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Abstract: Time series models of sampling error, true unobserved rates, and co-

variates can be used to pool data across time and space to reduce variance in a

subnational estimator. We present such models along with associated hierarchical

Bayesian analyses. Specifically, we present a joint time series model for a 51 U.S.

state labor force series in a Bayesian framework. Data are input in the form of opti-

mal composite estimates from a sampling error model. The basic time series model

is constructed from fractional Gaussian noise processes. Covariation of the true

series across states is modeled by having a common national component modified

by individual state components. Markov chain Monte Carlo methods are applied

to develop samplers for a high-dimensional system of 105 parameters. The results

indicate substantial gains in the efficient use of CPS data for U.S. state employment

and unemployment rates series.
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1. Introduction

Official statistical inferences on small area characteristics are often based on
survey data obtained from each small area, but sample sizes within those areas
are often too small to provide reliable estimates. In recent years, fitting time se-
ries models to repeated survey data has been proposed to pool data across time
to reduce variance in the survey estimator, see, e.g., Bell and Hillmer (1990),
Binder and Dick (1989), Pfeffermann (1992), and Tiller (1992). Pfeffermann and
Burck (1990) and Pfeffermann and Bleuer (1993) proposed state-space models
to improve small area estimation from both time series amd cross-sectional in-
formation. The model structure typically consists of two distinct models, with
the main model describing the evolution of true time series over time, and the
survey error model representing the sampling error pattern. For such state-space
models, the Kalman filter is often used to compute likelihoods and estimate pa-
rameters, and the signals are extracted based on the estimated parameter values.
However, the approach needs a specific model (e.g., ARIMA) for the sampling
errors over time.
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Rao and Yu (1994) also proposed a combined cross-sectional and time se-
ries model involving autocorrelated random effects and sampling errors with an
arbitrary covariance matrix over time. Their model has the same form as in Pf-
effermann and Burck (1990), which is an extention of the model due to Fay and
Herriot (1979), but they assumed a known block-diagonal covariance matrix for
the sampling errors. Basically, these models are special cases of a general mixed
linear model involving fixed and random effects. Therefore, the popular best
linear unbiased predictor (BLUP) methods can be used to estimate the small
area mean which can be expressed as a linear combination of fixed effects and
realized values of random effects. Estimation procedures for the uncertainty in
the variance components are also available in the literature, see e.g., Rao and Yu
(1994), Ghosh and Rao (1994), Prasad and Rao (1990), and Kackar and Harville
(1984).

The Bayesian approach for inference on the small area means has been con-
sidered in various studies since the posterior computation was feasible. The
purpose of this paper is also to illustrate applied Bayesian statistics in action.
However, our emphasis is not so much on Bayes as it is on scientific model con-
struction. The essence of our modeling of the labor force data is on getting the
science right. That is, on attempting to recognize major aspects of sample design,
temporal variation, and spatial variation.

We propose a stochastic system of three phases in a Bayesian framework that
are cumulative in the sense that Phase 2 builds on Phase 1, and Phase 3 will build
on Phases 1 and 2. The three phases relate to three different Gaussian linear
models developed to represent different phenomena in the data, each having its
own posterior sampler for sampling parameters. Phase 1 relates to sampling er-
ror of survey data. Phase 2 brings in time series models and develops estimation
methods that balance sampling error and time series properties of the true series
using familiar signal estimation methods joined with resampling schemes for pa-
rameter estimation. Phase 3 adds auxiliary variables to the already complicated
Phase 2.

To describe the system and proposed techniques, we consider the problems
of estimating employment rates (EMP) and unemployment rates (UNEMP) of 51
“small areas” consisting of the 50 United States plus the District of Columbia.
The major data source for analyzing the subpopulation characteristics is the
Current Population Survey (CPS), the monthly national survey of some 56,000
households conducted and tabulated by the U.S. Census Bureau for the Bureau
of Labor Statistics. For the 11 large states, about 2,700 - 5,000 households are
interviewed each month, while two thirds of the 51 small areas have monthly
sample sizes less than 1,000. The specific data described below cover the 48
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months of calendar years 1986 through 1989, and were used in developing both
models and associated computational methods. This particular selection of a
short time series resulted from a decision to focus on a recent period when the
CPS design was not undergoing discrete changes of sample sizes or sampling
frames. Our results are only meant to be indicative of the gains available from
efficient Bayesian combination of information sources. Contemporary application
of our methods would require analysis of more recent data, and allowance for
current survey design.

The CPS design tracks each selected household over a period of 16 months,
observing each household initially 4 times at monthly intervals, then making no
observations over the following 8 months, and finally observing again for 4 succes-
sive months of a second year. Under this 4-8-4 rotation scheme, 1/8 of the sample
is interviewed each month for the first time, 1/8 for the second time, . . ., and 1/8
for the eighth and last time. The standard approach to composite estimation
under this 4-8-4 scheme is motivated by the heuristic that a month-to-month
change can be more accurately estimated from households in which both of the
successive months are observed than it can from an equal number of observations
on different households in the successive months. A simple composite estimator
can therefore be defined by determining appropriate relative weights for two dis-
tinct unbiased estimators, namely the average (e.g., UNEMP) from households
not observed in the previous month, and the sum of the previous month’s com-
posite estimator and average month-to-month change from households observed
in both months.

As elaborated in Phase 1, a more detailed disaggregation of the sampled units
into subgroups makes possible a broader class of compositors (Hwang (1992),
(1996), Dempster and Hwang (1993), (1994)). The Phase 1 models we fit to
the data specify optimal choices in the broader class, leading to assessments of
optimal posterior standard errors. We find that the optimal compositor yields
efficiency gains of 5-10% for UNEMP and 25-45% for EMP, respectively. Such
gains are worth pursuing, but composite estimation alone is not a panacea. Be-
cause composite estimation does not incorporate the ideas of borrowing strength
across states and time series projection that are expected to be major sources of
potential efficiency gains, there is reason to pursue further variance reduction.

These two major sources of potential efficiency gains are incorporated and
implemented in Phase 2 to improve accuracy. Phase 2 of our analysis strategy
builds on Phase 1 in the sense that we carry forward, mostly unchanged, the
modeling and Bayesian variance components estimation procedures of Phase 1.
The difference comes in the final step of combining optimal compositors with
prior distributions for the targets UENMP and EMP. In place of arbitrary and
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unrealistic uniform prior distributions assigned to the true estimates in Phase 1,
we develop stochastic models of the time series of estimates, for use as prior
distributions for combination with the optimal compositors.

Section 2 starts with a brief description of Phase 1, the sampling error model.
The main part of Section 2 covers the detailed model constructions and choices
of Phase 2. The conditional posterior means and covariance matrices of the
51 true time series in Phase 1 are treated as sufficient statistics for the series
and are modeled as a sum of a national component and a state’s specific com-
ponent. Each of the components is further decomposed into nonseasonal and
seasonal components. Section 3 presents the techniques, including a computa-
tional framework for computing conditional posteriors, approximate likelihoods
and parameter samplers. Based on the sampled parameters, we compute the con-
ditional posterior means and covariance matrices of any target of interest which
is a combination of the components in the time series model. The approximate
posteriors are then obtained by averaging these conditional posteriors via Markov
chain Monte Carlo methods. The results shown in Section 4 indicate substantial
gains in the efficient use of CPS data for both the EMP and UNEMP series. In
addition, preliminary attempts at Phase 3 analyses that bring in nonCPS series
as covariates indicate further worthwhile savings (Hwang (1992)). We are not
reporting Phase 3 results here, pending model improvements.

2. Model Construction

2.1. Phase 1

The noise component of the Current Population Survey data represents error
that arises from sampling only a portion of the total population. Its structure
depends upon the CPS design and population characteristics. For the first phase,
we focus on those design features that are likely to have a major impact on the
variance and autocovariance structure of the sampling error.

An important feature of the CPS is the large overlap in sample units from
month to month. The sample is divided into eight independent panels or rotation
groups. Units are partially replaced each month according to a 4-8-4 rotating
panel. When new households are introduced into the sample, they are included
for four consecutive months, dropped out for eight months, returned for the same
four calendar months of the next year, and then dropped from the survey.

Another feature is that the use of a rotation system requires the periodic
selection of additional samples. A new term, stream, was defined as a set of
households and their successive replacements at 16 month intervals. Each new
“sample”, in the technical CPS sense of new households that are phased in over
an 8-month period, contributes to each of the 8 streams. Because the replacement
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of households within a stream is typically by neighboring households, it is evident
that 8 random stream effects can be anticipated to persist across the 48 month
observation period selected for study.

Therefore, the empirical input to our study is a pair of 51 × 48 × 8 data
arrays, one giving estimates of EMP and the other estimates of UNEMP. The
two arrays come from the same surveys, and could be analyzed jointly, but for
ease of modeling and analysis we treat them separately in parallel analyses. The
“51” dimension refers to the 50 U.S. states plus Washington DC, referred to in the
sequel as “51 states”. The “48” dimension refers to the 48 calendar months from
Jan. 1986 through Dec. 1989, and the “8” refers to the stream dimension that
provides replication internal to the survey design, and is the basis for compositing.

We developed a variance components model with 4 variances, represent-
ing variance among streams, variance among samples within a stream, variance
between the first and the second year within a sample within a stream, and a
residual variance. Each state has in principle its own 4-vector of variances. These
vary in part due to different sample sizes. But even after standardizing the vari-
ances to a “per sample household” basis that nominally adjusts for sample size
differences, there is apparent variation. Thus we felt it important to develop
statistical methodology to represent and fit state-to-state variation in the per
household 4-vectors of variances in the model of sampling error.

For each state, the EMP and UNEMP data input in the jth stream at time
t, denoted by Yt,j , is represented as the sum of month level µt, month-in-sample
bias effect ν, plus three random components: Sj for stream, Vj,g for sample g

within stream j, Wj,g for annual change within sample g within stream j, and
residual et,j . That is,

Yt,j = µt + ν + Sj + Vj,g + Wj,g + et,j ,

t = 1, . . . , n, j = 1, . . . , 8 and g = 1, . . . , gj ,

where n = 48 is the number of months and gj , a function of t within each j, is
the number of different samples in stream j. The four random components are
assumed normally distributed as follows:

Sj ∼ N(0, σ2
str)

Vj,g ∼ N(0, σ2
sam)

Wj,g ∼ N(0, σ2
lag)

et,j ∼ N(0, σ2),

and all these random quantities are assumed independent.
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Because a 48×8 data array for a single state is too small to produce accurate
point estimates of the 4 variances for that state, especially in the case of stream-
to-stream variance where only 7 degrees of freedom are available among the
8 streams, Dempster and Hwang (1994) developed a technique for borrowing
strength across states, specifically assigning to a normal distribution the logs
of the 4 variances across states whose parameters (“hyperparameters”) can be
roughly estimated.

Dempster and Hwang (1994) also developed a sampler to sample the four
variances from an approximate posterior distribution of the four variances. Given
a sample of the four variances and data Yt,j of the 51 states, we calculated the
conditional mean vector and covariance matrix of the n = 48 monthly levels
for state i, denoted as Z

(1)
i = (Z(1)

i1 , . . . , Z
(1)
in ) and Σ(1)

i , respectively and used
these as input data for Phase 2 model construction in Section 2.2. The form of
covariance matrix Σ(1)

i is a little complicated. But, the conditional mean level of
the ith state for the tth month is a composite estimator which can be explicitly
written as

Z
(1)
it =

8∑
j=1

cjYt,j +
t−1∑
l=1

8∑
j=1

bljYt−l,j, t = 2, . . . , n, (1)

where
8∑

j=1

cj = 1,
8∑

j=1

blj = 0 for l = 1, . . . , t − 1.

The noncomposite or raw estimator of the monthly level can be also rep-
resented as equation (1) by choosing cj = 1/8, j = 1, . . . , 8 and setting blj = 0.
That is, simply average the original 8 stream estimates. The conditional variance
of the noncomposite estimator is the sum of the four given variances divided by
8.

To obtain posterior means and variances of the composite and noncomposite
estimators, we repeat drawing four variances from the sampler of approximate
posterior distribution of the four variances a total of K times. The posterior
variance of the noncomposite estimator is the average of these K conditional
variances. The posterior mean of the composite estimator, which we call the
Phase 1 estimate, is the average of the K simulated conditional posterior means.
The posterior variance for the Phase 1 estimate is the sample variance of the
K simulated means plus the average of the K simulated conditional posterior
variances.

2.2. Phase 2

Let Zi = (Zi1, . . . , Zin)T be the true series of length n = 48 for the ith state.
We model these 51 series simultaneously so that each individual series consists
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of a common national component and its deviation from the national level. The
reason for this decomposition is that it is a simple and plausible way to represent
correlation among the 51 time series. We might try to group states in different
ways, to allow for regional effects, or for industry effects, and develop a more
complicated factor model. In view of the limitation on data, and inexperience
with the statistical methods, we preferred to start with a simple dependence
structure, yet one capable of picking up an important source of dependence. The
common component can be estimated using all 51 states whence only the state-
specific component relies on data from a single state. The national component
is further decomposed into three components, namely, a fixed effects component
for a seasonal pattern that repeats each year, and two stochastic components for
nonseasonal and seasonal trends. Similarly, we allow each state to have its own
repeating seasonal pattern, and stochastic nonseasonal and seasonal components.

The joint model of the 51 true series is defined as

Z
(1)
i = Zi + Ei

= Jµ + τiN + S + JPi + Ni + Si + Ei, (2)

Ei ∼ N(0,Σ(1)
i ), i=1, . . . , 51.

Equation (2) is interpreted as a mechanism for combining two sources of informa-
tion about the unknown Zi. First, the Z

(1)
i and Σ(1)

i are the point estimates and
associated error covariance matrices of Zi obtained from Phase 1 of the sampling
error model, though in practice they are represented only approximately from a
posterior sampler that samples the Zi from its posterior given only the 48 months
of sample data and a uniform prior on Zi. Second, the decomposition of the Zi

into 6 terms defines a genuine prior distribution for the Zi (i.e., prior to the
sample data). Combining the prior and sample information leads to our Phase 2
posterior for Zi. The component µ = (µ1, . . . , µ12)T represents the 12 months’
fixed effects of the national seasonal pattern. Matrix J = (I12, . . . , I12)T is a lin-
ear operator mapping the seasonal pattern to each year. The other components
on the right-hand side of (2) are stochastic components or random effects repre-
senting, respectively, the national nonseasonal term with a factor τi for the ith
state, the national seasonal term, the seasonal pattern, and lastly nonseasonal,
seasonal, and sampling error terms for the ith state.

We also assume that the 51 states’ deviation components (Pi,Ni,Si) are
independent of each other, both within and between states, in the joint model.
The dependence of Z1, Z2, . . . , Z51 is induced by the national components. Fur-
thermore, Gaussian models will be used throughout, since these are essentially
the only ones that are practicable with current computing tools and they appear
to cover most situations adequately.
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The vector µ is used to model the initial levels of the national time series for
the 12 calendar months. It is assumed to have a diffuse distribution a priori. Thus
µ is assumed to be normally distributed with mean zero and covariance Σµ → ∞.
But for each state the seasonal pattern may have its own characteristics. This
stochastic phenomenon is expressed for each state as

Pi ∼ N(0, σ2
P I12).

In modeling the nonseasonal and seasonal terms, we turn to the theory of
stationary time series and in particular to a relatively new class of Gaussian
models based on the so-called fractional Gaussian noise (fGn) process (Carlin
and Dempster (1989)). A unit variance fGn process has autocovariance function
γ(t; d) defined for all integer lags t with a shape parameter 0 < d < 1, where

γ(t; d) =
1
2
[|t − 1|1+d − 2|t|1+d + |t + 1|1+d]. (3)

Let Σd
N be the Toeplitz matrix with first row γ(0; d), . . . , γ(n − 1; d), the

autocovariances of a unit variance fGn process with shape parameter d, length
n. Recall that Σ = (σjk) is Toeplitz whenever σjk = σ|j−k|, i.e., the value of any
entry is a function only of its distance to the main diagonal. Thus, it is easy to
see that the first row (or column) defines a Toeplitz matrix. Here the subscript N

is introduced in order to distinguish this covariance matrix from one later used in
the modeling of seasonal components. Thus the nonseasonal random component
is

N ∼ N(0,Σd
N ), (4)

Ni ∼ N(0, λ2
i Σ

d
N ), (5)

where λi is a scale parameter.
Next we turn to modeling the stationary seasonal processes. Here we use a

seasonal analogue of fGn, where the autocovariance function is

γS(t; d) =

{
γ(t/12; d), t = 0 mod 12
0, otherwise.

This is a very simple modification of the basic nonseasonal fGn process and
could be elaborated in other ways; see Carlin (1987). Let Σd

S be the Toeplitz
matrix with first row γS(0; d), . . . , γS(n − 1; d); then

S ∼ N(0, σ2
NΣd

S), (6)

Si ∼ N(0, σ2
SΣd

S), (7)
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where σN and σS are two scale parameters for nation and state, respectively.
The reason for choosing the fGn process as the building block of the time

series models has been supported by some empirical results. The true time series
of each state is modeled as a sum of a national component and the state’s devi-
ation from the national level. Each of these two components has a nonseasonal
stochastic term which is set to be a scale parameter times a unit variance fGn
process.

An important characteristic of fGn process is its approximately linear spec-
tral density with slope −d on the log–log scale. In our model the spectral densities
of the national component and each state’s deviation component are straight lines
with peaks at the Fourier frequencies in log–log scale. This property provides a
basis for checking whether this model will fit the data.

The data for the time series model are 51 series of optimal composite esti-
mates from the sampling error model. That is {Z(1)

i }51
i=1. Let Z̄, the average of

these 51 series, be an estimate of the national component. The deviation series
{Z(1)

i − Z̄}51
i=1 are used to estimate the state’s common component of deviation

from the nation.
It is a known property of the periodogram that the expected periodogram of

the averaged series, Z̄, converges uniformly to the spectral density of the national
component in the model at Fourier frequencies in (0, 0.5]. So we can compute
the expected periodograms and plot them with the spectral density of a unit
variance fGn process with proper shape parameter value. If the model, equation
(4) is reasonable, then we should get two roughly parallel lines in the log scale.

The expected periodogram (expected under sampling error) of the average
of the 51 series, Z̄, is estimated by the sum of the 51 individual periodograms
divided by 51 squared. Similarly for the state’s deviation component, we may
average the 51 periodograms of the state’s deviation series to compare with the
spectral density of a unit variance fGn process with proper shape parameter
value. If we obtain two parallel lines, we are comfortable with the selected model
in equation (5). The expected periodograms for nation and state drawn in solid
curves in Figure 1 are computed based on a set of optimal composite estimates
Z

(1)
1 , . . . , Z

(1)
51 from Phase 1. The dotted line is the spectral density of a unit

variance fGn process with d = 0.99.
The pictures provide strong support for our choice of a time series model

with long memory for the nation and state components. Note that in choosing
the shape parameter value d we compare the posteriors of log likelihood of several
d values and we find that d = 0.99 is a better choice for both UNEMP and EMP
(Hwang (1992)).
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Figure 1. The expected periodograms of national components and the av-
eraged periodograms of state’s deviation from national level and spectral
density of unit variance fGn process with shape parameter d = 0.99.

Another model choice issue is whether to introduce state-specific variation in
one or both of nonseasonal and seasonal compnents. There are four possibilities
that we denote schematically by 1N + 1S, 1N + 51S, 51N + 1S, and 51N + 51S.
For example, 51N + 1S means that we introduce state-to-state variation among
the nonseasonal components of the time series, but we impose a common non-
seasonal term across states, and similarly for the other three cases. To compare
different statistical models for the same data, we plot the posterior distribution
of the likelihood of each in Figure 2. This is an alternative to standard methods
of comparing models via penalized maximized likelihoods, where the posterior
variation spread downward from the maximum of the likelihood plays the role of
the penalty term in AIC. Motivation and theory concerning the use of posterior
likelihood can be found in Aitkin (1991), (1997), and Dempster (1997). The
posterior distributions of likelihood for the four models listed above are natural
byproducts of Bayesian Gibbs samplers. We selected the 51N + 51S model since
it clearly dominates the others in fit.
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Figure 2. Posterior distributions of the log likelihood for the four models.

We have specified model (2) with a parameter vector θ consisting of
{τ2

i , λ2
i }51

i=1, σ2
P , σ2

N , and σ2
S for the true time series Z = (Z1, . . . , Z51). For

our Bayesian analysis, first we have to at least develop a sampler for sampling θ

from its posterior and compute the conditional estimate of any target given θ and
{Z(1)

i ,Σ(1)
i }51

i=1. The target here may be any linear function of the components in
the joint model. For example, the target may be the whole series of a state; then
it equals the sum of the 6 components. The approximate posterior mean and
covariance matrix of the target are obtained through the following procedures.
First, a large number of conditional posteriors of the target are computed. Each
of the conditional posteriors is based on a new set of Z

(1)
i and Σ(1)

i from Phase 1
and a sample θ from the approximate posterior of the parameters in Phase 2.
Second, we average these conditional posteriors across the posterior of parame-
ters in Phase 1 and the posterior of θ in Phase 2 by approximate Monte Carlo
method in the usual way, i.e., the approximate posterior mean is the average
of the simulated conditional posterior means, and the approximate posterior co-
variance matrix is the sum of the average of the conditional posterior covariance
matrices and the sample covariance matrix of the conditional posterior means.
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Sampling of θ, and the computation of conditional posterior means and vari-
ances, requires the likelihood function of the parameter vector θ. The likelihood
of θ is very complicated, so there is no easy way to derive an exact posterior
distribution of θ for sampling use. We overcome this obstacle by computing
numerical likelihood values via a conceptual framework. The computations of
the posterior of θ and posterior of target are also based on the same framework.
These computational details are illustrated in the next section.

3. Computations

The computations of the conditional distribution and likelihood of compo-
nents in Gaussian linear models are simplified in a sweeping framework. The
formulas derived in Dempster (1982) are applied in the process of repeated com-
putation. The computational framework starts with a big array containing the
mean and covariance matrix of the initial joint distribution of observed data and
unknown components. The formulas produce the conditional distribution of the
components, and also the log likelihood, by sweeping (SWP) on the observed
data. The operators SWP and RSW (for reverse sweep) are defined and their
properties are described in Dempster (1969), (1982).

3.1. Framework

To obtain a likelihood or the conditional posterior of any target we have
to sweep on the observable Z

(1)
1 , Z

(1)
2 , . . ., Z

(1)
51 . Sweeping on Z

(1)
i , denoted as

SWP[Z(1)
i ], encounters Cov(Z(1)

i , Z
(1)
j ) for all j �= i, the sum of Σµ, τiτjΣd

N , and
σ2

NΣd
S, and approaches infinity. These operations can be avoided by initializing

the big covariance array by implementing SWP[µ], SWP[N ] and SWP[S] to re-
move temporarily the national components, making the blocks corresponding to
Cov(Z(1)

i , Z
(1)
j ) zero for all i �= j. The remaining steps involved in the complete al-

gorithm after initialization can now be represented as SWP[Z(1)
1 ], . . ., SWP[Z(1)

51 ]
and then RSW[µ], RSW[N ] and RSW[S] to sweep back these components.

A schematic illustration of the computational array for the initialized big
array with the three national components swept out is shown in Figure 3, where
row (and column) blocks are labeled according to a set of abbreviations: E is
expected values of estimates; Ti’s are targets; Z

(1)
i ’s are the observations. We

work in terms of the upper triangular half of the array, since the lower half is
redundant by symmetry. Sub-arrays are named in an obvious way by suitably
combining the abbreviations: for instance, the block that corresponds to the
variance of Z

(1)
i is labeled Z

(1)
i Z

(1)
i . Initial values are described as follows. First,

the sum of squares EE is set to zero. Next, the arrays EZ
(1)
i contain initially

the appropriate observed values which are the outputs of the sampling error
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model. The vector Eµ is initialized at zero, in accordance with the rule that all
blocks indexed by the fixed effects are zero except those crossing with observable
series or targets, because of the limiting infinite variance that has been swept
out. Arrays EN and ES also begin with value zero throughout, since that is the
prior mean of the generator. Finally, each ETi contains a prior mean of zero.

E Z
(1)
1 · · · Z

(1)
51 µ N S T1 · · · T51

E 0 Z
(1)
1 · · · Z

(1)
51 0 0 0 0 · · · 0

Z
(1)
1 Ω1 0 0 J τ1I I Λ1 0 0
...

. . . 0
...

... 0 0
. . . 0

Z
(1)
51 Ω51 J τ51I I 0 0 Λ51

µ −Σ−1
µ = 0 0 0 JT · · · JT

N −Σd−1

N 0 τ1I · · · τ51I

S −σ−2
N Σd−1

S I · · · I

T1 Λ1 0 0
...

. . . 0
T51 Λ51

Figure 3. Initial values for the computational array TI with national compo-
nents swept out.

Note that the national components µ, N and S have been swept out in Figure
3 so that the covariance blocks for any two Z’s and two T ’s are zero matrices.
The target here is the whole series, i.e.,

Ti = Jµ + τiN + S + JPi + Ni + Si.

The covariance matrix of Z(1) = (Z(1)
1 , . . . , Z

(1)
51 ) consists of 51 diagonal

blocks which are

Ωi = σ2
P JJT + λ2

i Σ
d
N + σ2

SΣd
S + Σ(1)

i , i = 1, . . . , 51.

The blocks Z
(1)
i µ, Z

(1)
i N and Z

(1)
i S are reduced to J , τiI and I, respectively, for

i = 1, . . . , 51. The covariance of Z
(1)
i and Ti is

Λi = σ2
P JJT + λ2

i Σ
d
N + σ2

SΣd
S .

Blocks µµ, NN and SS contain the negative inverse of covariance matrices of µ,
N and S, where Σ−1

µ is set to zero.
Initialization of the computational array is completed by considering the

covariances required for the TiTi blocks. These are determined in the familiar
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way, from the stochastic model structure of specific target quantities. Thus they
are Λi, i = 1, . . . , 51. For most inferential purposes, the diagonal elements of TiTi

are all that are needed, providing finally the posterior variances of the targets.
One interesting target is the seasonally adjusted series. The true seasonally

adjusted series for the ith state can be generated by τiN +Ni plus a fixed overall
mean µ̄. To make any inference on the deseasonalized series, we may just add
this target T ∗

i = µ̄ + τiN + Ni to the big array.
If the prior covariance matrix of the Z

(1)
i is of Toeplitz form, then the Levin-

son algorithm (Carlin (1987)) can be introduced to reduce the computational
burden from O(n3) to O(n2). In our case, the covariance Ωi is not a Toeplitz
matrix because the covariance matrix of sampling error term does not satisfy the
condition. The operations of the remaining stages are therefore carried out using
standard SWP.

Applying matrix operations on the above formulas we can obtain the final
values of the determinant, which is a by-product of the operations, the sum of
squares term, and the conditional posterior means and variances of the targets
from the final array. For the short series we are dealing with, computing time
to run the matrix operations several times is not a problem. But it is a com-
putational burden to compute the exact likelihood values for a large number of
θ’s. We need therefore to develop a valid and time saving approximation to the
likelihood.

3.2. Frequency domain representations

To obtain an approximation of the likelihood function, we transform the
model to the frequency domain, i.e., Fourier transform each term in model (2).
We actually apply a Fourier transform matrix as an operator on the time domain
generators, N , S, Pi, Ni, and Si and sampling error component Ei. The operator
is derived and the prior covariance matrix (given θ) of the Fourier transformed
components are shown to be close to diagonal in this subsection.

We start with frequency domain theory from the Cramér representation of a
stationary time series as a stochastic integral. The account given here is equiv-
alent but we prefer to work with finite representations using circular processes,
since the results follow from straightforward linear algebra, with no need to in-
voke the general theory of stochastic integration. It is also consistent with our
overall theme of keeping theoretical developments as closely as possible in tune
with their computational implementations.

To keep the mathematics completely elementary, suppose the observed series
of length n is taken from a circularly invariant process of length m. The usual
stationary process theory is the case where m → ∞. Asymptotics as n → ∞ can
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be thought about in several ways: either fixing the ratios k = m/n and letting
m and n both get large at the same rate, or letting k get large too. For the
immediate purpose, it matters little.

Formulas are simpler if the time origin is centered at the middle of the data.
So instead of writing the basic process as yt for t = 0, 1, . . . , n − 1, we will use
yt for t = −n−1

2 ,−n−1
2 + 1, . . . , n−1

2 , with points t at half-integer points if n is
even and whole integer points if n is odd. Also, the expressions for finite Fourier
transform are a little different for even and odd n and m. So we will assume in
the following that both n and m are even for consistency.

We denote the white noise frequency domain generators of the circular pro-
cess by

U0, U 1
m

, V 1
m

, . . . , U 1
2
− 1

m
, V 1

2
− 1

m
, V 1

2
,

where Uω multiplies a cosine and Vω multiplies a sine for ω = 0, 1
m , . . . , 1

2 .

Specifically the Cramér representation is

yt = (
f0

m
)

1
2 + (

2
m

)
1
2

m
2
−1∑

j=1

(f j
m

)
1
2 (U j

m
cos 2π

j

m
t + V j

m
sin 2π

j

m
t) + (

f 1
2

m
)

1
2 V 1

2
sin πt,

where t = −m−1
2 + l, l = 0, . . . ,m−1, and fω is the spectral density at frequency

ω.
The matrix terms denote the time series by column vector

Y = [y−m−1
2

, y−m−1
2

+1, . . . , ym−1
2

]T ,

the frequency domain generators by column vector

W = [U0, U 1
m

, V 1
m

, . . . , V 1
2
]T ,

and the m × m diagonal matrix with diagonal [(f0)
1
2 , (f 1

m
)

1
2 , (f 1

m
)

1
2 , . . . , (f 1

2
)

1
2 ]

by (f)
1
2 .

Thus the matrix form of Cramér representation is

Y = Hm(f)
1
2 W,

where Hm is the orthonormal finite Fourier transform matrix

Hm =




c0

c1

s1
...
cm

2
−1

sm
2
−1

sm
2




, (8)
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where the pairs of rows for j = 1, . . . , m
2 − 1 are

cj = (
2
m

)
1
2 (cos2π

j

m

1 − m

2
, · · · , cos2π j

m
t, · · · , cos2π j

m

m − 1
2

)

sj = (
2
m

)
1
2 (sin2π

j

m

1 − m

2
, · · · , sin2π

j

m
t, · · · , sin2π

j

m

m − 1
2

),

and ( 2
m)

1
2 is replaced by ( 1

m)
1
2 for the c0 and sm

2
.

In sampling terms, Y denotes the population while the sample is the piece
out of the middle at times t = −n−1

2 ,−n−1
2 + 1, . . . , n−1

2 . Denoting this piece
by Y n and the corresponding middle set of columns of Hm by Hn

m, we have the
Cramér representation of the data

Y n = Hn
m(f)

1
2 W.

Finally, for discussing asymptotics, we need notation for sample finite Fourier
transforms, specifically

F = HnY n.

Now we recall the original idea to treat F as the data. The key then be-
comes to understand the representation of F in terms of the frequency domain
generators W , or K in the following

F = HnHnT
m (f)

1
2 W

= K(f)
1
2 W. (9)

Explicit formulas for the elements of K are very simple, and easily derived using
the submatrix representation of Hm, together with same schematic representation
with n in place of m, and using the following formulas

m−1
2∑

t=−m−1
2

cos2πω′t cos2πω′′t =
1
2
[Dn(ω′ − ω′′) + Dn(ω′ + ω′′)]

m−1
2∑

t=−m−1
2

sin2πω′t sin2πω′′t =
1
2
[Dn(ω′ − ω′′) − Dn(ω′ + ω′′)]

m−1
2∑

t=−m−1
2

cos2πω′t sin2πω′′ = 0,

where
Dn(ω) =

sinπωn

sinπω
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is the Dirichlet kernel.
The matrix K has n rows and m columns. The n rows correspond to a cosine

at ω′ = 0, a cosine and a sine at ω′ = 1
n , . . . , a cosine and a sine at ω′ = j

n , . . . ,

and finally a sine at ω′ = 1
2 . Similarly, the m columns correspond to a cosine at

ω′′ = 0, a cosine and a sine at ω′′ = 1
m , . . . , a cosine and a sine at ω′′ = l

m , . . . ,

and finally a sine at ω′′ = 1
2 . Thus, the 2×2 piece of K with ω′ = j

n , ω′′ = l
m , is

(
1

nmg
)

1
2

[
Dn( l

m − j
n) + Dn( l

m + j
n) 0

0 Dn( l
m − j

n) − Dn( l
m + j

n)

]
, (10)

where q = 1 for 0 < i < n/2, and q = 2 for i = 0, n/2.
The covariance matrix of F , from (9), is

ΣF = KfKT ≡
(

σc
ij

σs
ij

)
n×n

. (11)

Here the elements σc
ij are the covariances corresponding to frequencies i/n

and j/n for cosine part. Similarly σs
ij is defined for sine part. Both σc

ij and σs
ij

converge to

δi−jKn ∗ f(
i

n
) + Mf · O(

log n

n
) as m → ∞,

where Kn(ω) = 1
nD2

n(ω) is the Fejer’s kernel, Mf is a constant and also can be
viewed as the derivative of f at i/n. See the proof in the appendix, or Ramos
(1988). Furthermore, well-known theory (see Hannan (1970)) shows that the
convolution

Kn ∗ f(ω) → f(ω) as n → ∞.

It is clear that the off-diagonal elements of ΣF will depend on the spectral
density of the process. For the white noise process, ΣF is a diagonal matrix since
its spectral density is a constant. For the fGn process we are concerned with
here, where spectral density is steep near zero frequency and flat and low in the
high frequency range, ΣF can be well approximated by keeping the submatrix of
ΣF corresponding to the first few low frequencies and letting the other entries
be zero except the diagonal elements.

Therefore, the frequency domain representation of model (2) is written as

Z
(1)F
i = JF µ + τiN F + SF + JFPi + N F

i + SF
i + EF

i , (12)

where Y F = HnY for each component Y . Models (2) and (12) are equivalent
under the linear transformation. The components of the right-hand side of (12)
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are still independent of each other and normally distributed. Thus we have

N F ∼ N(0,HnΣd
NHT

n )

SF ∼ N(0, σ2
NHnΣd

SHT
n )

JFPi ∼ N(0, σ2
P JF JFT )

N F
i ∼ N(0, λ2

i HnΣd
NHT

n )

SF
i ∼ N(0, σ2

SHnΣd
SHT

n )

EF
i ∼ N(0,HnΣ(1)

i HT
n ).

Note that the covariance matrix of JFPi is diagonal. We have noted that
the covariance matrix HnΣd

NHT
n of an fGn process is close to diagonal except the

upper left submatrix corresponding to the first small Fourier frequencies. The
empirical results show the sampling error process EF

i also has the same property.
Now we recall the time domain big initial array in Figure 3. Suppose the

first row of this array is m, a vector of observations and unobserved effects.
The rest is the covariance matrix V . Under this linear transform we obtain a
similar initial frequency domain big array. The first row of the new big array
is Hnm and the covariance matrix is HnV HT

n . The algorithm for computing
the log likelihood of θ is then the same as in the time domain formulation. In
practice we run an approximate frequency domain version of the algorithm to
obtain approximate likelihood of θ by replacing the covariance matrix in the big
array with its approximation.

The main reason for seeking an approximation of the likelihood here is to
save computing time. Most of the computing time consumed in the algorithm
comes from the matrix operations on the covariance matrices in these models.
Since the off-diagonal of the covariance matrix of a long memory process in the
frequency domain representation is ignorable for the high frequency part, we first
assume each of the above covariance matrices Σ is replaced in the following form:[

Σ11 0

0 diag(Σ22)

]
≈
[
Σ11 Σ12

Σ21 Σ22

]
= Σ.

Then the matrix operations on Σ are reduced to operations on a small submatrix
Σ11, and scale operations on the diagonal of Σ22. If we reduce the dimension
of Σ11 to 1 × 1, i.e., Σ is replaced by diag(Σ), then the whole computational
structure is reconstructed on a scale operation basis which of course provides
a huge relief of computational burden. Though the approximation may be not
well satisfied when the dimension of Σ11 is small, it is helpful to start with such
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simple approximations to get a rough insight into the likelihood function. We
then can keep improving the approximation by increasing the dimension of Σ11

as long as the computer capacity allows.

3.3. Bayesian computations

The sampler for drawing the 105-dim parameter θ is created using a Metropo-
lis algorithm within the conditioning of the Gibbs sampler. We describe our
sampler using similar notations as in Smith and Roberts (1993), who give a com-
prehensive review of recent uses of Markov chain Monte Carlo (MCMC) methods
for exploring and summarizing posterior distributions in Bayesian statistics. Let
the parameter θ = (θ1, . . . , θ54), where θi = (τ2

i , λ2
i ), for i = 1, . . . , 51, and

θ52 = σ2
N , θ53 = σ2

S , θ54 = σ2
P . The computation of an approximate likelihood

of θ has been discussed in previous subsections. The approximate posterior is
obtained by choosing a prior for θ. For the nonseasonal components θ1, . . . , θ51,
we assume these log θi are bivariate normally distributed. The common prior
means, variances and correlation are roughly estimated from the approximate
maximum likelihood estimates of these 51 pairs of parameters. For the three
seasonal parameters, we assume the priors are proportional to the inverse of the
parameters. Let π(θ) = π(θ1, . . . , θ54) denote the approximate posterior, and let
π(θi|θ−i) denote the induced full conditional for each of the components θi, given
values of the other components θ−i = (θj; j �= i), i = 1, . . . , 54. Note that π is
only proportional to the true posterior; we need never compute the normalization
of the posterior.

The Gibbs sampler algorithm proceeds as follows. First, pick arbitrary start-
ing values θ(0) = (θ(0)

1 , . . . , θ
(0)
54 ). Then successively make random drawings θ

(1)
i

from the full conditional distributions π(θi|θ(1)
j , 1 ≤ j < i and θ

(0)
k , 54 ≥ k > i),

i = 1, . . . , 54.
This completes a transition from θ(0) to θ(1) = (θ(1)

1 , . . . , θ
(1)
54 ). Iteration of

this cycle of random variate generation produces a sequence θ(0),θ(1), . . . ,θ(t),. . .
which is a realization of a Markov chain, with transition probability from θ(t) to
θ(t+1) given by

KG(θ(t),θ(t+1)) =
54∏
i=1

π(θ(t+1)
i |θ(t+1)

j , 1 ≤ j < i and θ
(t)
k , 54 ≥ k > i).

Within each cycle of the Gibbs sampler, the drawing θ
(t+1)
i is obtained from

the Metropolis algorithm (Metropolis et al. (1953)). A point θ∗ is generated
uniformly from a small neighborhood of θ

(t)
i . We actually accept θ

(t+1)
i = θ∗
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with acceptance probability α(θ(t)
i , θ∗); otherwise, we reject the value and set

θ
(t+1)
i = θ

(t)
i . The acceptance probability is set as

α(θ(t)
i , θ∗) = min{

π(θ∗|θ(t+1)
j , 1 ≤ j < i and θ

(t)
k , 54 ≥ k > i)

π(θ(t)
i |θ(t+1)

j , 1 ≤ j < i and θ
(t)
k , 54 ≥ k > i)

, 1}.

Under suitable regularity conditions, θ(t) converges to a sample from the
posterior π(θ). Although there is a reassuring theoretical literature concerning
the convergence of MCMC methods (see Smith and Roberts (1993)), results do
not easily translate into clear guidelines for the practitioner. We propose moni-
toring the posterior of the log likelihood of θ for the output analysis (convergence
diagnostics). Figure 4 shows that the posteriors of the log likelihood of θ(t) move
within some range after several iterations.
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Figure 4. Convergence diagnostics of Gibbs sampler for EMP and UNEMP
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This indicates that we may start collecting samples from each chain very
soon. Since successive θ(t) are correlated, we may collect the samples by picking
one from every several realizations in a single chain so that the autocovariances
of the selected sample series are small.

The Gibbs sampling procedures described above are indeed an easily imple-
mented technique that allows one to draw random sample from this complicated
posterior and make the Bayesian inference feasible. However, Hobert and Casella
(1996) showed that improper priors in Gibbs sampling may have ill-behaved ef-
fect on the posterior. So we have to check the posterior simulated by the Gibbs
sampler, although only three of the 105 parameters use improper priors in the
model.

4. Results and Discussion

For each of EMP and UNEMP, we analyzed a 51 × 48 × 8 data array of
weighted estimates from BLS sources, where the 51 and 48 dimensions refer,
respectively, to 51 states and 48 months. The internal replication dimension
8 refers to what we call streams that are implicit in the 4-8-4 rotation system
that controls selection and replacement of households. In order to stabilize the
variance of the rate estimates and fit the data in normal models we take arc sin
square root of each entry of the arrays. We implement on this scale until the
final step at which point the results are transformed back to the original scale.

We compare the time series model estimates of the series with the optimal
composite estimates in Phase 1 and the noncomposite estimates which are the
48 row averages of each state’s 48× 8 sample estimates described in Section 2.1.
Figure 5 plots the posterior mean of the whole series (solid line) and the desea-
sonal series (dashed line), and the noncomposite estimates (dotted line) in the
small population state of Nebraska. As expected, the model-based estimates of
the series move much smoother than the noncomposite estimates. The desea-
sonal series generated without the seasonal components show stable trends of
the series. Note that the posterior means of the UNEMP series are below the
noncomposite estimates for the first 30 months or so and then they are mostly
above, while this does not occur with the EMP series. One possible reason for the
results is that Nebraska’s specific characteristics of unemployment are far from
those of other states and our Phase 2 inference had moved its unemployment
rates toward the national trend with more weight because of the state’s high
variation. It is also very likely that both large variation and bias may occur in
the noncomposite estimates for a state with extremely small sample size.
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Figure 5. The posterior means of the whole series, deseasonal series, and the
noncomposite estimates in Nebraska.

The variance reductions of the time series models show large efficiency gains
for most of the 51 states. For demonstration, we compute the variances of the
three EMP and UNEMP estimates in December 1989. Figure 6 shows the gains
of UNEMP at Phase 1 are small. The largest gains appear at Phase 2 from the
time series model. The standard deviations of the time series model estimates
are reduced about 50% over the noncomposite estimate.

Note that Louisiana has small gain in UNEMP from the time series model.
This indicates the model does not fit this state’s UNEMP series too well. To figure
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out what happens on this series, we checked the 51 noncomposite estimates of
UNEMP series and found the sample variance of Louisiana to be much larger
than for the other 50 states, reflecting this state’s nonseasonal component in the
model. That is, the posterior distribution of this state’s nonseasonal component is
much greater than the others. So the variance reduction is limited in Louisiana’s
UNEMP estimation.
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Figure 6. The posterior standard deviations of three estimates of Dec. 1989.

Although computing times and costs continue to improve rapidly, it re-
mains important to face these issues when considering Monte Carlo simulation of
Bayesian posteriors. Especially for the problem of small area estimates of labor
force which need to be carried out each month, the use of approaches with heavy
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computations has to be carefully evaluated. From the experience of analyzing
the BLS data, we believe that the bureau can afford the needed computation of
the proposed approach. When we have computed the posterior distributions of
the parameters for the first time, we may obtain the results for the next month
with less effort because of closeness of posteriors of parameters in two consecu-
tive months. This will make the proposed approach more possible for practical
application.

The choice of the fGn process as the building block of the time series models
is strongly supported by a comparison of the periodograms of the data series
with the corresponding spectral density of the fractional Gaussian model. This
is a model construction technique, although it is not a usual procedure. Instead
of frequency domain analysis, readers may be more familiar with an a priori
ARMA time domain assumption. Model identification and diagnostic tools are
then applied iteratively to fix a final model and make inferences. Among the
alternative methods for comparison, Rao and Yu (1994) had a similar study
on small area estimation for a model involving autocorrelated random effects
and sampling errors. Their sampling errors are assumed to have an arbitrary
covariance matrix over time, and they compute empirical BLUP estimates of
small area means and associated standard errors for each period. Applying such
alternative model and estimation approaches directly to the same data set may
produce similar results to ours. But the comparison of results from different
models on the same practical database requires more careful study, especially
when Bayesian and classical contrasts are involved. Furthermore, it is hard to
conclude that one approach is better than the other based on the results of
modeling one data set.

Although no external comparison has been done, we have demonstrated how
the fully Bayesian hierarchical approach proposed in this paper has reduced the
standard errors of the noncomposite estimators of labor force in the 51 states.
For easy implementation and computation, we have restricted the model to have
the shape parameters d′s assigned a single value chosen simply by comparing the
posteriors of log likelihood of several d values. If the computing facilities were
affordable for including the shape parameters in the model, the shape parameters
would be more realistically estimated.

The techniques and empirical results presented in this paper support the
recent trend at BLS to study and adopt time series models and related smoothing
procedures for estimation at subnational levels. We recommend that research on
Bayesian modeling and inference be expanded in order that consensus may be
reached on methods that make close to optimal use of expensive data, and at
the same time accurately assess standard errors of estimation. These methods
should be used not only for the smaller states where estimation problems are
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more acute, but also for the 11 “direct use” states where gains are smaller but
still important. Note that, due to budgetary reductions, the CPS sample size
was decreased to 50,000 households at the beginning of 1996, and, therefore,
direct-use estimation of the 11 large states was discontinued.
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Appendix. Covariance of the finite Fourier transform

In this appendix we show some asymptotic properties of the covariances of
finite Fourier transform of a real time series. It is similar to a discussion in
Ramos (1988) for complex time series. First, we recall the definition of Lipschitz
condition and a lemma in Ramos (1988).

Definition 1. A function f satisfies Lipschitz condition whenever there exists a
smallest constant Mf such that

supω,|h|<ε|f(ω + h) − f(ω)| ≤ Mf · ε

for all ε > 0. The definition is used to describe the “smoothness” of a function f .
The constant Mf may be viewed roughly as the largest slope of f in the support
of f . For the spectral density function f of a fractional Gaussian noise process
with positive shape parameter d, the function is not too smooth for frequency
near zero and therefore Mf tends to be large.

Lemma 1. If Dn is the Dirichlet kernel, then∫ 1

0
f(ω)Dn(ω − t)Dn(ω − s)dω = Dn(s − t)f(s) + Mf · O(logn).

Recall the covariances σc
ij and σs

ij defined in (11). The structures of σc
ij and

σs
ij are very similar. Here we derive the case for the cosine part. It is obtained

directly from (10) and (11).

σc
ij =

1
nmqiqj

{1
2
f(0)Dn(

i

n
)Dn(

j

n
)

+

m
2
−1∑

l=1

f(
l

m
)[Dn(

l

m
− i

n
) + Dn(

l

m
+

i

n
)][Dn(

l

m
− j

n
) + Dn(

l

m
+

j

n
)]

+
1
2
f(

1
2
)[Dn(

1
2
− i

n
) + Dn(

1
2

+
i

n
)][Dn(

1
2
− j

n
) + Dn(

1
2

+
j

n
)]
}

m→∞−→ 1
n

∫ 1
2

0
f(ω)Dn(ω − i

n
)Dn(ω − j

n
)dω
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+
1
n

∫ 1
2

0
f(ω)Dn(ω − i

n
)Dn(ω +

j

n
)dω

+
1
n

∫ 1
2

0
f(ω)Dn(ω +

i

n
)Dn(ω − j

n
)dω

+
1
n

∫ 1
2

0
f(ω)Dn(ω +

i

n
)Dn(ω +

j

n
)dω

=
1
n

∫ 1

0
f(ω)Dn(ω − i

n
)Dn(ω − j

n
)dω

+
1
n

∫ 1

0
f(ω)Dn(ω − i

n
)Dn(ω +

j

n
)dω.

The final equation comes from the facts:

1. f(ω) = f(−ω) = f(1 − ω)
2. Dn(ω − i

n) = Dn(−ω − i
n) = Dn(1 − ω − i

n)

Hence we have
∫ 1

2

0
f(ω)Dn(ω +

i

n
)Dn(ω − j

n
)dω

=
∫ 1

2

0
f(1 − ω)Dn(1 − ω − i

n
)Dn(1 − ω +

j

n
)dω

=
∫ 1

1
2

f(ω)Dn(ω − i

n
)Dn(ω +

j

n
)dω

and
∫ 1

2

0
f(ω)Dn(ω +

i

n
)Dn(ω +

j

n
)dω

=
∫ 1

1
2

f(ω)Dn(ω − i

n
)Dn(ω − j

n
)dω.

The asymptotic results come from the lemma and we have

σc
ij →


Kn ∗ f( i

n) + 1
nDn(2i

n )f( i
n) + Mf · O( logn

n ) for i = j
1
n [Dn( i−j

n ) + Dn( i+j
n )]f( i

n) + Mf · O( logn
n ) for i �= j

= δi−j · Kn ∗ f(
i

n
) + Mf · O(

logn

n
)

where

δi−j =

{
1 for i = j

0 for i �= j.
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