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Abstract: This article studies change-points of a function for noisy data observed

from a transformation of the function. The proposed method uses a wavelet-

vaguelette decomposition to extract information about the wavelet transformation

of the function from the data and then detect and estimate change-points by the

wavelet transformation. Asymptotic theory for the detection and estimation is

established. A simulated example is carried out to illustrate the method.
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1. Introduction

Change-points describe sudden localized changes. The occurrence of change-
points often reveal important information about the object under study, so there
is a great interest in detecting and locating the change-points. Typical change-
points for a general smooth function f(x) are isolated jumps and sharp cusps.
We say function f has an α (0 ≤ α < 1) sharp cusp at x0 if there exists a positive
constant C such that, as h tends to zero from left or right,

|f(x0 + h) − f(x0)| ≥ C|h|α. (1)

α = 0 corresponds to a jump at x0.
However, in many practical problems only some transformations of functions

are observable. For example, nondestructive methods are regularly used to in-
spect airplanes, dams and bridges for flaws. Flaws are sudden structural changes
and needed to be detected and located. In nondestructive evaluation of flaws,
instruments can measure only certain transformations of flaw signals (Neal and
Thompson (1990), Neal, Speckman and Enright (1993), van Nevel, DeFacio and
Neal (1995)). In fact, such problems often occur in scientific areas including
engineering, physics and medical imaging and are called inverse problems. For-
mally, we observe only a transformation, (Kf)(x), of an underlying object f(x),
where K is a non-invertible linear transformation. In this paper we use wavelet
methods to detect and estimate sharp cusps of f(x) based on noisy observations
about (Kf)(x).
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Singular value decompositions are widely used to solve linear inverse prob-
lems; however, the singular value decompositions and available change-point anal-
ysis methods seem to have great difficulty in dealing with change-points of f(x)
for indirect observations. Tools to detect and locate these change-points for in-
direct observations require two properties. They must extract information about
f(x) from indirect observations, and they must characterize the local features of
f(x). Eigenfunctions in a singular value decomposition, like the Fourier basis,
often have trouble in focusing on the local behavior of f(x), while existing de-
tection techniques based on smoothing can not recover information about f(x)
from indirect observations. To the best of our knowledge, there is little study on
change-points of functions for indirect data, probably due to lack of tools.

As a wavelet analogue of a singular value decomposition, Donoho (1995) in-
troduced a wavelet-vaguelette decomposition with three sets of basis functions
(an orthogonal wavelet basis and two mutually biorthogonal vaguelette bases)
to solve inverse problems. Wavelets and vaguelettes in a wavelet-vaguelette de-
composition can characterize local features of a function (Daubechies (1992),
Meyer (1990), Mallat and Hwang (1992), Wang (1995)). Hence, the idea of
wavelet-vaguelette decomposition is very suitable for analysis of change-points
for indirect data.

In this paper we study change-points for indirect data by using a fractional
Gaussian noise model, which can accommodate both independent and dependent
observations (Wang (1996, 1997), Csörgö and Mielniczuk (1995)). Our analysis
is based on continuous wavelet and vaguelette transformations; thus we adapt
the wavelet-vaguelette decomposition to a continuous version that allows us to
extract the wavelet transformation of f(x) from the vaguelette transformation
of the indirect data. Hence we can detect and estimate jumps and sharp cusps
of f(x) from the extracted wavelet transformation of f(x). Asymptotics for the
detection and estimation are established. A simulated example is carried out to
illustrate the method. The proposed method is genuinely novel, and the results
apply to both independent and dependent observations.

The rest of the paper is organized as follows. Section 2 introduces the wavelet
and vaguelette transformations and the wavelet-vaguelette decomposition. Sec-
tions 3 introduces the fractional Gaussian noise model. Section 4 relates the
vaguelette transformation of the data to the wavelet transformation of f(x) and
shows that the vaguelette transformation can be used to detect and estimate
sharp cusps. We consider detection and estimation in Sections 5 and 6, respec-
tively. A simulated example is illustrated in Section 7. Proofs are collected in
Section 8.

2. Wavelets and Vaguelettes

Denote by ψ(x) and u(x) respective wavelet and vaguelette of compact
supports (Daubechies (1992), Meyer (1990), Donoho (1995)), and set ψs(x) =
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s−1/2ψ(x/s) and us(x) = s−1/2u(x/s). The wavelet and vaguelette transfor-
mations of f are defined to be Tf(s, x) =

∫
f(z)ψs(z − x)dz, and Sf(s, x) =∫

f(z)us(z−x)dz , respectively. We say that ψ and u asymptotically decompose
a transformation K, if

S(Kf)(s, x) = κs{Tf(s, x) + o(1)}, as s→ 0, (2)

for some quasi-singular value κs.
The above decomposition is a continuous version of wavelet-vaguelette de-

composition in Donoho (1995). Instead of using eigenfunctions in a singular value
decomposition, Donoho’s wavelet-vaguelette decomposition employs three sets of
basis functions to recover f from information about Kf . The three sets of bases
are an orthogonal wavelet basis and two mutually biorthogonal vaguelette bases
generated by dyadically dilating and translating the wavelet ψ, the vaguelette u
and the normalized Kψ, respectively.

Equation (2) implies that the wavelet transformation, Tf(s, x), of f(x) can
be recovered from the vaguelette transformation of (Kf)(x). The asymptotic
decay of the wavelet transformation at small scales provides localized information
such as local regularity on f(x). For example, if f is differentiable at x, Tf(s, x)
has the order s3/2 as s tends to zero, and if f has an α-cusp at x, the maximum of
|Tf(s, x)| over a neighborhood of x with size proportional to the scale s converges
to zero no faster than sα+1/2 as s tends to zero. (Daubechies (1992), theorems
2.9.1-2.9.4 on pp. 45-49, Wang (1995), Section 3).) Therefore, we can analyze
local behaviors of f(x) from indirect information about f(x).

We can construct (ψ, u, κs) to decompose typical transformations K such as
integration, fractional integration, Radon transformation and certain convolution
(Donoho (1995)).

Example 1. Integration transformation (Kf)(x) =
∫ x
−∞ f(t)dt, κs = s, and

u(x) = ψ′(x). For integration transformation, the problem of detecting jumps
in f based on indirect observations about f(x) is equivalent to that of detecting
jumps in the derivative of g(x) = (Kf)(x) based on direct observations about
g(x).

Example 2. Suppose Ω(·) is a homogeneous function with degree zero (that
is, Ω(cx) = Ω(x) for all c > 0) and is not equal to an identically vanishing
function. Let β ∈ (0, 1). Fractional integration transformation is defined as
(Kf)(x) =

∫ ∞
−∞ f(t) Ω(t− x) |t− x|β−1dt. For this transformation, κs = sβ, and

u(x) = γ(x), where γ̂(ω) = ψ̂(ω)|ω|β/Ω̂(ω), and γ̂(ω) and Ω̂(ω) are the Fourier
transformations of γ(x) and Ω(x), respectively. The Abel transform corresponds
to fractional integration transformation with β = 0.5 and Ω(x) = 1(x > 0),
Heaviside function. For example, if f(x) = 0.5 ·I{0.78 ≤ x ≤ 1}, then (Kf)(x) =
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(x − 0.78)0.5 · I{0.78 ≤ x ≤ 1}. So the problem of detecting a jump in f based
on indirect observations about f(x) corresponds to that of detecting a jump in
the ‘half’ derivative of g(x) = (Kf)(x) based on direct observations about g(x).

Example 3. Convolution transformation (Kf)(x) =
∫
k(x− t)f(t)dt, where the

Fourier transformation, k̂(ω), of the kernel k obeys |k̂(ω)| ∼ |ω|−b, as |ω| → ∞,
for some b > 0. For example, if k(x) = ex1{x ≤ 0}, κs = min(1, s), u(x) =
{ψ(x) − ψ′(x)}; and if k(x) = 0.5e−|x|, κs = min(1, s2), u(x) = {ψ(x) − ψ′′(x)}.
The convolution transformations corresponds to the deconvolution problems with
ordinary smooth error distribution (Fan (1991), Zhang (1990)).

From now on we assume that there exists (ψ, u, κs) to decompose K, and κs

satisfies
κs = sβ{1 + o(1)}, as s→ 0, (3)

for some β > 0.

3. Fractional Gaussian Noise Model

Suppose we observe Y (x), x ∈ [0, 1], from the fractional Gaussian noise
model

Y (dx) = (Kf)(x)dx+ ε2−2HBH(dx), x ∈ [0, 1], (4)

where f is an unknown function with support contained in [0, 1], K is a linear
transformation, ε is noise level, and BH(dx) is a fractional Gaussian noise defined
below. The function f may have jumps and sharp cusps. Our goal is to detect
and estimate these change-points.

A fractional Gaussian noise is the formal derivative of fractional Brownian
motion

BH(x)=
( ∫ 0

−∞

{
(x−u)H−1/2−(−u)H−1/2

}
B(du)+

∫ x

0
(x−u)H−1/2B(du)

)
/Γ(H+1/2)

for x > 0, where H ∈ (0, 1), and B is a standard Brownian motion. BH has
covariance function Cov{BH(s), BH(t)} = VH{|s|2H + |t|2H − |t− s|2H}/2, with
VH = Var {BH(1)} = cos(πH)Γ(1 − 2H)/(πH). Process B1/2 is an ordinary
Brownian motion, and model (4) with H = 1/2 corresponds to the white noise
model (Donoho (1995), Low (1995)). For H > 1/2, fractional Gaussian noise
BH(dx) and fractional Brownian motion BH(x) are often used to model phenom-
ena exhibiting long-range dependence (Mandelbrot and van Ness (1968), Beran
(1992, 1994), Csörgö and Mielniczuk (1995), Wang (1996, 1997)). Long-range
dependence often refers to the context where correlations between observations
that are far apart decay to zero at a slower rate than we would expect from inde-
pendent data or short-range dependent data (Beran (1992, 1994)). For example,
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in ultrasonic nondestructive testing of flaws, the observed signal is the convo-
lution of the impulse response of a flaw and the response of the measurement
system, plus Gaussian noise with slowly decaying correlation (Neal and Thomp-
son (1990), Neal, Speckman and Enright (1993), van Nevel, DeFacio and Neal
(1995)); so the problem can be modeled by the fractional Gaussian noise model.

As the white noise model approximates discrete models with i.i.d. errors
(Brown and Low (1996), Donoho (1995), Donoho and Johnstone (1997), Low
(1995)), model (4) with ε = εn ∼ n−1/2 is an approximation of the discrete
model

yi = (Kf)(i/n) + εi, i = 1, . . . , n, (5)

where errors εi are stationary normal random variables with zero mean and
possible long-range dependence (Csörgö and Mielniczuk (1995), Wang (1996,
1997)).

Continuous Gaussian models play a central role in the nonparametric func-
tional estimation (e.g. see the papers of Donoho (1993, 1995), Ibragimov and
Hasminskii (1980) Johnstone and Low (1995)). They capture many of the es-
sential features of other models, such as density estimation and nonparametric
regression, without as many technical difficulties. Also there are applications in
which observations are best modeled by continuous models (Poor (1995)).

4. The Vaguelette Transformation of Data

The vaguelette transformations of fractional Gaussian noise BH(dx) and
the observed process Y are defined to be SBH(s, x) =

∫
us(x − z)BH(dz), and

SY (s, x) =
∫
us(x− z)Y (dz), respectively. Using (4), (2) and (3) sequentially we

obtain

SY (s, x) = S(Kf)(s, x) + ε2−2HSBH(s, x)

= ksTf(s, x){1 + o(1)} + ε2−2HSBH(s, x)

= {sβ + o(sβ)} Tf(s, x) + ε2−2HSBH(s, x). (6)

The vaguelette transformation of Y provides information about the wavelet
transformation of f(x), so we can detect and estimate change-points of f(x)
by SY (s, x) as follows.

As s → 0, Tf(s, x) has orders sα+1/2 and s3/2, respectively, for the two
cases that f has an α-cusp at x and f is differentiable at x (see Section 2),
and the maximum of Gaussian process SBH(s, x) over 0 ≤ x ≤ 1 is of order
sH−1/2 | log s|1/2 (see (13) in Section 8). So we can choose scale s such that
ε2−2H |SBH(s, x)| is of larger order than sβ|Tf(s, x)| at x where f is differentiable
and of smaller order than sβ|Tf(s, x)| at x where f has an α-cusp. At the chosen
scale s, (6) implies that SY (s, x) is dominated by ε2−2HSBH(s, x) where f is
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smooth at x and by sβTf(s, x) where f has a sharp cusp near x, and thus the
significantly large value of |SY (s, x)| indicates that f(x) has a sharp cusp near
x.

Mathematically we choose scale sε with exact order (ε| log ε|η)(2−2H)/(α+β−H+1) ;
that is,

sε � (ε| log ε|η)(2−2H)/(α+β−H+1), (7)

where η is any positive constant greater than 1. It is easy to show that at the
selected scale sε the order of ε2−2H |SBH(sε, x)| almost matches up to the order
of sβ

ε |Tf(sε, x)| for nearby x where f has a sharp cusp and is much lower than
the order of sβ

ε |Tf(sε, x)| for x at which f is differentiable. If f has a sharp
cusp nearby x, SY (sε, x) is dominated by sβ

ε Tf(sε, x) and hence significantly
larger than the others. Thus, the sharp cusps can be detected and estimated by
checking the values of SY (sε, x).

5. Detect Jumps and Sharp Cusps

Consider the testing problem H0: f is differentiable against H1: f has jumps
and/or sharp cusps. Under H0, f is a smooth function, and hence SY (sε, x) is
dominated by the stationary Gaussian process ε2−2HSBH(sε, x), while under
H1, f has jumps and/or sharp cusps, so for nearby x, SY (sε, x) is dominated
by sβ

ε Tf(sε, x) and thus has large absolute value. Therefore, the maximum of
|TS(sε, x)| over 0 ≤ x ≤ 1 is of much larger order under H1 than under H0, and
thus can serve as a test statistic. The following theorem gives an asymptotic
critical value Cγ for this test of size γ.

Theorem 1. Assume that there exists (ψ, u, κs) satisfying (3) to decompose K
and sε satisfies (7). Then for 0 < γ < 1, we have under H0,

lim
ε→0

P
(

max
0≤x≤1

|SY (sε, x)| ≥ Cγ

)
= γ,

where

Cγ =τ1ε2−2HsH−1/2
ε

(
{2| log sε|}1/2−{2| log sε|}−1/2 log{−21/2πτ1τ

−1
2 log(1−γ)}

)
,

τ2
1 = VHH(H − 1)

∫
u(z1)u(z2)|z1 − z2|2H−2dz1dz2,

and
τ2
2 = VHH(H − 1)

∫
u′(z1)u′(z2)|z1 − z2|2H−2 dz1dz2.

We now investigate the power of the test. For C > 0 and 0 ≤ α < 1, denote
by Λ(α,C) the class of functions f satisfying (1) for some x0. The next theorem
shows that its minimum power over Λ(α,C) tends to one as ε→ 0.
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Theorem 2. Under the assumptions of theorem 1, as ε→ 0,

inf
f∈Λ(α,C)

P
(

max
0≤x≤1

|SY (sε, x)| ≥ Cγ

)
→ 1.

We may consider testing the hypothesis that f is smooth against the contigu-
ous alternative f ∈ Λ(αε, C), where αε → 1 as ε → 0. Using arguments similar
to those in Section 8 we can show that in order for the test given in theorem
1 to have a non-trivial power, the rate of αε approaching 1 in the contiguous
alternative must be slower than | log ε|−1.

6. Locate Jumps and Sharp Cusps
6.1. One sharp cusp

Suppose f has an α sharp cusp at θ0, and is differentiable elsewhere. Since
SY (sε, x) has significantly larger absolute values near θ0 than the others, we
estimate θ by the maximizer of |SY (sε, x)| over 0 ≤ x ≤ 1, that is

θ̂0 = arg max
0≤x≤1

{|SY (sε, x)|}. (8)

The following theorem gives a convergence rate for the estimate.

Theorem 3. Suppose that there exists (ψ, u, κs) satisfying (2) and (3) to decom-
pose K and sε satisfies (7), and also suppose f has an α sharp cusp at θ0, and
is differentiable elsewhere. Then as ε→ 0, θ̂0 − θ0 = Op(sε).

Since sε ∼ (ε| log ε|η)(2−2H)/(α+β−H+1) , the convergence rate sε decreases in
both β and H. As β and H increase, the inverse problem becomes harder and the
dependence in the data tends to be stronger. Therefore, it will be more difficult
to locate a sharp cusp, and the convergence rate will be slower.

The white noise model considered in Wang (1995) corresponds to the case
H = 1/2 and K = I (β = 0). For estimating a jump (α = 0) based on direct
observations (K = I in model (4)), θ̂0 has a convergence rate sε ∼ ε2| log ε|2η . To
our surprise, the convergence rate is independent of H and is equal to the rate
for the white noise model (H = 1/2 in model (4)) (Wang (1995)).

For independent and direct data (K = I and H = 1/2), a jump can be
estimated at convergence rate ε2 for a continuous model (Korostelev (1987)) and
at convergence rate n−1 for a discrete model (Müller and Song (1995), Gijbels,
Hall and Kneip (1995)). These results suggest that the optimal convergence rate
for estimating θ0 may not have a logarithm term, and θ̂0 comes only within a
logarithm factor of the best estimator.

6.2. Multiple sharp cusps
Suppose f has q + 1 cusps with an αi-cusp at θi, i = 0, 1, . . . , q, and is

differentiable elsewhere, where q is a finite integer, 0 ≤ α1, . . . , αq ≤ α < 1.
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Define a threshold

λε = τ1{(2| log sε|)1/2 + (2| log sε|)−1/4}1/2sH−1/2
ε ε2−2H , (9)

where τ1 is defined in Theorem 1. With probability tending to one, the maximum
of ε2−2H |SBH(sε, x)| over 0 ≤ x ≤ 1 is bounded by λε (13) in Section 8). At scale
sε and for x at which f is smooth, SY (sε, x) is dominated by ε2−2HSBH(sε, x),
and thus SY (sε, x) is bounded by λε. Therefore, from the discussion in Section
4 we have that |SY (sε, x)| exceeds λε only near sharp cusps. Define

Θ̂ = {x : |SY (sε, x)| ≥ λε}, (10)

the locations where the absolute values of SY (sε, x) exceed threshold λε. We use
Θ̂ to locate the jumps and sharp cusps. The method requires no knowledge of
the values of q and αi so long as q is finite and αi are bounded by a prespecified
α. The following theorem establishes asymptotics for Θ̂.

Theorem 4. Suppose that there exists (ψ, u, κs) satisfying (3) to decompose
K and sε satisfies (7), and also suppose f has αi-cusp at θi, i = 0, 1, . . . , q,
with 0 ≤ α1, . . . , αq ≤ α, and is differentiable elsewhere. Then as ε → 0, with
probability tending to one, {θi}0≤i≤q ⊂ Θ̂, and Θ̂ is included in the union of q+1
intervals with length of order sε. In particular, the Lebesgue measure of Θ̂ is of
order sε.

For small ε, Θ̂ is contained in the union of q + 1 narrow intervals. So for
reasonably separated jumps and sharp cusps, θ0, . . . , θq can be very accurately
located by Θ̂.

If αi are known, we can estimate θi at higher convergence rates by using the
following multiple thresholding strategy. List all distinct values of αi and order
them, say 0 ≤ α(1) < · · · < α(r). For j = 1, . . . , r, set α = α(j), and use the
procedure described in this section to locate α(j)-cusps. Theorem 4 implies that
the convergence rates for estimating α(j)-cusps are (ε| log ε|η)(2−2H)/(α(j)+β−H+1).

7. An Example

In practice Y (x) are sampled at n = 2J discrete points x = i/n, i = 1, . . . , n,
or equivalently, we observe f from model (5) and have discrete data y1, . . . , yn.
Consequently we need to perform discrete versions of wavelet and vaguelette
transformations. Fast algorithms are available for computing discrete wavelet
transformations (Cohen, Daubechies, Jawerth and Vial (1993), Meyer (1993),
Nason and Silverman (1994)) and discrete vaguelette transformations (Kolaczyk
(1994)). As in the discrete wavelet transformation case (Donoho and Johnstone
(1994), Wang (1995)), the n−1 elements of the discrete vaguelette transformation
of (y1, . . . , yn) are indexed dyadically: uj,k, k = 0, . . . , 2j − 1, j = 0, . . . , J − 1,
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and the remaining element is labeled u−1,0. The quantity uj,k corresponds to
SY (2−j , k2−j) and is called the empirical vaguelette coefficient at level j and
position k2−j , k = 0, . . . , 2j − 1, j = 0, . . . , J − 1.

We obtain thresholds for the discrete data as follows. As y1, . . . , yn are from
model (5), we substitute ε = εn ∼ n−1/2, and sε = 2−j into (9) and derive its
leading term λj = (2 log n)1/2 2j(1/2−H) ε2−2H

n τ1. Direct calculations show that
2j(1/2−H)ε2−2H

n τ1 approximates the standard deviation of the empirical vaguelette
coefficients uj,k at level j (Wang (1996), lemma 2). At high levels the empirical
vaguelette coefficients are dominated by noise, and the standard deviation of uj,k

at level j can be estimated by σ̂j, the median absolute deviation of uj,k at level
j divided by 0.6745 (Donoho (1993), Sections 5 and 6). Hence, we get level-
dependent thresholds λ̂j = (2 log n)1/2 σ̂j . We use λ̂j to check uj,k at level j and
select the number of sharp cusps. As in Wang (1995), we check uj,k at all levels
and find dyadic intervals up to some high levels whose corresponding |uj,k| exceed
thresholds λ̂j and are significantly larger than the others. The dyadic intervals
at the high levels are very narrow and can locate sharp cusps very accurately.

Moreover, to enhance the numerical performance, we can compute a trans-
lation-invariant vaguelette transformation by cycle-spinning the discrete vague-
lette transformation (Coifman and Donoho (1995), Nason and Silverman (1995))
and use the translation-invariant vaguelette transformation to detect and esti-
mate sharp cusps.

f(x)

x

Figure 1(a)

(K
f)(x)

x

Figure 1(b)
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A simulated example was carried out to illustrate the method. The true
function f has a jump and an unbalanced cusp, K is the fractional transfor-
mation with β = 0.1 and Ω = Heaviside function. For the data illustrated in
Figure 1, J = 10, n = 1024, ε1, . . . , εn are i.i.d. normal errors with mean zero and
standard deviation σ = 0.2. Figures (a), (b) and (c) show the plots of the true
function f(x), the transformed true function (Kf)(x) and (Kf)(x) with noise,
respectively. Daubechies’ compactly supported wavelet with three vanishing mo-
ments was used to compute the empirical vaguelette coefficients uj,k at 10 levels.
We found the |uj,k| exceed thresholds λ̂j up to level 5 near the sharp cusp and
up to level 6 near the jump. Figures (d) and (e) show plots of |uj,k| at levels
j = 5 and 6, respectively, and the horizontal lines represent thresholds λ̂j . They
indicate that the |uj,k| are significantly large and exceed the threshold lines only
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near the locations where the jump and sharp cusp occur. They also show that,
because of local adaptivity, the jump can be located more precisely at level 6.

8. Proofs

Vaguelette transformation of fractional Gaussian noise

The vaguelette transformation of BH(dx) is defined to be SBH(s, x) =∫
us(x− z)BH(dz). Then for ξ = x/s ∈ [0, 1/s],

SBH(s, x) = s−1/2
∫
u
(
s−1(a− x)

)
BH(da) = s−1/2

∫
u(z − ξ)BH(sdz)

= sH−1/2
∫
u(z − ξ)B̃H(dz),

where B̃H(·) = s−HBH(s·) is also a fractional Brownian motion. Define

X(ξ) = τ−1
1

∫
u(z − ξ)dB̃H(z), ξ = x/s ∈ [0, 1/s].

(τ1 is defined in Theorem 1.) Then

SBH(s, x) = τ1s
H−1/2X(ξ), (11)

and X(ξ) is a Gaussian process with mean zero and covariance function

E{X(ξ1)X(ξ2)} = τ−2
1 VHH(H − 1)

∫
u(ξ1 − z1)u(ξ2 − z2)

|(z1 − z2) − (ξ1 − ξ2)|2H−2 dz1dz2

= τ−2
1 VHH(H − 1)

∫
u(a− [ξ2 − ξ1]/2)u(b + [ξ2 − ξ1]/2)|a − b|2H−2 dadb,

which depends only on ξ2 − ξ1. So X(ξ) is stationary. Moreover, u is compactly
supported, then we have as ξ → 0,

E{X(0)X(ξ)}=τ−2
1 VHH(H − 1)

∫
u(a− ξ/2)u(b+ξ/2)|a−b|2H−2dadb

=τ−2
1 VHH(H−1)

∫ {
u(a)−u′(a)ξ/2+o(ξ)

}{
u(b)+u′(b)ξ/2+o(ξ)

}
|a−b|2H−2dadb

=τ−2
1 VHH(H−1)

{ ∫
u(a)u(b)|a−b|2H−2dadb+(ξ/2)

∫ {
u(a)u′(b)−u′(a)u(b)

}

|a−b|2H−2dadb−(ξ/2)2
∫
u′(a)u′(b)|a−b|2H−2dadb

}
+o(ξ2)

=1 − τ−2
1 τ2

2 ξ
2/4+o(ξ2),

where τ1 and τ2 are defined in Theorem 1. By the theory for maxima of stationary
Gaussian processes (Bickel and Rosenblatt (1973), Theorem A1, Corollary A1,
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Leadbetter, Lindgren and Rootzén (1983), Theorem 8.2.7, Corollary 11.1.6), we
have that as s→ 0,

P
(
{2| log s|}1/2

{
max

0≤ξ≤1/s
|X(ξ)| −Ds

}
≤ x

)
−→ exp(−2e−x),

where
Ds = (2| log s|)1/2 + (2| log s|)−1/2 log(2−3/2(πτ1)−1τ2). (12)

It follows from (11) that as s→ 0,

P
(
{2| log s|}1/2

{
τ−1
1 s1/2−H max

0≤x≤1
|SBH(s, x)| −Ds

}
≤ x

)
−→ exp(−2e−x).

(13)

Proof of Theorems 1 and 2

Under H0, Tf(s, x) is of order s3/2 and thus by (6) we have

SY (sε, x) = O(sβ+3/2
ε ) + ε2−2HSBH(sε, x) = ε2−2H{SBH(sε, x) + o(1)}.

Hence the maximum of |SY (sε, x)| over 0 ≤ x ≤ 1 is asymptotically distributed
as that of ε2−2HSBH(sε, x). By the limiting distribution (13) we can easily derive

Cγ = ε2−2Hτ1s
H−1/2
ε (Dsε − {2| log sε|}−1/2 log{−(1/2) log(1 − γ)}),

where Ds is defined in (12). This completes the proof of theorem 1.
Now we prove Theorem 2. As ε → 0, Cγ has an order of | log sε|1/2s

H−1/2
ε

ε2−2H . However, (17) below implies that for f ∈ Λ, as ε→ 0,

max{|SY (sε, x)| : x ∈ [0, 1]} ≥ C ′ | log sε|η/2 sH−1/2
ε ε2−2H ,

where C ′ is a constant depending only on C and ψ. Therefore, as ε → 0,
max{|SY (sε, x)| : x ∈ [0, 1]} is of much larger order than Cγ and hence the
probability in theorem 2 tends to one.

Proof of Theorems 3 and 4

Let C be a generic constant whose value may change from line to line and
denote by supp(ψ) the compact support of ψ. By Theorem 2.9.1 on page 45
of Daubechies (1992), we obtain that for all (sε, x) with (θi − x)/sε 	∈ supp(ψ),
0 ≤ i ≤ q,

|Tf(sε, x)| ≤ Cs3/2
ε . (14)

Theorems 2.9.3 and 2.9.4 on page 49 of Daubechies (1992) imply

max{|Tf(sε, x)| : (θi − x)/sε ∈ supp(ψ)} ≥ Csα+1/2
ε , 0 ≤ i ≤ q. (15)
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By (13) and (14) we have that as ε→ 0, with probability tending to one, for all
(sε, x) with (θi − x)/sε 	∈ supp(ψ),

|SY (sε, x)| ≤ Csα+β+3/2
ε + ε2−2H max

0≤x≤1
|SBH(sε, x)| ≤ λε, (16)

where λε is defined in (9). On the other hand, (13) and (15) imply that as ε→ 0,
with probability tending to one,

max{|SY (sε, x)| : (θi − x)/sε∈supp(ψ)}≥C(sα+β+1/2
ε − ε2−2HsH−1/2

ε | log sε|1/2)

≥C(| log ε|η/2−1/2 − 1)λε. (17)

Note that η > 1. As ε→ 0, with probability tending to one, the lower bound
in (17) is greater than the upper bound λε in (16). Thus, for the one sharp cusp
case (Theorem 3), θ̂0 ∈ θ0 + sεsupp(ψ) ≡ {θ0 + sεx : x ∈ supp(ψ)}; and for the
multiple sharp cusp case (Theorem 4), Θ̂ ⊂ ∪q

i=0{θi + sεsupp(ψ)}, the union of
q + 1 intervals with length of order sε. The proof is completed.
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