted as a substi-
tute for the empirical distribution function. Woodroofe (1985) proved the weak
convergence of F̂n(t) to a certain Gaussian process in the space D[a, b] and the
convergence of F̂n(t) in probability under the integral condition

∫ ∞
aF

dF/G < ∞.
It should be noticed that the only condition for the uniform weak consistency
of the PL-estimator F̂n over [aF ,∞) to hold is that aF ≥ aG. Strong uniform
consistency has been proved by Wang, Jewell and Tsai (1986) and Wellek (1990)
in case of aF > aG. In the case aG = aF , Woodroofe (1985) and Keiding and Gill
(1990) obtained the weak uniform consistency of the PL-estimator F̂n(x). Chen
Chao and Lo (1995) also considered the strong uniform consistency of F̂n(t) in
the case aF = aG without any integral conditions.
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Chao and Lo (1988) and Stute (1993) derived an almost sure representation
of F̂n under the different integral conditions

∫ ∞
aF

dF/G < ∞ and
∫ ∞
aF

dF/G2 < ∞,
respectively.

In fact, the left truncation model can be extended to the left truncation and
right censorship model (LTRC). Gijbels and Wang (1993) and Zhou (1996) ob-
tained a strong i.i.d. representation for the product-limit estimator (Tsai, Jewell
and Wang (1987)), an extension of Lynden-Bell product-limit estimator, under
different conditions on the support of the distributions. Hence the results of this
paper can be extended to the left truncation and right censorship model.

In this paper, we write∫ t

s
f(x)dg(x) =

∫
(s,t]

f(x)dg(x) and
∫ t

a
f(x)dg(x) = 0, if t ≤ a.

We can construct a kernel estimator of f based on F̂n(x). Thus

fn(t) = a−1
n

∫ ∞

aF

k

(
t − x

an

)
dF̂n(x), (1.2)

where {an, n ≥ 1} is a sequence of bandwidth tending to zero at appropriate
rates and k is a smooth probability kernel. The hazard rate function λ(t) = Λ′(t)
is defined by

λ(t) =
f(t)

1 − F (t)
, for F(t) < 1. (1.3)

An estimate for the hazard function λ(t) for an i.i.d. sample X1, . . . ,Xn, at risk
of being truncated from the left, is defined by

λn(t) = a−1
n

∫ ∞

aF

k

(
t − x

an

)
dΛn(x). (1.4)

We establish convergence properties of the kernel estimators fn(x) and λn(x).
To formulate our results, let

f̄n(t) = a−1
n

∫ ∞

aF

k

(
t − x

an

)
dF (x),∆n(t) = fn(t) − f̄n(t) − α[f∗

n(t) − Ef∗
n(t)]

G(t)
,

λ̄n(t) = a−1
n

∫ ∞

aF

k

(
t − x

an

)
dΛ(x), Θn(t) = λn(t) − λ̄n(t) − f∗

n(t) − Ef∗
n(t)

C(t)
,

f∗
n(t) = a−1

n

∫ ∞

aF

k

(
t − x

an

)
dF ∗

n(x),

where F ∗
n(x) is the empirical distribution function of X1, . . . ,Xn and EF ∗

n(x) =
F ∗(x).

To prove the consistency of the kernel density and hazard function estima-
tors, we only consider the situation aG ≤ aF .
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Theorem 1.1. Let aG < aF . Suppose k is a bounded variation probability kernel
vanishing outside some finite interval −∞ < r < 0 < s < ∞. Let f = F ′ and
g = G′ be bounded on [aF , T ] for some aF < T < TF . Then

sup
aF <t≤T

|∆n(t)| = Op

( log n

nan

)
+ Op(n− 1

2 ),

sup
aF <t≤T

|∆n(t)| = O
( log n

nan

)
+ O((n−1 log log n)

1
2 ) a.s.

Theorem 1.2. Under the assumptions of Theorem 1.1.

sup
aF <t≤T

|Θn(t)| = Op

( log n

nan

)
+ Op(n− 1

2 ),

sup
aF <t≤T

|Θn(t)| = O
( log n

nan

)
+ O((n−1 log log n)

1
2 ) a.s.

Stute (1993) found asymptotic representations of Λn(x)−Λ(x) and F̂n(x)−
F (x) under the condition (apart from aG ≤ aF )∫ ∞

aF

dF (z)
G2(z)

< ∞. (1.5)

Obviously, when aG < aF , (1.5) is satisfied. The more interesting situation
is aF = aG = a, that is, F (a) = G(a) = 0 but F,G > 0 on (a,∞). In this case
we obtain weaker rates of convergence for kernel density and hazard function
estimators than those of Theorem 1.1 and Theorem 1.2. Note that rates are
derived under (1.5) and the condition∫ ∞

aF

dF (z)
Gp(z)

< ∞ (1.6)

for p ≥ 2.

Theorem 1.3. Suppose that the conditions of Theorem 1.1 hold. If aG = aF

and (1.6) is satisfied, then for any ε > 0 and δ > 0,

sup
aF <t≤T

|G(t)∆n(t)|=


o
(
a
− 1

2p
n

( log1+ε n

n

) 1
2
)
+O

((log n)1+δ

nan

)
a.s. if p ≥ 3,

o
(
a−1

n

( log1+ε n

n

) 1
2
)
+O

((log n)1+δ

nan

)
a.s. if 2 ≤ p < 3,

and

sup
aF <t≤T

|C(t)Θn(t)| =


o
(
a
− 1

2p
n

( log1+ε n

n

) 1
2
)
+O

((log n)1+δ

nan

)
a.s. if p ≥ 3,

o
(
a−1

n

( log1+ε n

n

) 1
2
)
+O

((log n)1+δ

nan

)
a.s. if 2≤p<3.
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Remark 1.1. If “supaF <t<T ” in Theorem 1.3 is replaced by “supc≤t≤T ”, for
some constant c > aF , then the orders of convergence in the results of Theorem
1.3 are the same as those in Theorems 1.1 and 1.2 under the integral condition
(1.5).

Using Theorem 1.1 and Theorem 1.3, we can derive many of the asymptotic
properties of the kernel density estimator fn(x). Moreover, we can obtain similar
results for the hazard function estimator λn from Theorems 1.2 and 1.3. We need
the following assumptions for the bandwidth {an, n ≥ 1}.
Assumptions. Let {an, n ≥ 1} be a sequence of positive constants such that

(i) (log n)2

nan log log n → 0,

(ii) log a−1
n

nan
→ 0, log a−1

n
log log n → ∞, and (log n)2

nan log a−1
n

→ 0,

(iii) a
p−1

p
n log1+ε n

log log n → 0 and (log n)3+ε

nan log log n → 0 for any ε > 0 and some p ≥ 3,

(iv) a
p−1

p
n log1+ε n

log a−1
n

→ 0 and (log n)3+ε

nan log a−1
n

→ 0 for any ε > 0 and some p ≥ 3.

As a first application of the theorems, we determine the pointwise almost
sure convergence rate.

Corollary 1. Assume that an → 0 and nan → ∞ in such a way that

lim
ε→0

lim
n→∞ sup

m

∣∣∣∣am

an
− 1

∣∣∣∣ = 0,

where the supremum is taken over values of m with |m − n| ≤ nε, and (a) if
aG < aF and {an, n ≥ 1} satisfies assumption (i), or (b) if aG = aF , (1.6) is
satisfied for p ≥ 3 and {an, n ≥ 1} satisfies assumption (iii), we have

lim sup
n→∞

±
( nan

2 log log n

) 1
2 (fn(t) − f̄n(t)) =

[αf(t)
G(t)

∫
k2(y)dy

] 1
2

a.s.

Proof. After Theorem 1.1 and Theorem 1.3, we obtain Corollary 1 by Theorem
2 of Hall (1981).

Corollary 2. Assume that on [T1, T2], aF < T1 < T2 < T , we have f ≥ m > 0.
Let an ↓ 0 and nan ↑ ∞. (a) If aG < aF , and {an, n ≥ 1} satisfies assumption
(ii), or (b) if aG = aF , (1.6) is satisfied for p ≥ 3 and {an, n ≥ 1} satisfies
assumption (ii) and (iv), we have

lim
n→∞

( nan

2 log a−1
n

) 1
2 sup

T1≤t≤T2

(G(t)
f(t)

) 1
2 |fn(t) − f̄n(t)| =

[
α

∫
k2(y)dy

] 1
2

a.s.
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The result is an easy consequence of Theorem 1.1, Theorem 1.2 and Theorem 1.3
of Stute (1982).

2. Proofs of Theorems

We prove only Theorem 1.1 and the first result of Theorem 1.3 for the kernel
density estimator fn, since the arguments are similar for the hazard function
estimator λn.

Lemma 2.1.
(a) Assume aG < aF . Then, uniformly in aF < x ≤ T < TF ,

Λn(x) − Λ(x) = Ln(x) + Rn(x), (2.1)

Fn(x) − F (x) = (1 − F (x))Ln(x) + R0
n(x), (2.2)

with supaF <x≤T |Rn(x)| = supaF <x≤T |R0
n(x)| = O(n−1 log n) a.s., where

Ln(x) =
∫ x

aF

C−1(z)d[F ∗
n (z) − F ∗(z)] −

∫ x

aF

Cn(x) − C(x)
C2(x)

dF ∗(x).

(b) If aG = aF = 0, and (1.5) hold, then (2.1) and (2.2) hold with

sup
aF <x≤T

|Rn(x)| = sup
aF <x≤T

|R0
n(x)| = o(n−1(log n)δ) a.s. for δ > 3/2.

Proof. Assertion (a) follows from (b) and (c) of Theorem 1 of Gijbels and Wang
(1993). The result (b) follows from Theorem 1 of Stute (1993) and Theorem 2
of Zhou (1996).

Remark 2.1. According to results of Zhou (1996) and Gijbels and Wang (1993),
Lemma 2.1 still holds when the left truncation model is extended to the left
truncation and right censorship model. Hence corresponding results for truncated
and censored data hold.

Proof of Theorem 1.1 and Theorem 1.3. By (2.2) and integration by parts,
we have

fn(x) − f̄n(x) = n−1
∫ ∞

0
k
(x − t

an

)
d[Fn(t) − F (t)]

= a−1
n

∫ ∞

0
(1 − F (t))

∫ t

aF

C−1(z)d[F ∗
n (z) − F ∗(z)]dk

(x − t

an

)
−a−1

n

∫ ∞

0
(1 − F (t))

∫ t

aF

Cn(z) − C(z)
C2(z)

dF ∗(z)dk
(x − t

an

)
+a−1

n

∫ ∞

0
R0

n(t)dk
(x − t

an

)
= I1 + I2 + I3. (2.3)
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When aG < aF , put u = (t − x)/an. It follows from a change of variables that
for sufficiently large n

|I2| ≤ a−1
n

∣∣∣ ∫ s

r
[1 − F (x − anu)]

∫ x−anu

x

Cn(z) − C(z)
C2(z)

dF ∗(z)dk(u)
∣∣∣

+a−1
n

∣∣∣ ∫ x

aF

Cn(z) − C(z)
C2(z)

dF ∗(z)
∣∣∣∣∣∣ ∫ s

r
[1 − F (x − anu)]dk(u)

∣∣∣
≤ sup

0≤x≤T ′
|Cn(x) − C(x)| sup

0<x<T ′
f(x)

[ α

G(a)(1 − F (T ′))2

∫
|dk(u)| + M

]
,

uniformly on aF < x ≤ T , where α = P (X ≥ Y ), M = |r| ∨ s and aG < a ≤ aF ,
T ≤ T ′ < TF .

Thus we have

sup
aF <x≤T

|I2| =

{
Op(n− 1

2 ),
O((n−1 log log n)

1
2 ) a.s.

(2.4)

From (2.2),

sup
aF <x≤T

|I3| ≤ a−1
n sup

a≤x≤T ′
|R0

n(x)|
∫ ∣∣∣dk(u)

∣∣∣ = O
( log n

nan

)
a.s. (2.5)

where aG < a < aF and k is of bounded variation.
For I1, integration by parts yields

I1 = a−1
n

∫ ∞

0
[1 − F (t)]

F ∗
n(t) − F ∗(t)

C(t)
dk

(x − t

an

)
−a−1

n

∫ ∞

0
[1 − F (t)]

∫ t

aF

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)dk

(x − t

an

)
= I ′1 + I ′2.

Since aG < aF , G(a) > 0 if aG < a ≤ aF . Put u = (x − t)/an. For sufficiently
large n we have

|I ′2| ≤ a−1
n

∣∣∣ ∫ s

r
[1 − F (x − anu)]

∫ x−anu

x

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)dk(u)

∣∣∣
+a−1

n

∣∣∣ ∫ x

aF

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)

∣∣∣∣∣∣ ∫ s

r
[1 − F (x − anu)]dk(u)

∣∣∣
≤ sup

0≤x≤T ′
|F ∗

n(x) − F ∗(x)|
{ α2M

G2(a)[1 − F (T ′)]2
sup

0≤x≤T ′
|C ′(x)|

∫
|dk(u)|

+
∣∣∣ 1
C(T )

− 1
C(aF )

∣∣∣ sup
0≤x≤T ′

f(x)
}

=

{
Op(n− 1

2 )
O((n−1 log log n)

1
2 ) a.s.

(2.6)
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uniformly in aF < x ≤ T , where α = P (Y ≤ X) > 0, M = |r| ∨ s and
aG < a ≤ aF , T ≤ T ′ < TF .

Another integration by parts, gives

I ′1 = αa−1
n

∫ ∞

0

F ∗
n(t) − F ∗(t)

G(t)
dk

(x − t

an

)
=

α

anG(x)

∫ ∞

0
[F ∗

n(t) − F ∗(t)]dk
(x − t

an

)
+

α

anG(x)

∫ ∞

0

1
G(t)

[F ∗
n(t) − F ∗(t)][G(x) − G(t)]dk

(x − t

an

)
=

α

G(x)
[f∗

n(x) − Ef∗
n(x)] + I ′′1 .

It follows from the results for empirical processes that

sup
aF <x≤T

|I ′′1 | ≤
α

anG2(a)
sup

0≤x≤T ′
|F ∗

n(x) − F ∗(x)|
∫ s

r
|G(x) − G(x − anu)||dk(u)|

=

{
Op(n− 1

2 )
O((n−1 log log n)

1
2 ) a.s.

(2.7)

Hence,

sup
aF <x≤T

∣∣∣I ′1 − α

G(x)
[f∗(x) − Ef∗

n(x)]
∣∣∣ =

{
Op(n− 1

2 ),
O((n−1 log log n)

1
2 ) a.s.

(2.8)

Theorem 1.1 follows from (2.3), (2.4), (2.5) and (2.8).
When aG = aF , the proofs are more difficult. We assume aG = aF = 0

without loss of generality. The following lemma is needed in the proof of Theorem
1.3.

Lemma 2.2. Assume aG = aF = 0 and (1.6). Then for any ε > 0 and p ≥ 2,

sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

Cn(z) − C(z)
C2(z)

dF ∗(z)
∣∣∣ = o

(
a

2p−1
2p

n

( log1+ε n

n

) 1
2
)

a.s. (2.9)

If “sup0<x≤T ” in (2.9) is replaced by “supc≤x≤T” for some given c > 0, then the
right side of (2.9) is o(n−1a2

n log1+ε n)1/2 under the integral condition (1.5).

Proof. By the Cauchy-Schwarz inequality, we have

sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

Cn(z) − C(z)
C2(z)

dF ∗(z)
∣∣∣

≤ sup
0<x≤T ′

∣∣∣Cn(x) − C(x)

(C(x))
1
2

∣∣∣ sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

dF ∗(z)

C
3
2 (z)

∣∣∣
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≤ M sup
0<x≤T ′

∣∣∣Cn(x) − C(x)

(C(x))
1
2

∣∣∣ · sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

dF

Gp

∣∣∣ 1
2p

∣∣∣ ∫ x−anu

x
dF

∣∣∣ 2p−1
2p

≤ Ma
2p−1
2p

n sup
0<x≤T ′

∣∣∣Cn(x) − C(x)

(C(x))
1
2

∣∣∣, (2.10)

where M is an absolute constant and T ≤ T ′ < TF .
On the other hand

sup
0<x≤T ′

∣∣∣Cn(x)−C(x)

(C(x))
1
2

∣∣∣ ≤ α
1
2 [1 − F (T ′)]−

1
2

{
sup

0<x≤T ′

∣∣∣G∗
n(x) − G∗(x)

(G∗(x))
1
2

∣∣∣(G∗(x)
G(x)

) 1
2

+ sup
0<x≤T ′

∣∣∣F ∗
n(x) − F ∗(x)

(F ∗(x))
1
2

∣∣∣(F ∗(x)
G(x)

) 1
2
}
.

On 0 < x ≤ T ′ we have, by (1.6),

∞ >

∫ T ′

0

1
Gp(z)

dF (z) ≥
∫ x

0

1
Gp(z)

dF (z) ≥ αF ∗(x)
Gp+1(x)

.

Then for some constant c > 0,

F ∗(x) ≤ cGp+1(x). (2.11)

Hence (F ∗(x)
G(x)

) 1
2 ≤ c

1
2 G

p
2 (x) < ∞ (2.12)

uniformly in 0 < x ≤ T ′, and(G∗(x)
G(x)

) 1
2 ≤

( 1
αG(x)

∫ ∞

0
G(x ∧ y)dF (y)

) 1
2

≤
( 1
α

∫ ∞

0
dF (y)

) 1
2

< ∞ (2.13)

uniformly in 0 < x ≤ T ′.
Furthermore, from Csáki (1975), we have for any ε > 0,

sup
x>0

∣∣∣L(x) − L(x)

(L(x))
1
2

∣∣∣ = o
(( log1+ε n

n

) 1
2
)

a.s. (2.14)

for L(x) = F ∗(x) and L(x) = G(x), respectively. Thus, from (2.11)-(2.14), we
obtain

sup
0<x≤T ′

∣∣∣∣∣Cn(x) − C(x)

(C(x))
1
2

∣∣∣∣∣ = o
(( log1+ε n

n

) 1
2
)

a.s. (2.15)
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From (2.10) and (2.15), the lemma follows.
Now we proceed to prove Theorem 1.3. Assume that aG = aF = 0. Here the

representations of I1, I2 and I3 are the same as those in the proof of Theorem
1.1. Hence, it follows from Lemma 2.2 and (2.15) that

|I2| ≤ a−1
n sup

0<x≤T ′
sup

r≤u≤s

∣∣∣ ∫ x−anu

x

Cn(z) − C(z)
C2(z)

dF ∗(z)
∣∣∣ ∫ s

r
|dk(u)|

+ sup
0<x≤T ′

∣∣∣Cn(x) − C(x)

(C(x))
1
2

∣∣∣ ∫ T ′

0

dF ∗(z)

C
3
2 (z)

sup
0<x≤T ′

f(x)

= o
(
a
− 1

2p
n

( log1+ε n

n

) 1
2
)

a.s.

From (2.14), we have

sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)

∣∣∣
≤ sup

x>0

∣∣∣F ∗
n(x) − F ∗(x)

(F ∗(x))
1
2

∣∣∣ sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

(F ∗(z))
1
2

C2(z)
dC(z)

∣∣∣
≤ Man sup

x>0

∣∣∣F ∗
n(x) − F ∗(x)

(F ∗(x))
1
2

∣∣∣ sup
0<x≤T

|C ′(x)|C p−3
2 (x),

where M is a constant which has different values in each appearance.
By (2.14) and the boundaries of f and g, we have

sup
0<x≤T

sup
r≤u≤s

∣∣∣ ∫ x−anu

x

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)

∣∣∣
=


o
(
an

( log1+ε n

n

) 1
2
)

a.s. for p ≥ 3,

o
(( log1+ε n

n

) 1
2
)

a.s. for 2 ≤ p < 3.

For |I ′2|, we have that uniformly in 0 < x ≤ T ,

|I ′2| ≤ a−1
n sup

0<x≤T
sup

r≤u≤s

∣∣∣ ∫ x−anu

x

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)

∣∣∣ · ∫ s

r
|dk(u)|

+Ma−1
n sup

0<x≤T

∣∣∣ ∫ x

0

F ∗
n(z) − F ∗(z)

C2(z)
dC(z)

∣∣∣ sup
0<x≤T ′

f(x)

=


o
(( log1+ε n

n

) 1
2
)

a.s. for p ≥ 3,

o
(
a−1

n

( log1+ε n

n

) 1
2
)

a.s. for 2 ≤ p < 3.
(2.16)
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Finally, we get

G(x)I ′1 = αa−1
n

∫ ∞

0
k
(x − t

an

)
d[F ∗

n(t) − F ∗(t)]

+αa−1
n

∫ ∞

0

1
G(t)

[F ∗
n(t) − F ∗(t)][G(x) − G(t)]dk

(x − t

an

)
.

From (2.14), if 0 < x ≤ T ,

αa−1
n

∣∣∣ ∫ ∞

0

1
G(t)

[F ∗
n(t) − F ∗(t)][G(x) − G(t)]dk

(x − t

an

)∣∣∣
≤ αa−1

n sup
x>0

|F ∗
n(x) − F ∗(x)|
(F ∗(x))

1
2

∫ ∞

0
G

p−1
2 (t)|G(x) − G(x − anu)||dk′(u)|

= o
(( log1+ε n

n

) 1
2
)

a.s.

Then

sup
0<x≤T

∣∣∣G(x)I ′1 − α[f∗
n(x) − Ef∗(x)]

∣∣∣ = o
(( log1+ε n

n

) 1
2
)

a.s. (2.17)

It follows from (2.5) that for any δ > 1/2,

sup
0<x≤T

G(x)|I3| = O
((log n)1+δ

nan

)
a.s. (2.18)

Theorem 1.3 follows from (2.16), (2.17) and (2.18).
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