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Abstract: Density estimation by wavelet-based reproducing kernels is studied.

Asymptotic bias and variance are derived. Estimators using spline-wavelets and

Daubechies wavelets are presented as examples. Kernel order and kernel efficiency

are also discussed.

By an integral property of the bias and an idea from Scott’s averaged shifted

histograms, a bias reduction technique based on a grid point average is proposed.

This bias reduction technique is shown to be variance stable.
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1. Introduction

This article studies the density estimation problem based on i.i.d. observa-
tions X1, . . . ,Xn from a distribution with p.d.f. f(x). We consider estimators of
the form

f̂(x) =
1
n

n∑
i=1

K(x,Xi), (1.1)

where K(x, y) is positive definite and satisfies the condition K(x, y) = K(y, x).
Such a positive definite kernel arises naturally from a reproducing kernel Hilbert
space (RKHS in short). (See Wahba (1990) for the applications of reproducing
kernels in spline models and see also Saitoh (1989) for the general theory of
RKHS.)

Our main interests are restricted to projection kernels derived from an L2

multiresolution approximation. Such kernels are reproducing kernels (Meyer
(1990, 1992)). The estimator (1.1) is the so called linear wavelet estimator.
There is a natural duality between RKHS’s and stochastic processes (Parzen
(1961)). Via this duality, Bayesian interpretation and inferences (for a regres-
sion estimator) can be established (Kimeldorf and Wahba (1970); Wahba (1978,
1990)). In this article, our focus is on the study of asymptotic behavior and bias
reduction. The Bayesian aspects of a wavelet estimator is studied elsewhere.
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We now introduce some notation. Let the nested sequence of closed sub-
spaces · · ·Vj−1 ⊂ Vj ⊂ Vj+1 · · · , j ∈ Z, be a multiresolution approximation to
L2(R). A function φ(x) is called a wavelet scaling function (or a father wavelet) if∫ ∞
−∞ φ(x)dx = 1 and {φ(x−k)}k∈Z forms an orthonormal basis for V0. For every
j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1. A function
ψ(x) is called a (mother) wavelet if {ψ(x − k)}k∈Z forms an orthonormal basis
for W0. (See Daubechies (1992), Mallat (1989) and Meyer (1990, 1992) for some
general theory on wavelets and multiresolution analysis.)

The projection of a function f(x) in L2(R) onto the space Vj is given by
Phf(x) =

∫ ∞
−∞Kh(x, y)f(y)dy, where

Kh(x, y) =
1
h
K

(
x

h
,
y

h

)
(1.2)

with K(x, y) =
∑

k∈Z φ(x− k)φ(y − k) and h = 2−j , j ∈ Z. A density estimator
based on projection kernel

f̂(x) =
1
n

n∑
i=1

Kh(x,Xi) =
1
nh

n∑
i=1

K(
x

h
,
Xi

h
) (1.3)

was proposed by Kerkyacharian and Picard (1992), Huang (1990), Huang and
Studden (1993a). The effective bandwidth was h ∈ R+ in Huang (1990) and
Huang and Studden (1993a) and h = 2−j , j ∈ Z in Kerkyacharian and Picard
(1992).

The rest of the article is organized as follows. In Section 2, we give some
preliminaries. Sections 3 and 4 are on asymptotic bias and variance. In Section
5, a bias reduction method based on grid point averaging is proposed and shown
to be variance stable. Some efficiency discussion is in Section 6.

2. Preliminaries

Some definitions and properties, needed later for the study of local asymp-
totics, are given below.

Definition 2.1. A kernel K(x, y) is said to be of order m if and only if it satisfies
the moment conditions:

∫ ∞

−∞
K(x, y) y�dy =




1, � = 0,
x�, � = 1, . . . ,m− 1,
α(x) �= xm, � = m.

(This definition is compatible with that of a convolution kernel.)
We say that the wavelet ψ(x) has vanishing moments of order m if and only

if the following moment conditions are met.∫ ∞

−∞
ψ(y)y�dy = 0, � = 0, 1, . . . ,m− 1; and

∫ ∞

−∞
ψ(y)ymdy �= 0.
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Proposition 2.2. Given a multiresolution approximation, a wavelet ψ(x) has
vanishing moments of order m if and only if the associated projection kernel
K(x, y) in (1.2) is of order m.

Proof. Every polynomial of order m + 1 (i.e. degree m or less) has a unique
representation as

p(x) =
∑
k∈Z

〈p, φ(· − k)〉φ(x − k) +
∞∑

j=0

∑
k∈Z

bj,k
√

2jψ(2jx− k),

where bj,k = 〈p,
√

2jψ(2j · −k)〉. Suppose that ψ(x) has vanishing moments of
order m. Then, for � = 0, . . . ,m− 1,

x� =
∑
k∈Z

〈y�, φ(y − k)〉φ(x− k) =
∫ ∞

−∞
K(x, y)y�dy. (2.1)

However, for � = m, some bj,k’s are non-zero and hence the representation (2.1)
does not hold.

Now suppose that K(x, y) is of orderm. For � = 0, . . . ,m−1, the ‘projection’
(integral transform) of x� onto W0 is given by

(P1/2 − P1)x� =
∫ ∞

−∞

[
2K(2x, 2y) −K(x, y)

]
y�dy = x� − x� = 0

by the reproducing property of K(x, y). Therefore
∫ ∞
−∞ ψ(y)y�dy = 0.

The wavelet subspace Vj is a RKHS with the unique reproducing kernel
K2−j (x, y). Proposition 2.2 says that the order of vanishing moments or equiva-
lently the order of reproducing ability is intrinsic for a multiresolution approxi-
mation and is independent of the choices of wavelet bases.

Definition 2.3. We say that a sequence of multiresolution approximation,
. . . , Vj−1, Vj , Vj+1, . . ., is symmetric if and only if the projection kernel onto V0

satisfies the condition K(−x, y) = K(x,−y).
Note that if a multiresolution approximation sequence is symmetric under

Definition 2.3, then the projection operator, onto any Vj , maps an even function
to an even function. The usual definition for symmetry is based on whether the
scaling function φ(x) is symmetric or not. Definition 2.3 is a bit more general.
It is defined on a multiresolution approximation and is independent of choices of
wavelet bases.

Also note that K(−x, y) is the time-reversed kernel corresponding to the
time-reversed data in a regression setting. (See Antoniadis, Gregoire and McK-
eague (1994) for more discussion on symmetrization.)
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3. Asymptotic Bias
In this and the next sections, the asymptotic bias and variance of the esti-

mator (1.3) are studied. Spline-wavelets and Daubechies wavelets are presented
as examples. Define bm(x) = xm − ∫ ∞

−∞K(x, y)ymdy. It is easy to establish the
following results.

Proposition 3.1. Suppose that K(x, y) is of order m.
(a) Then the function bm(x) is periodic with period one.
(b) For h > 0, we have xm − ∫ ∞

−∞Kh(x, y)ymdy = hmbm
(x

h

)
.

(c) If the approximation is symmetric, then bm(−x) = (−1)mbm(x).

When m is even, bm(x) is symmetric about zero. Since bm(x) is periodic
with period one, bm(x) is also symmetric about all the points x = k/2, k ∈ Z.
When m is odd bm(x) is anti-symmetric about zero and hence anti-symmetric
about all the points x = k/2, k ∈ Z. A plot of bm(x) can provide a visual idea
of the degree of symmetry of the multiresolution approximation. (See Examples
1 and 2 as well as Figures 3.1 and 3.2 below for spline wavelets and Daubechies
wavelets.)

Theorem 3.2. Assume that f(x) belongs to the function space below:

Lipm,α(R) = {f ∈ Cm(R) : |f (m)(x) − f (m)(y)| ≤ A|x− y|α, x, y ∈ R},
for some α > 0 and A > 0. Assume that the kernel has the following localization
property:

∫ ∞
−∞ |K(x, y)(y − x)m+α| dy ≤ C, for some C > 0. Also assume that

h→ 0 and nh→ ∞ as n→ ∞. Then for a fixed x, we have

Ef̂(x) − f(x) =
−1
m!

f (m)(x)bm
(
x

h

)
hm +O(hm+α). (3.1)

Moreover, if f (m) is in L2(R), then the integrated squared bias is

||Ef̂ − f ||22 =
b2m

(2m)!
||f (m)||22h2m +O(h2(m+α)),

where b2m = (2m)!(m!)−2
∫ 1
0 b

2
m(x)dx.

Proof. We first observe that

Ef̂(x) − f(x) =
∫ ∞

−∞
Kh(x, y)(f(y) − f(x))dy

=
∫ ∞

−∞
Kh(x, y)

( m−1∑
i=1

f (i)(x)
i!

(y − x)i +
f (m)(ξx,y)

m!
(y − x)m

)
dy

=
∫ ∞

−∞
Kh(x, y)

f (m)(ξx,y)
m!

(y − x)mdy

=
−1
m!

f (m)(x)bm
(
x

h

)
hm +

∫ ∞

−∞
Kh(x, y)

(f (m)(ξx,y) − f (m)(x)
m!

)
(y − x)mdy,
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where ξx,y is some number lying between x and y. It will be shown below that
the second term in the last equality is O(hm+α). By the localization assumption
of K(x, y), we have∣∣∣∣∣

∫ ∞

−∞
Kh(x, y)

(f (m)(ξx,y) − f (m)(x)
m!

)
(y − x)mdy

∣∣∣∣∣
≤ A

m!

∫ ∞

−∞

∣∣Kh(x, y)(y − x)m+α
∣∣ dy

=
Ahm+α

m!

∫ ∞

−∞

∣∣K(x/h, y)(y − x/h)m+α
∣∣ dy = O(hm+α).

The second assertion concerning the integrated squared bias follows easily from
the first assertion and the square integrability of f (m).

When α = 0, expression (3.1) in Theorem 3.2 can be improved upon with the
remainder term of order o(hm). Assume that f (m) is bounded and continuous.
Improvement can be done by bounding

h−m
∫ ∞

−∞

(
f (m)(ξx,y) − f (m)(x)

)
|Kh(x, y)(y − x)m|dy

=
∫ ∞

−∞

(
f (m)(ξ′y h) − f (m)(x)

)
|K(x′, y)(y − x′)m|dy

=
∫ ∞

−∞

(
f (m)(ξ′y+[x′] h) − f (m)(x)

)
|K(w, y)(y − w)m|dy, (3.2)

where x′ = x/h, ξ′z denotes some number between x′ and z, [ · ] denotes the
greates integer function and 0 ≤ w = x′ − [x′] < 1. The measure induced
by {sup0≤w<1 |K(w, y)(y − w)m|}dy on the real line is finite. Also note that
ξ′y+[x′] h→ x, as h→ 0. By the Bounded Convergence Theorem, (3.2) is o(1) as
h→ 0.

Note that, under the multiresolution approximation framework, h = 2−j , j ∈
Z. However, under the projection kernel (or reproducing kernel) framework, h
can also be generalized and treated as a continuous smoothing parameter. The
nice idea that h can be taken as a continuous smoothing parameter can also be
found in Huang (1990), Huang and Studden (1993a, 1993b), and Hall and Patil
(1995a).

Below we present two examples: spline-wavelets and Daubechies wavelets.
Spline-wavelets have exponential localization (i.e., K(x, y) → 0 exponentially
fast, as |x− y| → ∞) and Daubechies wavelets have compact support. Therefore
the localization property in Theorem 3.2 is met for both cases.

Example 1. (Battle-Lemarié spline-wavelets.) Consider density estimator using
spline-wavelets. From results obtained in Huang and Studden (1993a), we have

bm(x) = Bm(x) for x ∈ (0, 1) and b2m = |B2m|,
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where Bm(x) is the mth Bernoulli polynomial and B2m is the 2mth Bernoulli
number. Plots of Bernoulli polynomials are presented in Figure 3.1.
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Figure 3.1. Bias plots using spline-wavelets

Example 2. (Wavelets by Daubechies (1988).)
Let Nφ(x) denote the Daubechies’ scaling function supported on [0, 2N − 1].

The multiresolution approximation associated with Daubechies’ Nφ system has
order m = N . An expression for bN (x) is given below.

bN (x) = xN −
N∑

�=0

C(N, �)a�
NΦN−�

N (x),

where C(N, �) = N !/�!(N − �)! and

a�
N =

∫ 2N−1

0
Nφ(x)x�dx, ΦN−�

N (x) =
0∑

k=−2N+2

kN−�
Nφ(x− k).

Daubechies’ wavelet for N = 1 corresponds to the Haar wavelet. The associated
b1(x) is simply the first Bernoulli polynomial B1(x). Therefore it is omitted
from Figure 3.2. Plots of bm(x) are presented in Figure 3.2 for m = 2, 3, 4 and
5. Values of b2m are listed in Table 6.1, Section 6. The value of b2m, small or
large, plays an influential role in comparing the relative efficiency of wavelet-
based reproducing kernels. The numbers b2m in this example are much larger
than their competitive Bernoulli numbers.
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Figure 3.2. Bias plots using Daubechies wavelets

4. Asymptotic Variance

In this section, we derive the expression of aymptotic variance for estimator
(1.3). Antoniadis, Gregoire and McKeague (1994) also have studied the same
problem and have given the order of magnitude at dyadic points.

Theorem 4.1. Suppose that f(x) ∈ C1(R) and that f(x) and f ′(x) are uniformly
bounded. For a fixed x, we have

Var f̂(x) =
1
nh
f(x)V (

x

h
) +O(

1
n

),

where V (x) =
∫ ∞
−∞K2(x, y)dy = K(x, x). Moreover the integrated variance is

given by
∫ ∞
−∞ Var f̂(x)dx = v/(nh) +O(n−1), whre v =

∫ 1
0 V (x)dx.

Proof. Start with

Var f̂(x) =
1
n

∫ ∞

−∞
K2

h(x, y)f(y)dy − 1
n

( ∫ ∞

−∞
Kh(x, y)f(y)dy

)2

=
1
n
f(x)

∫ ∞

−∞
K2

h(x, y)dy +
1
n

∫ ∞

−∞
K2

h(x, y) (f(y) − f(x)) dy

− 1
n

( ∫ ∞

−∞
Kh(x, y)f(y)dy

)2

=
1
nh
f(x)V (

x

h
)+

1
n

∫ ∞

−∞
K2

h(x, y)(f(y)−f(x))dy

− 1
n

( ∫ ∞

−∞
Kh(x, y)f(y)dy

)2
.

Below we show that the second and the third terms in the last equality are of
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order O(n−1).
∣∣∣∣ 1n

∫ ∞

−∞
K2

h(x, y) (f(y) − f(x)) dy
∣∣∣∣≤ 1

n
sup
x∈R

|f ′(x)| 1
h2

∫ ∞

−∞
K2

(
x

h
,
y

h

)
|y − x|dy

≤ 1
n

sup
x∈R

|f ′(x)| sup
s,t∈R

|K(s, t)|
∫ ∞

−∞

∣∣∣∣K
(
x

h
, t

) (
t− x

h

)∣∣∣∣ dt = O(
1
n

).

By the uniform boundedness of f(x), it is easy to see that

1
n

(∫ ∞

−∞
Kh(x, y)f(y)dy

)2

= O(
1
n

).

Therefore, we have the first assertion of the theorem.
The second assertion can be easily obtained by bounding the following two

integrals. One is n−1
∫ ∞
−∞

∫ ∞
−∞K2

h(x, y) (f(y) − f(x)) dy dx = 0. The other is

n−1
∫ ∞
−∞

(∫ ∞
−∞Kh(x, y)f(y)dy

)2
dx = n−1||Phf ||22 = O(n−1).

Note that, for any multiresolution approximation, we have

v ≡
∫ 1

0
K(x, x)dx =

∫ 1

0

∞∑
k=−∞

φ(x− k)φ(x− k)dx = 1.

That is, the value of v is always independent of choices of systems of multireso-
lution approximation. Also note that, when a multiresolution approximation is
symmetric, the function V (x) is symmetric about x = k/2, k ∈ Z.

Example 1. (continued) Plots of V (x) are presented in Figure 4.1. Note that
they are symmetric.
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Figure 4.1. Variance plots using spline-wavelets
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Example 2. (continued) Plots of V (x) are presented in Figure 4.2. Since the
case N = 1 coincides with the spline of order 1, it is omitted from Figure 4.2.
These V (x) are not symmetric. However, the approximation induced by the
system 5φ is quite close to symmetry. Also note that the variance of spline-
wavelet estimator is more stable than that of Daubechies wavelets.
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Figure 4.2. Variance plots using Daubechies wavelets

5. Averaged Shifted Kernel Estimator: A Bias Reduction Method

In view of Theorems 3.2 and 4.1 and Examples 1 and 2, the pointwise asymp-
totic bias and variance show an intriguing dependence of the grid point positions
(i.e. the knot positions in the language of spline theory, or the dyadic points
in the language of multiresolution analysis). This oscillatory effect can also be
found in Huang and Studden (1993a) and Hall and Patil (1995b). To remove
or at least to lessen the dependence effect of grid point positions, we propose
an averaged shifted kernel method. The shift-and-average technique can also be
found in Scott (1985) on density estimation by histogram, Huang (1992) on den-
sity estimation, Coifman and Donoho (1995) on nonparametric regression and
Nason and Silverman (1995) on stationary wavelet transform. The effect of bias
reduction by Coifman and Donoho (1995) is mainly based on simulation. So far
there are not many theoretical results on such procedure either in regression or
density estimation. In Proposition 5.1, we present a key observation which allows
us to remove the grid point dependence and provide bias reduction as well. We
also show that the shift-and-average procedure is variance stable.

Proposition 5.1. We have
∫ 1
0 bm(x)dx = 0.
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Proof. Since K0(x, y) reproduces the polynomial p(x) = 1, we have 1 =∫ ∞
−∞K0(x, y)dy =

∑
k∈Z φ(x− k). Then

∫ 1

0
bm(x)dx =

∫ 1

0
bm(x)

∑
k∈Z

φ(x− k)dx =
∑
k∈Z

∫ 1

0
bm(x)φ(x− k)dx

=
∑
k∈Z

∫ −k+1

−k
bm(x)φ(x)dx =

∫ ∞

−∞
bm(x)φ(x)dx

=
∫ ∞

−∞
φ(x)

(
xm −

∫ ∞

−∞
K(x, y)ymdy

)
dx

=
∫ ∞

−∞
xmφ(x)dx−

∫ ∞

−∞

∫ ∞

−∞
φ(x)K(x, y)ymdxdy

=
∫ ∞

−∞
xmφ(x)dx−

∫ ∞

−∞
ymφ(y)dy = 0.

Note that bm(x) appears as a key factor in the first order term of a bias in
equation (3.1). Consider an averaged shifted kernel

K
(q)
h (x, y) =

1
q

q−1∑
�=0

Kh

(
x+

�h

q
, y +

�h

q

)
. (5.1)

A density estimator based on the averaged shifted kernel

f̂ASKE,q(x) =
1
n

n∑
i=1

K
(q)
h (x,Xi)

is proposed. The idea of shifting grid points and then taking the average was
originated by Scott’s (1985) averaged shifted histograms. As q → ∞, the wavelet
estimator is an estimator based on the kernel

K∞
h (x, y) =

∫ 1

0
Kh(x+ th, y + th)dt.

Proposition 5.2. For each shifted kernel Kh(x+�h/q, y+�h/q), the reproducing
ability is of order m. Therefore, K(q)

h (x, y) is still of order m.

Proposition 5.3. We have xm − ∫ ∞
−∞K(x+ �

q , y + �
q )ymdy = bm(x+ �

q ).

Proofs for Proposition 5.2 and Proposition 5.3 are straightforward and are
omitted here.

Theorem 5.4. Assume conditions in Theorem 3.2. We have, for a fixed x,

E f̂ASKE,q(x) − f(x) =
−f (m)(x)

m!
1
q

( q−1∑
�=0

bm
(x
h

+
�

q

))
hm +O(hm+α),
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where O(hm+α) is uniform in q.

Proof.

E f̂ASKE,q(x) − f(x) =
∫ ∞

−∞
K

(q)
h (x, y) (f(y) − f(x)) dy

=
1
q

q−1∑
�=0

∫ ∞

−∞
Kh

(
x+

�h

q
, y +

�h

q

)
(f(y) − f(x))dy

=
1
q

q−1∑
�=0

∫ ∞

−∞
Kh

(
x+

�h

q
, y +

�h

q

)f (m)(ξx,y)
m!

(y − x)mdy

=
−f (m)(x)

m!
1
q

( q−1∑
�=0

bm
(x
h

+
�

q

))
hm

+
1
q

q−1∑
�=0

∫ ∞

−∞
Kh

(
x+

�h

q
, y +

�h

q

)f (m)(ξx,y) − f (m)(x)
m!

(y − x)mdy,

where ξx,y is some number between x and y.
For each � = 0, . . . , q − 1,

∣∣∣
∫ ∞

−∞
Kh

(
x+

�h

q
, y +

�h

q

)f (m)(ξx,y) − f (m)(x)
m!

(y − x)mdy
∣∣∣

≤ Ahm+α

m!

∫ ∞

−∞

∣∣∣1
h
K

(
x

h
+
�

q
,
y

h
+
�

q

)(y − x

h

)m+α

dy
∣∣∣ ≤ AChm+α

m!
,

where A and C are constants defined in Theorem 3.4. Therefore

1
q

q−1∑
�=0

∫ ∞

−∞
Kh

(
x+

�h

q
, y +

�h

q

)f (m)(ξx,y) − f (m)(x)
m!

(y − x)mdy = O(hm+α)

uniformly in q.

Theorem 5.5. Assume conditions in Theorem 4.1. We have, for a fixed x,

Var f̂ASKE,q(x) ≤ 1
nh
f(x)K(q)

0

(x
h
,
x

h

)
+O(

1
n

),

where O(n−1) is uniform in q.

Proof. Begin with

Var f̂ASKE,q(x) =
1
n

Var K(q)
h (x,X)

=
1
n

∫ ∞

−∞
K

(q)
h (x, y)2f(y)dy − 1

n

( ∫ ∞

−∞
K

(q)
h (x, y)f(y)dy

)2
. (5.2)



148 SU-YUN HUANG

Below we deal with the first term in (5.2) and then show that the second term
in (5.2) is of order O(n−1) uniformly in q. The first term is

1
n

∫ ∞

−∞
K

(q)
h (x, y)2f(y)dy

=
1
n

∫ ∞

−∞
1
q2

( q−1∑
�=0

Kh(x+
�h

q
, y +

�h

q
)
)2
f(y)dy

≤ 1
nq

∫ ∞

−∞

q−1∑
�=0

K2
h

(
x+

�h

q
, y +

�h

q

)
f(y)dy

=
1
nq

q−1∑
�=0

∫ ∞

−∞
K2

h

(
x+

�h

q
, y +

�h

q

)
f(x)dy

+
1
nq

q−1∑
�=0

∫ ∞

−∞
K2

h

(
x+

�h

q
, y +

�h

q

)
(f(y) − f(x))dy

=
1
nh
f(x)K(q)

(x
h
,
x

h

)
+

1
nq

q−1∑
�=0

∫ ∞

−∞
K2

h

(
x+

�h

q
, y+

�h

q

)
(f(y)−f(x))dy.

Note that

∣∣∣ 1
nq

q−1∑
�=0

∫ ∞

−∞
K2

h

(
x+

�h

q
, y +

�h

q

)(
f(y) − f(x)

)
dy

∣∣∣

≤ 1
nq

sup
x∈R

|f ′(x)|
q−1∑
�=0

∫ ∞

−∞
K2

h

(
x+

�h

q
, y +

�h

q

)
|y − x|dy

≤ 1
nq

sup
x∈R

|f ′(x)| sup
s,t∈R

|K(s, t)|
q−1∑
�=0

∫ ∞

−∞

∣∣∣K(x
h

+
�

q
, t

)(
t− x

h
− �

q

)∣∣∣dt

≤ 1
n

sup
x∈R

|f ′(x)| sup
s,t∈R

|K(s, t)| sup
s∈R

∫ ∞

−∞

∣∣∣K(s, t)(t− s)
∣∣∣dt = O(

1
n

)

independently of q. The second term in (5.2) is of order O(n−1), since

1
n

( ∫ ∞

−∞
K

(q)
h (x, y)f(y)dy

)2 ≤ 1
n

(
sup
x∈R

|f(x)| sup
x∈R

∫ ∞

−∞

∣∣∣K(x, y)
∣∣∣dy)2

= O(
1
n

).

Note that the number of shifts q can be chosen independent of n and h. By
letting q → ∞, we have

1
q

( q−1∑
�=0

bm
(x
h

+
�

q

))
→

∫ 1

0
bm

(x
h

+ t
)
dt = 0,
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and

K(q)
(x
h
,
x

h

)
→

∫ 1

0
K(x, x)dx = 1.

Actually the variance is getting more and more stable in the sense that

sup
x∈R

∣∣∣K(q)(x, x) − 1
∣∣∣ → 0, as q → ∞.

The action of shift-and-average is a smoothing operation on the grid points
rather than on the data points. It is well known that when a smoothing operation
is applied to the data points, there is a trade-off between bias and variance.
However it is not the case when the smoothing operation is applied to the grid
points.

6. Efficiency

In a wavelet method the bandwidth selection problem is often considered in
a discrete manner. Bandwidths of the form h = 2−j are considered. However,
from the kernel point of view, bandwidths can be chosen in a continuous manner.
Any automatic bandwidth selector for a convolution kernel estimator can be
tried out for estimator (1.3). Theoretical optimal bandwidth can be obtained by
minimizing the asymptotic IMSE given below.

IMSE � b2m

(2m)!
||f (m)||22h2m +

v

nh
. (5.3)

The optimal bandwidth is

hopt =
(
||f (m)||22

)−1/(2m+1)((2m− 1)!v
b2m

)1/(2m+1)
n−1/(2m+1). (5.4)

The above formulae (5.3) and (5.4) are also valid for a convolution type kernel

with v =
∫ ∞
−∞ k2(t)dt and b2m = (2m)!(m!)−2

( ∫ ∞
−∞K(t)tmdt

)2
. Plugging hopt

into (5.3), we have

IMSEopt � 2m+ 1
2m

( b2m

(2m− 1)!

)1/2m+1||f (m)||2/2m+1
2

( v
n

)2m/2m+1
. (5.5)

Let Cm(K) = b
1/2m+1
2m v2m/2m+1. We define the relative efficiency of K� to K as

rel eff = {Cm(K)/Cm(K�)}(2m+1)/2m . (5.6)

The above definitions of Cm(K) and relative efficiency are compatible with those
for convolution kernels in Silverman (1986), Sections 3.3 and 3.6. The Cm(K)
here differs from that in Silverman only by a constant factor which will be can-
celled off in the calculation of relative efficiency.
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Below we compare the asymptotic relative effeciency of several kernels (in-
dicated by �) to the spline projection kernels.

Table 6.1. Asymptotic relative efficiency

m = 2 b�2m v� efficiency
Epanechnikov kernel� 6/25 3/5 1.0175
Gaussian� 6 1/(2

√
π ) 0.9678

minimum variance kernel� 2/3 1/2 0.9457
Daubechies� .3000532 1 0.5773
m = 3
Daubechies� 1.785819 1 0.4870
m = 4
Daubechies� 21.61719 1 0.4452
optimal kernel� 10/63 5/4 0.6582
minimum variance kernel� 18/35 9/8 0.6314
m = 5
Daubechies� 436.472568 1 0.4207
m = 6
Daubechies� 13178.74404 1 0.4045
optimal kernel� 700/5577 1575/832 0.5601
minimum variance kernel� 100/231 225/128 0.5440

The efficiency discussion above is intended for comparison between kernels
when the underlined function is smooth. Table 6.1 should be read with that in
mind. The advantages of using wavelets mostly appear where functions are not
everywhere smooth but only smooth in a global sense. (See Kerkyacharian and
Picard (1992, 1993) for important and fundamental results on minimax optimal-
ity in Besov spaces and also on saturation spaces for the minimax optimality.)
One interesting thing to note: the spline wavelets (Battle-Lemarié) have similar
smoothing effect as classical convolution kernels meanwhile retaining the nice
properties of wavelets.
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