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Abstract: Many nonparametric regression procedures are based on “subset selec-

tion”: they choose a subset of carriers from a large or even infinite set, and then

determine the coefficients of the chosen carriers by least squares. Procedures which

can be cast in this framework include Projection Pursuit, Turbo, Mars, and Match-

ing Pursuit. Recently, considerable attention has been given to “ensemble esti-

mators” which combine least squares estimates obtained from multiple subsets of

carriers. In the parametric regression setting, such ensemble estimators have been

shown to improve on the accuracy of subset selection procedures in some situations.

In this paper we compare subset selection estimators and ensemble estimators in

the context of wavelet de-noising. We present simulation results demonstrating

that a certain class of ensemble wavelet estimators, based on the concept of “cycle

spinning”, are significantly more accurate than subset selection methods. These

advantages hold even when the subset selection procedures can rely on an oracle to

select the optimal number of carriers. We compute ideal thresholds for translation

invariant wavelet shrinkage and investigate other approaches to ensemble wavelet

estimation.

Key words and phrases: Cycle spinning, model combination, nonparametric regres-

sion, stepwise regression, wavelet shrinkage.

1. Introduction

Regression is one of the fundamental problems of statistics. The goal of
regression analysis is to estimate the conditional expectation E(Y | X = x) of
a response variable Y , given the values of predictor variables X = (X1, . . . ,Xp).
The estimate is based on a training sample (y1,x1), . . . , (yn,xn) of observations
for which the values of response and predictors are known.

In the last 20 years there has been a large amount of research on nonparamet-
ric regression procedures that do not assume knowledge of the functional form
of E(Y | X = x). A typical example for a nonparametric regression procedure
is Turbo (Friedman and Silverman (1989)). For our purposes it is sufficient to
describe it for the case of a single predictor variable (p = 1). Turbo assumes that
E(Y | X) can be well approximated by a 2nd order (piecewise linear) spline func-
tion. It represents the estimate f̂(x) as a linear combination of basis functions
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φj(x) = (x − tj)+ for a fixed set of locations {tj}:

f̂(x) = b0 +
m∑

j=1

bjφj(x). (1)

The key issues are choosing the basis functions to be included in the model, and
determining the corresponding coefficients. Turbo addresses these issues in a
way typical for many nonparametric regression methods. It constructs a collec-
tion of models with different numbers of basis functions using forward/backward
stepwise regression. Out of this collection it chooses the model minimizing an
estimate of prediction error, such as cross-validated residual sum of squares. The
basic characteristic of Turbo is that the coefficients for a given model are es-
timated by least squares. We refer to nonparametric regression methods that
(i) select a subset of basis functions from a large or even infinite pool, and (ii)
determine the corresponding coefficients by least squares, as carrier selection
methods.

Besides Turbo, examples of carrier selection methods include multidimen-
sional additive spline approximation (Friedman, Grosse and Stuetzle (1983)),
Mars (Friedman (1991)), radial basis function networks (Chen, Cowan and Grant
(1991)), and fuzzy basis function expansions (Wang and Mendel (1992)). These
methods differ primarily in the pool of basis functions.

When the model (1) involves a linear combination of more than a few carriers,
carrier selection techniques have been shown to be unstable (Breiman (1994b)),
and the corresponding estimates have high variance. One way to deal with this
instability is to use an ensemble estimate. Instead of attempting to find a sin-
gle best subset of carriers, ensemble estimates combine several carrier selection
estimates. The “bagging” procedure of Breiman (1994a) and the “bumping”
procedure of Tibshirani and Knight (1995) use the bootstrap to form multiple
estimates. They demonstrate that the combined estimator based on the boot-
strap samples improves accuracy in certain situations.

In this paper, we compare carrier selection estimates and ensemble estimates
in the context of wavelet de-noising. Suppose we observe data y = (y1, . . . , yn)t

assumed to be generated from the model

yi = f(i) + σzi i = 1, . . . , n, (2)

where f(i) is a deterministic function sampled at equally spaced points and {zi}
are i.i.d. N(0, 1). Our goal is to estimate f = [f(1), . . . , f(n)]t with small mean-
square-error

R(f̂ , f) =
1
n

n∑
i=1

E(f̂(i) − f(i))2. (3)
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To avoid unnecessary detail, we restrict our attention to sample sizes n = 2L for
some integer L. The results readily extend to arbitrary sample sizes.

Donoho and Johnstone ((1994) and (1995)) developed a theory and method-
ology based on “wavelet shrinkage.” Their procedure takes the orthogonal wavelet
transform of the data, shrinks the coefficients towards zero, and inverts the
shrunken coefficients to obtain an estimate f̂ . They show that wavelet shrinkage
has very broad asymptotic near-optimality properties. For example, wavelet
shrinkage achieves the minimax risk over each function class in a variety of
smoothness classes and with respect to a variety of losses, including L2 risk.

Since the introduction of the original Donoho and Johnstone wavelet shrink-
age, several alternative methods have been proposed, including “matching pur-
suit” and “translation invariant wavelet shrinkage”. In contrast to the original
Donoho and Johnstone wavelet shrinkage procedure, these methods work with
a much larger pool of non-orthogonal basis functions. Matching pursuit, de-
veloped by Mallat and Zhang (1993) and Qian and Chen (1994), is a carrier
selection method similar in spirit to forward stepwise regression. Translation
invariant wavelet shrinkage (TIWS), developed by Coifman and Donoho (1995),
is an ensemble estimate in that it averages estimates obtained by applying the
following operations for some collection of integers k:
1. Shift: Shift the original data series by k∆.
2. Predict: Apply orthogonal wavelet shrinkage to the shifted series.
3. Unshift: Unshift the result by −k∆.

This process of shift–predict–unshift is called “cycle spinning.” Since the
orthogonal wavelet transform is not translation invariant, different shifts k∆ will
yield different estimates. Coifman and Donoho (1995) show the average of the
estimates from all the shifts, in many cases, achieves better performance than
the estimate from any single shift.

In this paper we present the results of a Monte Carlo simulation study sug-
gesting that TIWS generally has lower mean squared error than matching pursuit
and related carrier selection methods. These findings are consistent with the re-
sults cited above: carrier selection methods are unstable and ensemble estimators
improve on their accuracy. The performance advantage of TIWS holds even when
the carrier selection methods rely on an oracle to select the optimal number of
carriers. Moreover, TIWS is computationally much faster than the various carrier
selection procedures.

We also further develop cycle spinning as an estimation method, extending
the work of Coifman and Donoho (1995). We compute ideal shrinkage thresholds
for TIWS and investigate optimally weighted ensemble estimates.
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In Section 2 we review the methods studied in this paper: TIWS, matching
pursuit and other carrier selection methods. The comparison of TIWS to the
various carrier selection methods is presented in Section 3. In Section 4 we
give ideal thresholds for TIWS. In Section 5 we investigate optimally weighted
ensemble estimates. Section 6 summarizes the results and discusses related work.
Appendix A gives instructions on how to obtain the software used to conduct
the study.

2. Background

2.1. Translation invariant wavelet shrinkage

Let W be an orthogonal transform matrix corresponding to a set of orthog-
onal wavelet basis functions {φl(t)}. Donoho and Johnstone ((1994) and (1995))
propose the wavelet shrinkage estimator f̂WS = Wtδ (Wy) where δ is a shrinkage
function. Two common shrinkage functions are hard shrinkage δH

λ (x) = xI[|x|>λ]

and soft shrinkage δS
λ (x) = sgn(x)(|x| − λ)+. The threshold λ determines the

amount of shrinkage; λ = ∞ sets the coefficients to zero. The wavelet transform
applied to a sample of size n = 2L has a maximum of L resolution levels. Shrink-
age is typically applied to only the detail or high frequency resolution levels. For
example, Bruce and Gao (1996) indicate that applying shrinkage to J = log2 n−4
resolution levels gives good performance in a range of situations.

The columns of the matrix Wt correspond to wavelet basis functions, and
the wavelet shrinkage estimator f̂WS can be viewed as a linear combination of
basis vectors. In fact, the wavelet shrinkage estimator with the hard shrinkage
function is a carrier selection method where the carrier matrix X ≡ Wt.

A potential drawback with f̂WS as an estimator is the lack of translation
invariance of the wavelet transform. To overcome this translation invariance,
we can apply cycle spinning. This leads to the translation invariant wavelet
shrinkage estimator (TIWS) defined by

f̂TI =
1
2J

2J−1∑
k=0

(WSk)tδ (WSky) , (4)

where J is the number of levels to which shrinkage is applied. Here Sk is the
discrete n × n translation spin (shift) operator

Sk =

(
0k×(n−k) Ik×k

I(n−k)×(n−k) 0(n−k)×k

)
, (5)

where Im×m is the identity matrix with m rows and columns and 0r×c is the zero
matrix with r rows and c columns.
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2.2. Matching pursuit and other carrier selection methods

It can be shown that the estimator (4) is equivalent to f̂TI = W#
TIδ (WTIy)

where WTI is the non-decimated or stationary wavelet transform and W#
TI ≡(

Wt
T IWTI

)−1 Wt
T I is the generalized inverse of WTI . The non-decimated wave-

let transform is an over-sampled wavelet transform corresponding to wavelet
basis functions at all integer shifts of the original series: see Shensa (1992) and
Nason and Silverman (1995). This suggests the following alternative to the TIWS
estimator (4): apply a carrier selection method to the carrier set given by XTI ≡
Wt

T I . The columns of XTI correspond to shifted wavelet basis functions, and
include as a subset the columns of the orthogonal wavelet carrier matrix Wt.
We study three variations of the carrier selection method: the original matching
pursuit algorithm proposed by Mallat and Zhang (1993) and Qian and Chen
(1994), forward stepwise regression, and forward-backward stepwise regression.
All these methods use the same basic algorithm.

(1) Use a greedy selection method to form p nested subsets of carriers Xm =
(xi1,xi2 , . . . ,xim), m = 1, · · · , p, where p ≤ n.

(2) For each subset, determine the regression coefficients by least squares: b̂m =
(Xt

mXm)−1Xt
my

(3) Choose the model Xm that minimizes an error estimate such as the cross-
validated residual sum-of-squares.
The procedures differ in the technique used to order the carriers in step

(1). Matching pursuit orders the carriers by a forward selection procedure as
follows:
(1.0) Initialize j = 1 and rj = y.

(1.1) Find the carrier xij maximally correlated with rj : ij = arg maxi
〈xi,rj〉2
‖xi‖2 .

(1.2) Update the residual vector rj+1 = rj −
〈
xij

,rj

〉
‖xij

‖2 xij .

(1.3) If j < p, then set j = j + 1 and go to step (1.1).
Mallat and Zhang (1993) describe fast implementations for a variety of carrier
sets (e.g., wavelets, wavelet packets, Gabor functions) based on wavelet pyramid
filtering algorithms and the fast Fourier transform.

Forward stepwise regression is the same as matching pursuit except that xij

is orthogonalized out of the remaining carriers at each iteration. Pati, Rezaiifar
and Krishnaprasad (1993) applied forward stepwise regression in the context of
wavelet de-noising under the name “orthogonal matching pursuit”, and derived
fast algorithms for updating the inner products and vector norms used in forward
stepwise regression. Orthogonal matching pursuit, however, is computationally
slower than matching pursuit.
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Forward-backward stepwise regression is forward stepwise regression followed
by backwards elimination. This is the method used in Turbo (Friedman and
Silverman (1989)).

2.3. Choice of smoothing parameters

Each of the methods has a parameter controlling the amount of smoothing.
In wavelet shrinkage, this is the threshold λ below which wavelets coefficients
are set to zero; in the carrier selection methods, it is the number of carriers
m retained in step (3) of the basic algorithm. The problem of choosing the
smoothing parameters is essentially same for all methods, and not the primary
focus of this paper, which is to compare strategies for selecting subsets. Hence,
we determine the smoothing parameter by an oracle. In the case of wavelet
shrinkage, the optimal threshold λopt is given by

λopt = arg min
λ

‖f̂λ − f‖2
2. (6)

For carrier selection methods, the optimal number of carriers mopt is

mopt = arg min
m

‖Xmb̂m − f‖2
2 m = 1, . . . , p. (7)

3. Comparision of TIWS with Carrier Selection Methods

We compare translation invariant wavelet shrinkage (TIWS) with the original
Donoho and Johnstone wavelet shrinkage and with the three carrier selection
methods described in Section 2: matching pursuit, forward stepwise regression,
and forward-backward stepwise regression. For all examples presented in this
section, we use the least asymmetric “s8” wavelet (Daubechies (1992), Table 6.3,
N = 4).

The wavelet shrinkage estimates are computed using the hard shrinkage
function δH

λ applied to the detail/high frequency coefficients at the finest J =
log2 n− 4 resolution levels in the wavelet decomposition. In other words, shrink-
age is not applied to the 32 lowest frequency coefficients. The carrier selection
methods are applied to the non-decimated wavelet carrier matrix XTI = Wt

T I

with a maximum of p = n/4 = 64 carriers. The smoothing parameters are com-
puted by an oracle as described in Section 2.3. In addition, we compute wavelet
shrinkage estimates using the Donoho and Johnstone “universal” threshold of
λ = σ

√
2 log n where σ is assumed known.

We compare the methods on the four functions “blocks”, “bumps”, “doppler”
and “heavisine”. These functions were introduced by Donoho and Johnstone
(1994) to provide a diverse set of examples for spatially inhomogeneous behavior,
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and have since been used to evaluate the performance of nonparametric proce-
dures in several studies (see, for example, Fan and Gijbels (1995) and Bruce and
Gao (1996)). We use a sample size of n = 256 and root signal-to-noise ratios of
3, 5, and 7. The root signal-to-noise ratio is defined as RSNR = (Var (f))1/2/σ.
We set σ = 1 and adjust the scale of the function accordingly.

Table 1. Variance and mean-square-error for translation invariant wavelet
shrinkage with an oracle-driven threshold (TIWS) and the universal thresh-
old (TIWS-UNI), wavelet shrinkage using the orthogonal wavelet transform
with an oracle-driven threshold (WS) and the universal threshold (WS-UNI),
matching pursuit (MP), forward stepwise regression (Stepwise), and forward-
backward stepwise regression (Forw-Back). The carrier selection methods use
an oracle to determine the number of carriers. The values in this table are
based on M = 100 simulations. The standard error for each value is given in
parentheses. See Section 3.1 for details.

RSNR=5 Blacks Bumps Doppler Heavisine
Variance

TIWS 0.309 (0.006) 0.389 (0.006) 0.201 (0.004) 0.092 (0.003)
TIWS-UNI 0.310 (0.006) 0.383 (0.006) 0.200 (0.004) 0.083 (0.003)
WS 0.502 (0.009) 0.550 (0.009) 0.269 (0.007) 0.131 (0.005)
WS-UNI 0.541 (0.010) 0.547 (0.011) 0.239 (0.007) 0.120 (0.004)
MP 0.639 (0.009) 0.660 (0.011) 0.493 (0.008) 0.284 (0.008)
Stepwise 0.637 (0.009) 0.613 (0.010) 0.479 (0.009) 0.298 (0.008)
Forw-Back 0.643 (0.009) 0.613 (0.010) 0.485 (0.009) 0.302 (0.008)

MSE
TIWS 0.360 (0.006) 0.440 (0.006) 0.252 (0.004) 0.138 (0.004)
TIWS-UNI 0.419 (0.007) 0.498 (0.006) 0.271 (0.005) 0.149 (0.004)
WS 0.588 (0.008) 0.631 (0.008) 0.367 (0.006) 0.190 (0.004)
WS-UNI 0.821 (0.010) 0.870 (0.012) 0.414 (0.007) 0.203 (0.005)
MP 0.692 (0.009) 0.729 (0.010) 0.571 (0.007) 0.328 (0.008)
Stepwise 0.680 (0.009) 0.679 (0.009) 0.539 (0.008) 0.233 (0.007)
Forw-Back 0.683 (0.009) 0.677 (0.009) 0.544 (0.008) 0.339 (0.007)

3.1. Simulation results

The variance and mean square error (MSE) of the methods for root signal-to-
noise ratio RSNR = 5 are listed in Table 1. Results for RSNR = 3 and RSNR = 7
are similar; they can be found in Bruce, Gao and Stuetzle (1996).

From the table, we can draw the following conclusions:
1. Both universal and oracle-guided TIWS dominate the carrier selection meth-

ods in terms of MSE and variance for all functions examined. The MSE for
carrier selection methods is 60%–170% higher than the MSE for oracle-guided
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TIWS. Universal TIWS inflates the MSE by only about 10%–15% over oracle-
guided TIWS.

2. The carrier selection methods are all roughly comparable, with matching pur-
suit performing slightly worse in terms of MSE. This is to be expected since
matching pursuit does not orthogonalize the remaining carriers at each step.

3. In general, carrier selection methods have high variance and low bias. This is
consistent with the finding of Breiman (1994a, b) and Tibshirani and Knight
(1995) who show that subset selection is an unstable procedure.

4. Carrier selection methods perform better for estimating non-smooth func-
tions (“blocks” and “bumps”) as compared with estimating smooth functions
(“doppler” and “heavisine”).

5. The MSE for carrier selection methods is 10%–80% higher than the MSE
for oracle-guided wavelet shrinkage. This is remarkable: Wavelet shrinkage
with the hard shrinkage function is identical to carrier selection applied to
the pool of orthogonal wavelets. Hence, in our examples, restricting the car-
rier selection methods to the smaller pool of orthogonal wavelets improves
performance!

6. The MSE for wavelet shrinkage is 40%–60% higher than the MSE for TIWS.
TIWS is superior in terms of both variance and bias. Since variance domi-
nates bias, however, most of the reduction in MSE is due to the reduction in
variance.

Remark 1. Coifman and Donoho (1995) report that while TIWS achieves low
MSE estimates, it also results in a very large number of noise induced spikes. We
did not observe this behavior.

Remark 2. We have found that these results extend to a broad range of func-
tions and transform types, such as wavelet packets, cosine packets, and chirplets.
Further simulation results are reported in Bruce, Gao and Stuetzle (1996).

3.2. Influence of sparsity on performance

It is, of course, possible to construct examples for which carrier selection
methods applied to the pool of non-decimated wavelets have smaller MSE than
TIWS. We have found, however, that one has to work remarkably hard to find
such examples. To illustrate this, we constructed functions directly from the
overcomplete set of carriers by defining f = XTIb and bj �= 0 for only a few j.
We let the number of non-zero coefficients range from 1 to 72 and selected the
coefficients bj to create a set of functions of increasing complexity. Several of the
constructed functions are shown in Figure 1. We compare the MSE for TIWS,
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wavelet shrinkage using an orthogonal transform, and matching pursuit using the
carrier matrix XTI . We use the same experimental set-up as in Section 3.1.
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Figure 1. Plotted are functions f = XTIb constructed directly from the over-
complete set of carriers XTI given by the non-decimated wavelet transform.
The coefficients b for each function are selected to create a set of functions
of increasing complexity, ranging from one non-zero coefficient (top left) to
72 non-zero coefficients (bottom right).

The results are displayed in Figure 2. Matching pursuit has significantly
lower MSE than TIWS when f is composed of one basis function. When f is
composed of between two and fifteen basis functions, the MSE performance of
the methods is roughly comparable. When f is composed of more than fifteen
basis functions, TIWS is the clear winner.
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Figure 2. Mean-square-error for translation invariant wavelet shrinkage
(TIWS), wavelet shrinkage using an orthogonal transform (WS), and match-
ing pursuit (MP) plotted against number of basis elements in the function to
be estimated. The functions are displayed in Fgure 1.

In all cases, TIWS performs almost as well using a universal threshold as with
an oracle. By contrast, the performance of wavelet shrinkage using an orthogonal
transform is much worse with the universal threshold as compared to an oracle.
We further study this issue in the next section.

4. Choice of Shrinkage Function and Threshold

The results of the previous section were based on hard shrinkage with a
threshold determined by an oracle and the universal threshold σ(2 log n)1/2. In
this section, we further study the choice of shrinkage function and threshold.
We show that hard shrinkage δH

λ is clearly preferred over soft shrinkage δS
λ for

TIWS. Our results also indicate that, compared with wavelet shrinkage using an
orthogonal transform, the MSE performance of TIWS is less sensitive to choice
of threshold.

For the blocks, bumps, doppler and heavisine functions, we compute the ideal
thresholds for hard shrinkage and soft shrinkage. The ideal thresholds minimize
the expected MSE R(f̂ , f) defined by (3). Ideal thresholds were computed for
TIWS and for wavelet shrinkage using an orthogonal transform applied to 16
translation shifts Sk with k = 0, 1, . . . , 15. Table 2 gives the ideal thresholds
for n = 256, RSNR = 5, the least asymmetric “s8” wavelet and resolution level
J = 4. The corresponding expected MSE’s are given in Table 3.
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Table 2. Ideal thresholds for translation invariant wavelet shrinkage and
(TIWS) the minimim, median and maximum of the ideal thresholds for dif-
ferent spin cycles k = 0, 1, . . . , 15 of wavelet shrinkage using an orthogonal
transform. The corresponding mean-square-error’s are given in Table 3. See
Section 4 for details.

Blocks Bumps Doppler Heavisine
TIWS-Hard 2.75 2.67 3.05 3.01
Minimum-Hard 2.30 2.14 2.61 3.18
Median-Hard 2.38 2.24 2.69 3.42
Maximum-Hard 2.57 2.29 2.91 ∞
TIWS-Soft 0.96 0.89 1.22 1.81
Minimum-Soft 0.81 0.70 1.04 1.79
Median-Soft 0.84 0.72 1.06 1.87
Maximum-Soft 0.90 0.75 1.11 2.00

Table 3. MSE corresponding to ideal thresholds of Table 2. See Table 2 for details.

Blocks Bumps Doppler Heavisine
TIWS-Hard 0.378 0.462 0.263 0.140
Best-Hard 0.578 0.669 0.399 0.175
Median-Hard 0.618 0.697 0.452 0.199
Worst-Hard 0.646 0.732 0.479 0.218
TIWS-Soft 0.502 0.562 0.350 0.140
Best-Soft 0.542 0.637 0.413 0.153
Median-Soft 0.584 0.657 0.442 0.170
Worst-Soft 0.599 0.672 0.453 0.186

For TIWS, the MSE for ideal hard shrinkage is considerably smaller than
the MSE for ideal soft shrinkage. This is not the case with wavelet shrinkage
using an orthogonal transform: ideal soft and hard shrinkage have comparable
MSE. Bruce and Gao (1996) show that, for orthogonal wavelets, hard shrinkage
estimates have high variance while soft shrinkage estimates have high bias. Since
the effect of cycle spinning is primarily to reduce the variance, the MSE of hard
shrinkage is reduced more than the MSE of soft shrinkage.

The MSE performance of TIWS is more robust towards the choice of thresh-
old for than wavelet shrinkage using an orthogonal transform. The expected
MSE curve for TIWS is much flatter than for wavelet shrinkage using an orthog-
onal transform. Moreover, the ideal TIWS threshold is closer to the “minimax”
threshold which minimizes a bound on the asymptotic minimax risk. The mini-
max threshold is a very simple shrinkage rule which ensures that wavelet shrink-
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age using an orthogonal transform asymptotically achieves close to the optimal
risk (Donoho and Johnstone (1994)).

For the blocks, bumps, and doppler functions, TIWS has larger ideal thresh-
olds than the smallest ideal threshold for any spin cycle for both hard and soft
shrinkage. The larger ideal thresholds can be attributed to a change in the
variance–bias tradeoff due to cycle spinning, which reduces variance more than
bias for these functions. For the heavisine function, TIWS has a smaller thresh-
old. The heavisine function is distinguished from the other functions since it has
relatively small discontinuities, and bias makes up a bigger fraction of MSE (see
Table 1).

5. Weighted Cycle Spin Estimators

The translation invariant wavelet shrinkage (TIWS) estimator (4), which
takes a simple average, is just one way to combine the spin cycle estimates. An al-
ternative is to use a “spin selection estimator” f̂k∗ where k∗ = arg min0≤k<2J−1 ‖y
−f̂k‖2 with f̂k = (WSk−1)tδ (WSk−1y). Whereas the TIWS is analogous to the
bagging procedure of Breiman (1994a), the spin selector estimator is analogous
to the bumping procedure of Tibshirani and Knight (1995). Another generaliza-
tion of the simple average estimator (4) is to allow linear combinations of the
spin cycle estimates f̂w =

∑2J−1
k=0 wk(WSk−1)tδ (WSk−1y) where

∑2J−1
k=0 wk = 1.

In this section, we derive an approximate upper bound on the amount we
can reduce prediction MSE using f̂k∗ and f̂w in place of (4). If the sparsity of the
function is relatively constant across spin cycles, our results indicate that only
a modest reduction in prediction MSE can be achieved. On the other hand, if
the function is sparser for certain spin cycles, then a greater reduction in MSE
is possible.

5.1. Oracle guided spinning and weighting

Furnished with an oracle f , it is possible to construct an oracle-guided spin se-
lection estimator f̂k# where k# = arg min0≤k<2J−1 ‖f− f̂k‖2. An ideally weighted
estimator f̂w# can be defined similarly. Let

dk� =
1
n

E
{ n∑

i=1

(
f̂k(i) − f(i)

) (
f̂�(i) − f(i)

)}

and D = (dk�)2J×2J . Then the L2 risk of f̂w is R(f̂w, f) = wtDw where
w = (w1, . . . , w

J
2 )t. When D is full rank, then w# ≡ arg minwt1=1{wtDw} =

D−11/1tD−11 where 1 is a vector of one’s. The corresponding risk is R(f̂w# , f)=
1/1tD−11. We use the estimtors f̂k# and f̂w# in our simulation below to deter-
mine the biggest improvement we can expect by generalizing the TIWS estimator.
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5.2. Simulation study

Table 4 compares the MSE of TIWS, the ideal weighted cycle spin estimator
f̂w# , the data-driven spin selector estimator f̂k∗, and the oracle-driven spin selec-
tor estimator f̂k# . The estimates are based on n = 256 observations, RSNR = 5,
J = 4 resolution levels, and the s8 wavelet. We use the hard shrinkage function
with the minimax threshold (λ = 3.117).

Table 4. MSE for different spin cycle estimators: see Section 5 for details.
The same set-up as in Table 1 is used with the hard shrinkage function
and minimax threshold (λ = 3.117). The values in this table are based
on M = 100 simulations. The standard error for each value is given in
parentheses.

RSNR=5 Blocks Bumps Doppler Heavisine
TIWS 0.399(0.007) 0.480(0.006) 0.268(0.005) 0.146(0.004)
Ideal Weight 0.351(0.007) 0.434(0.006) 0.232(0.005) 0.106(0.003)
Oracle Best Spin 0.591(0.008) 0.706(0.007) 0.379(0.005) 0.153(0.003)
Data Best Spin 0.661(0.011) 0.776(0.010) 0.451(0.008) 0 204(0.006)

The ideal weights give about 10%-15% reduction in MSE over TIWS for the
blocks, bumps, and doppler functions. Apparently, the spatial inhomogeneity
of these functions is spread evenly through the different spin cycles, and little
improvement is seen by weighting the cycles differently. The ideal weights give
over 30% reduction in MSE for the heavisine function. The inhomogeneity of
the heavisine function is characterized by two jumps which is represented more
sparsely — and hence can be better estimated — by some cycles.

TIWS has smaller MSE than the oracle-driven spin selector estimator. For
the blocks, bumps, and doppler functions, the MSE for TIWS is over 40% smaller.
In other words, even if we use an oracle to tell use which is the best single cycle,
we are better off by averaging all cycles.

5.3. Discussion

In certain applications, when the sparsity of the transform coefficients varies
substantially across spin cycles, the ideally weighted spin and spin selector es-
timators can have considerably smaller prediction MSE than the average spin
estimator. Bruce, Gao, Mulligan and Satorius (1995) propose a data-driven spin
selector estimator which significantly out-performs TIWS for binary signal de-
modulation of fractionally spaced channels, both in terms of mean-square-error
and in terms of probability of symbol detection error. In fact, the spin selector
estimator achieves close to the matched filter performance. For estimation of si-
nusoids, Bruce Gao and Stuetzle (1996) show that an ideally weighted estimator
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can dramatically reduce the prediction error when cycle spinning in frequency
with the cosine packet transform.

6. Conclusions and Discussion

In the examples studied in this paper, as well as a range of other situations
(see Bruce, Gao and Stuetzle (1996)), translation invariant wavelet shrinkage
(TIWS) has almost uniformly lower mean squared error (MSE) than match-
ing pursuit and related carrier selection methods applied to the pool of non-
decimated wavelets. Moreover, TIWS is computationally more efficient than
carrier selection, and it is based on cycle spinning, a very simple and general
technique. We caution that the observed improved MSE performance of TIWS
is based on empirical results, and any conclusions should be drawn with care.

Our results confirm other studies (Breiman (1994a,b) and Tibshirani and
Knight (1995)) which show that subset regression techniques tend to be unstable
and can be improved by use of an ensemble estimator. To improve stability of
estimators, Breiman (1994b) proposes the bagging procedure and Tibshirani and
Knight (1995) propose the bumping procedure. These procedures combine mul-
tiple estimates obtained by applying the original estimator to bootstrap samples.
Bagging averages the estimates from the bootstrap samples while bumping selects
a best estimate from the bootstrap samples. We found that bagging and bumping
do not improve the stability of subset selection procedures in the wavelet setting
(Bruce, Gao and Stuetzle (1996)). In fact, for the spatially inhomogeneous func-
tions, applying bagging to the matching pursuit procedure considerably inflates
prediction mean-square-error. Bagging and bumping perform poorly in this set-
ting because the bootstrap samples do not include local structure of the signal,
such as the peaks in the bumps function or the steps in the blocks function. In
Bruce, Gao and Stuetzle (1996), we propose an alternative resampling method
called “random orthogonal basis” (ROB) which achieves the same performance
as TIWS.

Ridge regression has been shown to have smaller mean-square-error than sub-
set regression methods in some situations (Frank and Friedman (1993)). Ridge
regression reduces the variability of the estimates by using a shrinkage estimator
of the form (XtX+λI)−1XtY . Recently, other shrinkage methods have been pro-
posed which compare favorably with ridge regression. These methods include the
nonnegative garrote (Breiman (1995)), the lasso (Tibshirani (1996)), and basis
pursuit de-noising(Chen, Donoho and Saunders (1996)). Another very promising
direction is the use of Bayesian shrinkage rules (Vidakovic (1994), Clyde, Parmi-
giani and Vidakovic (1995), and Chipman, Kolaczyk and McCulloch (1996)). It
is an open question whether these shrinkage methods give better MSE prediction



SUBSET-SELECTION AND ENSEMBLE METHODS FOR WAVELET DE-NOISING 181

performance than translation invariant wavelet shrinkage and other ensemble
estimators.

A Software

All plots and calculations are done using extensions to the S+WAVELETS
software toolkit (Bruce and Gao (1994)). S+WAVELETS is a module in the
S-Plus software system (Statistical Sciences, 1993). Software for the simulations
and a more detail technical report Bruce, Gao and Stuetzle (1996) can be ob-
tained by anonymous ftp to ftp.statsci.com in the directory pub/WAVELETS.
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