
Statistica Sinica 9(1999), 153-166

THE WAVELET IDENTIFICATION OF THRESHOLDS AND TIME

DELAY OF THRESHOLD AUTOREGRESSIVE MODELS

Yuan Li and Zhongjie Xie

University of Petroleum and Peking University

Abstract: In this paper, we consider identification of the thresholds and time delay

of threshold autoregressive models with p− dependence and an unknown number

of thresholds. By checking p different empirical wavelets of the data to see which

have significantly large absolute values, the time delay is identified first. By further

checking the empirical wavelets corresponding to the time delay across the fine scale

levels, the thresholds and their number are identified. All estimators are shown to

be strongly consistent.
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1. Introduction

Recently, wavelets have interested more and more statisticians. Donoho et
al. (1995) successfully applied wavelets to estimate a regression function and
obtained nearly optimal estimators in a large function class, the Besov space
Bσ

pq. Following Donoho’s idea, Neumann (1994) used wavelets to estimate the
power spectrum in time series. Wang (1995), Luan and Xie (1995) dealt with
change points by wavelets. Li and Xie (1997) used wavelets in identifying the
hidden periodicities in time series. In this paper, we identify the thresholds and
time delay of the threshold autoregressive models by wavelets.

Threshold autoregressive models were introduced by Tong (1978) to describe
complex stochastic systems. Since then, they have become some of the most
widely used nonlinear time series models in the literature. One of the threshold
autoregressive models, the self-exciting threshold autoregressive model, is defined
as follows:

xt =
r+1∑
l=1

(
b
(l)
0 +

pl∑
m=1

b(l)m xt−m + ε
(l)
t

)
I(λl−1,λl](xt−d), (1.1)

where for each l, {ε(l)t , t = 1, 2, . . .} are i.i.d. random variables with mean zero
and variance σ2

l ,l = 1, 2, . . . , r + 1, and {ε(l)t , t = 1, 2, . . .}, l = 1, 2, . . . , r + 1 are
mutually independent, λ0 = −∞, and λr+1 = ∞. It is assumed that pl ≤ p with
p being a known integer and d ≤ p. Let b(l)s = 0 when s > pl, l = 1, 2, . . . , r + 1.
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Then model (1.1) can be written as

xt =
r+1∑
l=1

(
b
(l)
0 +

p∑
m=1

b(l)m xt−m + ε
(l)
t

)
I(λl−1,λl](xt−d) (1.2)

and is called a self-exciting threshold autoregressive model with order p –
SETAR(d, r; p, . . . , p), where {λl} are called thresholds and d the time delay.

Model (1.2) is nonlinear with a piecewise linear skeleton. If the thresholds λl

and time delay d are known, then the parameters b(j)i can easily be estimated in
the same way as those of AR(p) models. However, it is a real challange for statis-
ticians to estimate the thresholds λl and time delay d since d is an integer and the
number of λl is unknown. There have been some results about the estimation
of λl and d. Chan and Tong (1986) gave a method to estimate the threshold
of SETAR(d, 1; p, . . . , p) models with only one threshold and known time delay.
Later, Chan (1988) and Tong (1990) gave strongly consistent estimators of the
time delay and thresholds by using conditional least squares under the condi-
tion that the number of thresholds is known. Furthermore, as the time delay is
an integer and its estimate is strongly consistent, the authors took it as given
when they discussed the asympototic properties of the estimators of thresholds
and other parameters. After Chan and Tong (1986), Geweke and Terui (1993),
and Chen and Lee (1995) took an alternative Bayesian approach to identify the
threshold and time delay of SETAR(d, 1; p, . . . , p) with only one threshold and
unknown time delay. However, there have been no results in the general case up
to now.

One of the examples solved successfully by SETAR(d, r; p, . . . , p) models
is the Sun spots data (Tong (1980)). The data consist of the number of Sun
spots from 1749 to 1924. Through Box-Cox transformation of the original data,
xt = 2((wt)1/2 − 1), the transformed data xt admits SETAR(8, 1; 11, . . . , 11):

xt =




1.9191 + 0.8416xt−1 + 0.0728xt−2 − 0.3153xt−3

+0.1479xt−4 − 0.1985xt−5 − 0.0005xt−6 + 0.1875xt−7

−0.2701xt−8 + 0.2116xt−9 + 0.0091xt−10 + 0.0873xt−11

+ε(1)t if xt−8 ≤ 11.9824
4.2746 + 1.4431xt−1 − 0.8408xt−2 + 0.0554xt−3

+ε(2)t if xt−8 > 11.9824.

(1.3)

There is only one threshold in this model: λ = 11.9824 and time delay d = 8.
The threshold λ = 11.9824 determines the nonlinear structure of the model and
plays a very important role in the model.

In the following, we always base our discussion on model (1.2). Let

T (x) =
r+1∑
l=1

(
b
(l)
0 +

p∑
m=1

b(l)m xm

)
I(λl−1,λl](xd)
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with x = (x1, x2, . . . , xp)τ and

xt = (xt, xt−1, . . . , xt−p+1)τ , εt = (ε(1)t , ε
(2)
t , . . . , ε

(r+1)
t )τ ,

α(xt−1) = (I(−∞,λ1](xt−d), I(λ1,λ2](xt−d), . . . , I(λr−1,λr ](xt−d), I(λr ,∞)(xt−d))τ .

Then model (1.2) has the following form:

xt = T (xt−1) + α(xt−1)
τ εt. (1.4)

It is easily seen from (1.2) that λl is a threshold of SETAR(d, r; p, . . . , p) if and
only if

(1) x l = (x1, . . . , xd−1, λl, xd+1, . . . , xp)τ is a jump point of T , i.e., there
exists a point x0

l = (t1, t2, . . . , td−1, λl, td+1, . . . , tp)τ in Rp such that

T (x0
l − 0) �= T (x0

l + 0) (1.5)

or
(2) x l is a cusp point of T .
Condition (1.5) implies that there exists at least one s �= d such that b(l)s −

b
(l+1)
s �= 0, and (2) means that T does not have a derivative at x l. Then we have
b
(l)
s = b

(l+1)
s for s = 1, . . . , p, s �= d and b(l)d − b

(l+1)
d �= 0.

Wavelets can catch jumps and transient phenomena easily and have good
local properties. Because the x l’s are the jump or cusp points of T , we can
use wavelets to identify the thresholds λl. In the following, we develop a simple
procedure to identify the thresholds and time delay in the general case by using
wavelets. We take a similar step to Chan and Tong (1986) by firstly identifying
the time delay, then estimating the thresholds based on the identified time delay.
All estimators are shown to be strongly consistent.

The paper is arranged as follows. Section 2 contains preliminaries of the
wavelet method. Section 3 gives main results. Section 4 presents simulations of
our wavelet method.

2. Preliminaries

Model (1.2) is considered in the following discussions. We assume that −∞ <
a < λ1 < λ2 < · · · < λr < b < ∞, with a and b being known constants and
1 ≤ d ≤ p, where p is a known integer, but d, r and λl, l = 1, . . . , r, are unknown
constants. We make the following assumptions about {xt} and noises {ε(l)t }:

(A1) {xt} is geometrically ergodic;
(A2) The p.d.f. gl and f of ε(l)t and xp = (xp, xp−1, . . . , x1)τ are bounded on

R = (−∞,∞) and Rp respectively. They are also bounded away from zero on
some open subsets U and Upof R and Rp respectively, and for [a, b] ⊂ U :

gl(x), f(x) ≤M1, x ∈ R, x ∈ Rp,

M2 ≤ gl(x), f(x), x ∈ U, x ∈ Up, (2.1)
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where M1 > 0 and M2 > 0 are constants. Furthermore {εt} are independent of
xp.

Assumption (A1) is made to ensure that {xt} is stationary and strong mix-
ing. Many sufficient conditions for (A1) have been proposed (see Auestad and
Tjφstheim (1990) or Chen (1996)). For example, when p = 1, if sup|x|>c |T (x)

x |
< 1 for some constant c > 0, then xt is geometrically ergodic (Auestad and
Tjφstheim (1990)). Assumption (A2) with strong mixing condition ensures that
there exist enough xt in any neighborhood of x ∈ [a, b] × [a, b] × · · · × [a, b] such
that we can replace T (x) by T (xt).

We take a wavelet ψ(x), x ∈ R, satisfying the following condition.
(A3) Compactly supported on [−A,A] with A > 1, ψ is of bounded variation

on [−A,A], and ψ(x) = 0, x ∈ [−1, 1]. Furthermore,∫ A

−A
ψ(x)dx = 0,

∫ A

−A
xψ(x)dx = 0,

∫ A

−A
ψ2(x)dx <∞, (2.2)

and
∫ A
1 ψ(x)dx �= 0,

∫ A
1 xψ(x)dx �= 0.

Condition (2.2) is the usual assumption for a wavelet with the first moment
vanishing. Obviously there are many functions on R satisfying (A3).

From the wavelet ψ and scale function φ, we can obtain an orthogonal wavelet
basis on L2[a, b]:

{φper
l,k , k ∈ Il, ψ

per
j,k , k ∈ Ij, j ≥ l}, (2.3)

where

φper
l,k (x) =

∑
n

(b− a)−1/2φl,k

(x− a

b− a
+ n

)
,

ψper
j,k (x) =

∑
n

(b− a)−1/2ψj,k

(x− a

b− a
+ n

)
, (2.4)

with φl,k(x)=2l/2φ(2lx−k), ψj,k(x)=2j/2ψ(2jx−k) and Ij ={0, 1, 2, . . . , 2j−1}.
For f ∈ L2[a, b], we have

f(x) =
∑
k∈Il

αl,kφ
per
l,k (x) +

∑
j≥l

∑
k∈Ij

βj,kψ
per
j,k (x), (2.5)

where

αl,k =
∫ b

a
φper

l,k (x)f(x)dx, βj,k =
∫ b

a
ψper

j,k (x)f(x)dx. (2.6)

The expression (2.5) is called the wavelet expansion of f on [a, b] and βj,k is called
a wavelet coefficient of f .

It is easily shown that

βj,k = (b− a)1/22−j/2
∫ A

−A
f(
x+ k

2j
(b− a) + a)ψ(x)dx (2.7)
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For details, see Cohen et al. (1993).

3. Main Results

Suppose that xt, 1 ≤ t ≤ n, are sampled from model (1.2). Let

Nn(s) = {l : 1 ≤ l ≤ n, ||xl−1 − s|| ≤ δn, xl−1 ≤ s}, ns = #Nn(s),

I(s, δ) = {k : |a+
k

2j
(b− a) − s| ≤ δ}, Ij = {0, 1, 2, . . . , 2j − 1},

Rj∗ = {tj∗ = (tj∗1, tj∗2, . . . , tj∗(p−1))
τ : tj∗l = a+

kl

2j∗ (b− a), kl ∈ Ij∗}

for fixed j and j∗, where

δn = n−1/(p+2), xl−1 = (xl−1, xl−2, . . . , xl−p)τ , s = (s1, s2, . . . , sp)τ

and ||.|| is the Euclidean norm.
We construct the empirical wavelet coefficient as follows:

W
(m)
j,k (tj∗) =

1
N

N∑
i=1

ψper
j,k (si)

1
nm,i

∑
l∈Nn(sm,i)

xl, (3.1)

m = 1, . . . , p, where tj∗ ∈ Rj∗, N = [n1/(p+2)], and

sm,i = (tj∗1, tj∗2, . . . , tj∗(m−1), si, tj∗m, . . . , tj∗(p−1))
τ ,

with si =a+ i b−a
N , and nm,i =#Nn(sm,i). Here [x] denotes the integral part of x.

Our idea to construct (3.1) follows from the following fact: for fixed t ∈
[a, b]p−1, the wavelet coefficients of T (t1, . . . , tm−1, x, tm, . . . , tp−1), x ∈ [a, b] are

β
(m)
j,k (t) =

∫ b

a
T (t1, . . . , tm−1, x, tm, . . . , tp−1)ψ

per
j,k (x)dx. (3.2)

It follows from simple computation that when m �= d, β
(m)
j,k (t) = 0 for all t ∈

[a, b]p−1, and when m = d, there exists t0 ∈ [a, b]p−1 such that the β
(d)
j,k (t0)

have large absolute values across fine scale levels. We discretize the right side of
(3.2) and replace T (xt−1) by xt. Then the sample version W

(m)
j,k (t) of β(m)

j,k (t),
called empirical wavelet coefficients, are obtained. In Theorem 3.1, we show that
W

(m)
j,k (t) have the same properties as β(m)

j,k (t). It is these properties of W (m)
j,k (t)

that we use to identify the time delay d and thresholds λl.

Theorem 3.1. Assume (A1), (A2) and (A3) are true. If lim j→∞
n→∞

23j

N = 0, then
there exists a large enough j∗ > 0 such that as j −→ ∞,

(1) there exist t0j∗ ∈ Rj∗ and a constant c0 > 0, independent of j,k and j∗,
such that

|W (d)
j,k (t0j∗)| ≥ c02−3j/2 a.s. (3.3)
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for k ∈ I(λl, 2−j).
(2) When k /∈ ∪r

l=1I(λl, 2−j/2),

W
(d)
j,k (t0j∗) = o(2−3j/2) a.s. (3.4)

(3) When m �= d,

max
k∈Ij,tj∗∈Rj∗

|W (m)
j,k (tj∗)| = o(2−3j/2) a.s. (3.5)

Proof. W (m)
j,k (tj∗) can be written as

W
(m)
j,k (tj∗)

�= W
(m,T )
j,k (tj∗) +W

(m,R)
j,k (tj∗) +W

(m,ε)
j,k (tj∗), (3.6)

where

W
(m,T )
j,k (tj∗) =

1
N

N∑
i=1

ψper
j,k (si)T (sm,i),

W
(m,R)
j,k (tj∗) =

1
N

N∑
i=1

ψper
j,k (si)

1
nm,i

∑
l∈Nn(sm,i)

[T (xl−1) − T (sm,i)],

W
(m,ε)
j,k (tj∗) =

1
N

N∑
i=1

ψper
j,k (si)

1
nm,i

∑
l∈Nn(sm,i)

α(xl−1)
τ εl.

We can show that when j → ∞,

max
k∈Ij ,tj∗∈Rj∗

|W (m,R)
j,k (tj∗)|=o(2−3j/2), max

k∈Ij ,tj∗∈Rj∗
|W (m,ε)

j,k (tj∗)|=o(2−3j/2). (3.7)

It is easily seen from Lemma P5.1 of Brillinger (1981) that

W
(m,T )
j,k (tj∗) =

∫ b

a
T (tj∗1, . . . , tj∗(m−1), x, tj∗m, . . . , tj∗(p−1))ψ

per
j,k (x)dx+O(

2j/2

N
),

where O(·) holds uniformly for k ∈ Ij and tj∗ ∈ Rj∗ .
(1) When k ∈ I(λl, 2−j) and j is large enough, we have

W
(d,T )
j,k (tj∗) = 2−j/2(b− a)1/2

∫ A

1
ψ(x)dx

[
b
(l+1)
0 − b

(l)
0

+(b(l+1)
1 − b

(l)
1 )tj∗1 + · · · + (b(l+1)

d−1 − b
(l)
d−1)tj∗(d−1)

+(b(l+1)
d − b

(l)
d )(a+

k

2j
(b− a)) + (b(l+1)

d+1 − b
(l)
d+1)tj∗d

+ · · · + (b(l+1)
p − b(l)p )tj∗(p−1)

]

+2−3j/2(b− a)3/2
∫ A

1
xψ(x)dx(b(l+1)

d − b
(l)
d ) +O(

2j/2

N
). (3.8)
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Since λl is a threshold of model (1.2), λl is a jump point or a cusp point of T .
For the former, we know from Section 1 that there exists t0 ∈ [a, b]p−1 such that

b
(l+1)
0 − b

(l)
0 + (b(l+1)

1 − b
(l)
1 )t01 + · · · + (b(l+1)

d−1 − b
(l)
d−1)t

0
d−1 + (b(l+1)

d − b
(l)
d )λl

+(b(l+1)
d+1 − b

(l)
d+1)t

0
d + · · · + (b(l+1)

p − b(l)p )t0p−1 �= 0.

For the latter, we have b(l+1)
s − b

(l)
s = 0, s = 1, . . . , p, s �= d, and b(l+1)

d − b
(l)
d �= 0.

Then we know from (3.6),(3.7) and (3.8) that for both cases, there exist a large
enough j∗ > 0, t0j∗ ∈ Rj∗ (which approximates t0), and a constant c0 > 0
independent of j, k, j∗ and tj∗ such that

|W (d)
j,k (t0j∗)| ≥ c02−3j/2 a.s.

(2) For all k /∈ ∪p
l=1I(λl, 2−j/2),

|a+
k

2j
(b− a) − λl| > 2−j/2, l = 1, . . . , r.

Since

2j |a+
k

2j
(b− a) − λl| −→ ∞ (j → ∞),

∫ A

−A
ψ(x)dx = 0,

∫ A

−A
xψ(x)dx = 0,

it is trival to show that when j is large enough,∫ A

−A
I(λl−1,λl](a+

x+ k

2j
(b− a))ψ(x)dx = 0,

∫ A

−A
I(λl−1,λl](a+

x+ k

2j
(b− a))xψ(x)dx = 0,

for all k /∈ ∪r
l=1I(λl, 2−j/2). Then it follows from (3.6) and (3.7) that W (d)

j,k (t0j∗) =
o(2−3j/2) a.s. for all k /∈ ∪r

l=1I(λl, 2−j/2).
(3) When m �= d, since

∫ b

a
T (tj∗1, . . . , tj∗(m−1), x, tj∗m, . . . , tj∗(p−1))ψ

per
j,k (x)dx = 0

for all tj∗ ∈ Rj∗ , it follows from (3.6) and (3.7) that

max
k∈Ij ,tj∗∈Rj∗

|W (m)
j,k (tj∗)| = o(2−3j/2).

For j∗ in Theorem 3.1, let

E0(j) = {m : there exist k ∈ Ij and tj∗ ∈ Rj∗ such that
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|W (m)
j,k (tj∗)| ≥ c02−3j/2, 1 ≤ m ≤ p}, (3.9)

where c0 is defined in (3.3).
Let

d̂ =

{
any element of E0(j), if E0(j) is not empty,
0, if E0(j) is empty.

(3.10)

Theorem 3.2. Under the conditions of Theorem 3.1, d̂ = d a.s., for j large
enough.

For t0j∗ of Theorem 3.1, let

E(j) = {k : |W (d̂)
j,k (t0j∗)| ≥ c02−3j/2, k ∈ Ij}. (3.11)

We know from Theorem 3.2 that d̂ = d a.s., for j large enough. So

E(j) = {k : |W (d)
j,k (t0j∗)| ≥ c02−3j/2, k ∈ Ij} (3.12)

a.s., for j large enough.
It follows from Theorem 3.1 that when j is large enough, E(j) is not empty.

Suppose that E(j) = {e1, . . . , em} where e1 < e2 < · · · < em. Let ρ = 2×2j/2 and
m1 = max{l : 1 ≤ l ≤ m, el ≤ e1 + ρ}. If m1 < m, then define m2 = max{k :
m1 < l ≤ m, el ≤ em1 + ρ}; if m2 < m, then define m3 in a similar way, and so
on. At last we can get a series of integers {ml : 1 ≤ m1 < m2 < · · · < mq ≤ m}.

Let E1(j) = {el : 1 ≤ l ≤ m1}, E2(j) = {el : m1 < l ≤ m2}, . . . , Eq(j) =
{el : mq−1 < l ≤ mq}. Then we have

E(j) =
q⋃

l=1

El(j). (3.13)

Equation (3.13) is called the ρ− division of E(j). For details, see Luan and Xie
(1995). Let

r̂ =

{
q, if E(j) is not empty,
0, if E(j) is empty. (3.14)

Take kl, satisfying

|W (d̂)
j,kl

(t0j∗)| = max
k∈El(j)

|W (d̂)
j,k (t0j∗)|, l = 1, . . . , r̂, (3.15)

and let
λ̂l = a+

kl

2j
(b− a). (3.16)

Theorem 3.3. Under the conditions of Theorem 3.1, when j −→ ∞,
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(1) r̂ = r a.s.;
(2) for r > 0, λ̂l −→ λl a.s., l = 1, . . . , r.

Proof. We know from Theorem 3.2 that d̂ = d a.s., for j large enough, so we
assume d̂ = d in the following. Then W (d̂)

j,k (t0j∗) = W
(d)
j,k (t0j∗) for j large enough.

In the case of r = 0, T is a linear function of x. It is easily seen that
∫ b

a
ψper

j,k (xi)T (x)dxi = 0

for i = 1, . . . , p. Then W (d)
j,k (t0j∗) = o(2−3j/2). Therefore E(j) is empty a.s. Hence

r̂ = 0 a.s.
In the case of r > 0, we know from Theorem 3.1 that when j is large enough,

E(j) is not empty a.s. Then

E(j) =
r̂⋃

l=1

El(j).

From Theorem 3.1, it can also be shown that

∪r
l=1I(λl, 2−j) ⊂ ∪r̂

l=1El(j) ⊂ ∪r
l=1I(λl, 2−j/2).

Due to ρ− division (ρ = 2 × 2j/2), we have

E(j) = ∪r
l=1El(j), I(λl, 2−j) ⊂ El(j) ⊂ I(λl, 2−j/2).

Therefore r̂ = r a.s. and λ̂l ∈ I(λl, 2−j/2) a.s., i.e., λ̂l
a.s.−→ λl.

4. Numerical Simulations

To test the proposed method in the present paper, we carry out simulations
for the Sun spots data and the models

xt =




0.4xt−1 + 0.26xt−2, if xt−2 ≤ 0.35,
0.2xt−1 − 4.2xt−2, if 0.35 < xt−2 ≤ 0.5,
0.3xt−1 + 0.6xt−2, if 0.5 < xt−2,

+ σ εt (4.1)

with σ = 0.2, 0.4 and 0.5, and

xt =




0.4xt−1 + 0.3xt−2, if xt−1 ≤ 0.4,
−4.6xt−1 + 0.9xt−2, if 0.4 < xt−1 ≤ 0.55,
0.5xt−1 + 0.2xt−2, if 0.55 < xt−1 ≤ 0.7,
−2.8xt−1 + 2.7xt−2, if 0.7 < xt−1 ≤ 0.85,
0.6xt−1 + 0.3xt−2, if 0.85 < xt−1,

+ σ εt (4.2)

with σ = 0.4 or 0.6, where {εt} are i.i.d. N(0, 1) white noises.
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We take ψ as follows:

ψ(x) =




5(x− 1)4, if 1 ≤ x ≤ 2,
20
3 (x+ 1)3 + 2(x+ 1)2, if −2 ≤ x ≤ −1,

0, otherwise.

(4.3)

Figure 1 and Figure 2 show the detection of the thresholds and time delay

by wavelets for model (4.1) with σ = 0.2. Here we carry out simulations with the

resolution level j from 1 to 10. At level j = 7, we find that the empirical wavelet
coefficients W (1)

j,k are significantly smaller than the threshold value w = 0.13, and

W
(2)
j,k are significantly larger than w only near 0.35 and 0.5. Therefore d̂ = 2.

The estimated thresholds are λ̂1 = 0.35 and λ̂2 = 0.50, with r̂ = 2.

If we increase σ respectively to 0.4 and 0.5, then we see from Figure 3 and

Figure 4 that wavelets work well for σ = 0.4, but fail for σ = 0.5, which reflects

the influence of the noise on the empirical wavelet coefficients. Figure 5 and

Figure 6 show the work for model (4.2) with σ = 0.4 and j = 7, and Figure 7

shows the work for model (4.2) with σ = 0.6 and j = 7. It can be seen that

wavelets work well for both cases.

For the Sun spots data (n = 176), we make the transformation: xt =

((wt)1/2 − 1)/10. Take a = 0.25, b = 1.2 and wavelet ψ in (4.3). For p = 11
and t0 = (0.5, 0.5, 0.6, 0.7, 0.55, 0.4, 0.45, 0.65, 0.75, 0.5)τ , we calculate W (m)

j,k (t0),

m = 1, 2, . . . , 11 at j = 7. Figures 8-18 show that the wavelet works for the

Sun spots data (the abscissas in Figures 8-18 corresponds to the Box-Cox trans-

formation xt = 2((wt)1/2 − 1)). It is easily seen from Figures 8-18 that only
the W (8)

j,k (t0) have large absolute values near 12.15. So the estimated time delay
d̂ = 8, and there is only one threshold λ̂ = 12.15. Therefore the wavelet results

are basically consistent with (1.3) where d = 8, λ = 11.9824.
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Figure 1. The second wavelet for Figure 2. The first wavelet for
model (4.1) with sigma=0.2. model (4.1) with sigma=0.2.
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model (4.1) with sigma=0.4. model (4.1) with sigma=0.5.
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Figure 5. The first wavelet for Figure 6. The second wavelet for
model (4.2) with sigma=0.4. model (4.2) with sigma=0.4.
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Figure 7. The first wavelet for Figure 8. The eighth wavelet for
model (4.2) with sigma=0.6. the Sun spots data.
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Figure 9. The first wavelet for Figure 10. The second wavelet for
the Sun spots data. the Sun spots data.
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Figure 11. The third wavelet for Figure 12. The fourth wavelet for
the Sun spots data. the Sun spots data.



THE WAVELET IDENTIFICATION OF THRESHOLDS AND TIME DELAY 165

0

0.01

0.02

0.03

0.04

4 6 8 10 12 14 16 18 20

0.005

0.015

0.025

0.035

0

0.01

0.02

0.03

0.04

4 6 8 10 12 14 16 18 20

0.005

0.015

0.025

0.035

Figure 13. The fifth wavelet for Figure 14. The sixth wavelet for
the Sun spots data. the Sun spots data.
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Figure 15. The seventh wavelet for Figure 16. The ninth wavelet for
the Sun spots data. the Sun spots data.
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Figure 17. The tenth wavelet for Figure 18. The eleventh wavelet for
the Sun spots data. the Sun spots data.
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