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Abstract: Block thresholding methods have been proposed by Hall, Kerkyacharian

and Picard (1995) as a means of obtaining increased adaptivity when estimating

a function using wavelet methods. For example, it has been shown that block

thresholding reduces mean squared error by rendering the estimator more adaptive

to relatively subtle, local changes in curvature, of the type that local bandwidth

choice is designed to accommodate in traditional kernel methods. In this paper we

show that block thresholding also provides extensive adaptivity to many varieties

of aberration, including those of chirp and Doppler type. Indeed, in a wide variety

of function classes, block thresholding methods possess minimax-optimal conver-

gence rates, and in particular enjoy those rates without the extraneous logarithmic

penalties that are usually suffered by term-by-term thresholding methods.
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1. Introduction

Wavelet methods for nonparametric function estimation are renown for their
extraordinary adaptivity across a wide range of function classes. Indeed, nonlin-
ear wavelet estimators based on term-by-term thresholding enjoy almost-optimal
convergence rates across many of these classes, in that they achieve the minimax-
optimal speed of convergence up to a power of the logarithm of sample size.
See for example Donoho, Johnstone, Kerkyacharian and Picard (1995). It has
recently been shown that so-called “block thresholding” allows the extraneous
logarithmic factor to be removed in the case of estimating piecewise-continuous
densities (see Hall, Kerkyacharian and Picard (1995)).

In the present paper we show that the minimax optimality of block threshold-
ing is available substantially more generally, and in the context of nonparametric
regression, across function classes that involve unboundedly many irregularities
of a wide variety of types, including chirp and Doppler functions, and jump dis-
continuities. Moreover, the optimality is exact in the sense of convergence rates,
since the ratio of the uniform upper bound to the minimax lower bound is close to
neither zero nor infinity as sample size increases. In particular, the lower bound
is not inferior to the upper bound by a power of the logarithm of sample size.
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Our results also provide information about the level of irregularity that is
allowable before it completely determines the overall convergence rate. This
feature is perhaps best explained via an example, as follows. In the case of a
Doppler, such as g1(x) = |x−x0|β cos(|x−x0|−α) for α, β ≥ 0, frequency increases
without bound in the vicinity of the potential discontinuity at x0. (The case
α = 0 corresponds to a chirp, and there, x0 does indeed produce a discontinuity.)
One consequence of our results is that if such a Doppler is added to a smooth
function g2 of regularity s (meaning that it is in a Besov space Bspq; see Example
3.1 for a definition), then the overall convergence rate is still that of an optimal
estimator of g2, provided that s < (2β+1)/(2α). (This result requires the order,
or Daubechies number, N , of the wavelet to be chosen sufficiently large.)

Block thresholding has the practical advantage of providing spatial adaptiv-
ity to relatively subtle changes in the target function. When applied to smooth
curves it produces a degree of graduated smoothing, in much the same manner
that a well-chosen, locally-varying bandwidth does in kernel estimation. By way
of contrast, term-by-term thresholding applied to smooth curves is analogous to
using a single, global bandwidth in kernel methods.

One way of viewing the performance of block thresholding is to note that,
in the terminology of Donoho et al. (1995), it interprets the “oracle” perfectly to
first order. That is to say, it includes an estimated wavelet coefficient if and only
if the standard deviation of that quantity is less than its absolute value, except for
terms of second order. Term-by-term thresholding can only interpret the “oracle”
correctly up to a constant factor, even for terms of first order. These results are
derived and further discussed by Hall, Kerkyacharian and Picard (1995).

In practice, block length for block thresholding must be chosen empirically,
but its selection is not as critical as that of the primary resolution level (2j0

in notation of Donoho et al. (1995), or p in notation of Hall and Patil (1995)).
Indeed, if chosen within an appropriate range of values the block length does not
have any first-order effect on mean squared error properties, and so it would not
usually be considered a smoothing parameter. These issues will not be addressed
in the present paper, however, since here we are principally interested in the
performance of block thresholding when the target function is highly non-smooth.
In effect we are concerned with adaptivity to high-frequency changes in the target
curve, not to relatively subtle, low-frequency changes.

Section 2 will suggest a nonparametric regression model for the mechanism
generating the data, and introduce block thresholding estimators of the regres-
sion mean. To ensure as much generality as possible our methods will be based on
projections of estimators produced by the empirical wavelet transform method of
Donoho and Johnstone (1995), although we shall discuss more direct approaches
that are available in some circumstances. Section 3 will introduce a class H of re-
gression means that may often be represented as the superposition of a function g1
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that has a possibly unbounded number of irregularities, and a relatively smooth
function g2. There we shall discuss examples, such as piecewise-continuous func-
tions, chirps and Dopplers, that belong to the class. Section 4 will describe
convergence rates achieved by the estimators in Section 2, uniformly over func-
tions in H; and it will point out that those rates are identical to minimax lower
bounds for the regular components, g2, of functions in H. In this way we shall
show at once that our block thresholding estimators achieve optimal rates of con-
vergence over classes of irregular functions, and that in a wide range of settings
these rates are identical to those of particularly regular functions. All proofs will
be deferred to Section 5.

2. Model and Estimators

Assume that data {Ym} are generated by the model

Ym = g(xm) + εm , 1 ≤ m ≤ n, (2.1)

where xm = m/n and the variables εm are independent and normally distributed
with zero mean and variance σ2 > 0. (In this setting, g is restricted to the
interval I = [0, 1], and the integrals in the definitions of αj and βij are taken
over I.) The assumption of normality may be relaxed, as we shall discuss in
Remark 4.5.

Let φ be a scale function and ψ its associated wavelet, and define φij(x) =
2i/2 φ(2ix − j) and ψij(x) = 2i/2 ψ(2ix − j). Given a square-integrable g, put
αij =

∫
g φij and βij =

∫
g ψij. An empirical wavelet expansion based on term-

by-term thresholding is given by

ḡ =
∑

−∞<j<∞
ᾱi0j φi0j +

i1−1∑
i=i0

∑
−∞<j<∞

β̄ij ψij I(β̄2
ij > cn−1 log n), (2.2)

where ᾱij = n−1 ∑
m Ym φij(xm), β̄ij = n−1 ∑

m Ym ψij(xm), c is an appropri-
ate threshold constant, and i1 > i0 is a truncation point. Note that here, a
thresholding decision is made about each term in ψij . Here and below, while
we consider the regression model only on the compact interval I, we simplify
our notation and analysis by not employing special boundary wavelets. The
block method is sufficiently adaptive to deal with edge effects without requiring
subsidiary adjustments. Indeed, this is precisely one of its advantages. Some
practical improvements (offering only second-order theoretical advantages) may
be expected through using special boundary wavelets, but they can be difficult
to implement.

In block thresholding, the integers j are divided among consecutive, nonover-
lapping blocks of length li, say Bik = {j : (k − 1)li + ν + 1 ≤ j ≤ kli + ν},
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−∞ < k < ∞, where ν is an arbitrary integer. (It simplifies notation a little
if we take ν = 0, which we shall do.) In this approach, all terms involving the
functions ψij for j ∈ Bik are included in or excluded from the empirical wavelet
transform. This leads to the estimator,

g̃ =
∑

−∞<j<∞
ᾱi0j φi0j +

i1−1∑
i=i0

∑
−∞<k<∞

( ∑
(ik)

β̄ij ψij

)
I(B̂ik > cn−1), (2.3)

where
∑

(ik) denotes summation over j ∈ Bik, and B̂ik is an estimator of the
“average” value of β2

ij for j ∈ Bik.
In general, block length is an increasing function of the weight of the tails

of the error distribution. To appreciate why, observe that estimates of terms
βij will exhibit more tendency towards large-deviation fluctuations if the error
distribution has heavier tails. Therefore, with heavier-tailed errors it is necessary
to pool more spatial levels, j, into each block, if this effect is to be countered.
Under the assumption of normality we shall use blocks whose length is only a
power of log n, but considerably longer blocks are necessary for error distributions
such as Student’s t. (Further discussion of this phenomenon appears in Remark
4.6.)

One of the ways in which the estimators at (2.2) and (2.3) differ is choice of
the threshold level, which is proportional to n−1 log n in the former case and n−1

in the latter (for thresholding squares of empirical wavelet coefficients). This
is a reflection of the greater accuracy with which β2

ij may be estimated if (as
in the context of block thresholding) we pool information about neighbouring
coefficients, and is discussed in detail by Hall, Kerkyacharian and Picard (1995).

The estimator at (2.3) is precisely the one employed by Hall, Kerkyacharian
and Picard (1995), with an appropriate definition of B̂ik. In the present work
it is suitable if the “irregular” parts of the functions g ∈ H (to be defined in
Section 3) are sufficiently smooth. In particular, they should be in a Besov space
Bs2∞ (see Kerkyacharian and Picard (1993), or Example 3.1 below) for some
s > 1

2 . (Remark 4.6 will provide further details.) For more general g, however,
an alternative construction, based on the empirical wavelet transform of Donoho
and Johnstone (1995), seems to be required.

In this construction we require that the scaling function φ be a Coiflet, with
an associated wavelet ψ. Specifically, we suppose that φ and ψ are orthonormal
and compactly supported, on [0, v] say, and that the integral of ψ against any
polynomial of degree no more than N − 1 vanish. We call N the Daubechies
number of the Coiflet/wavelet pair.

Let Vi andWi be the spaces spanned by {φij , −∞ < j <∞} and {ψij , −∞ <

j <∞}, respectively, and let ProjVi
(·) and ProjWi

(·) be the projection operators
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on these spaces. If i < i1 and f ∈ Vi1 then the coefficients of ProjVi
(f) and

ProjWi
(f) may be computed from the values of

∫
fφi1j , −∞ < j < ∞, using

“subband filtering schemes” discussed by Daubechies (1992), Chapter 5. Define

Ĝi1 = n−1/2
n∑

m=1

Ymφi1m .

Let the coefficients α̂ij and β̂ij be given by

ProjWi
(Ĝi1) =

∑
−∞<j<∞

β̂ijψij and ProjVi0
(Ĝi1) =

∑
−∞<j<∞

α̂i0jφi0j ,

and put B̂ik = l−1
i

∑
(ik) β̂

2
ij . In this notation our wavelet estimator of g is

ĝ =
∑

−∞<j<∞
α̂i0j φi0j +

i1−1∑
i=i0

∑
−∞<k<∞

( ∑
(ik)

β̂ij ψij

)
I(B̂ik > n−1 c). (2.4)

Choice of i0, i1, li and c will be discussed in Section 4.

3. The Class of Functions, H
Given 0 < s1 < s2 < N and γ,C1, C2, C3, v ≥ 0, we shall define a class of

functions H = H(s1, s2, γ, C1, C2, C3, N, v). In motivating the class we consider
each of its elements to be the superposition of a regular function g2 from the Besov
space Bs2∞∞, with a function g1 that may possess irregularities of a variety
of different types — for example, discontinuities or transients of unboundedly
high frequency. The parameter si describes the minimum allowed smoothness
of gi (greater si corresponds to greater minimum smoothness), γ is a measure
of the maximum allowed range of each irregularity of g1 (that component of an
irregularity which is of dyadic frequency imust involve fluctuations over a band of
width no more than 2i(γ−1)), C3 represents the number of irregularities in g1, and
v/2i denotes the distance over which we may expect to approximate aberrations
of dyadic frequency i by a polynomial of degree N−1 (hence our reason for taking
φ and ψ to have support of length v). For i = 1, 2 the constant Ci accommodates
the amplitude of fluctuations in gi when describing its smoothness by si. We
hold s1, s2, γ, C1, C2, N and v fixed, but allow C3 to depend on n. Convergence
rates are determined by the smooth component g2, reflecting the adaptivity of
wavelet methods to irregularities such as those in g1.

More broadly, one may say that the irregularity of functions in H is described
“macroscopically” by a “bad” function g2, and “microscopically” by the number,
C32γi , of “bad” wavelet coefficients at level i. (See Proposition 3.2.) Specifically
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H is the class of functions g such that for any i ≥ 0 there exists a set of integers
Si for which the following is true: card(Si) ≤ C32iγ and

for each j ∈ Si there exist constants a0 = g(j/2i), a1, . . . , aN−1 such that∣∣∣g(x) − ∑N−1
l=0 al(x− 2−ij)l

∣∣∣ ≤ C1 2−is1 for all x ∈ [j/2i, (j + v)/2i] ; and

for each j /∈ Si there exist constants a0 = g(j/2i), a1, . . . , aN−1 such that∣∣∣g(x) − ∑N−1
l=0 al(x− 2−ij)l

∣∣∣ ≤ C2 2−is2 for all x ∈ [j/2i, (j + v)/2i] .

If s2 is not an integer then it follows by Taylor expansion that a ball of
radius C2 in a Besov space Bs2∞∞ is a subspace of H(s1, s2, γ, C1, C2, 0, N, v),
for arbitrary s1 < s2 and γ > 0, and with C1 > 0 depending on choice of the
other constants. We may take γ = 0 in the case of jump discontinuities, and

γ =
(s − β + αN) ∨ 0

(α+ 1)N − β

in the case of Doppler functions of the type |x− x0|β cos(|x− x0|−α). The next
two examples describe more general forms of these respective cases.

Example 3.1. Functions with discontinuities. We begin by introducing the
spaceBspq and its norm ‖g‖spq. Given a sequence of real numbers {uij ,−∞ < j <

∞}, put ‖ui.‖p = (
∑

−∞<j<∞ |uij |p)1/p for 1 ≤ p < ∞, and ‖ui.‖∞ = supj |uij |.
For functions g whose wavelet coefficients αij and βij are as defined in Section
2, and assuming s < N , let

‖g‖spq = ‖α0.‖p +
{ ∑

i≥0

(2i{s+(1/2)−(1/p)} ‖βi.‖p)
q
}1/q

for 1 ≤ q ≤ ∞, with the obvious change when q is replaced by ∞. Then Bspq is
the set of functions g such that ‖g‖spq < ∞. (For definitions and properties of
Besov spaces, and their relationships to wavelets, the reader is referred to Peetre
(1975), Bergh and Löfström (1976), Meyer (1990), Kerkyacharian and Picard
(1993) and Triebel (1992).)

Let PdτA be the set of piecewise polynomials of degree d ≤ N − 1, with
support contained in [0, 1], such that the number of discontinuities is less than τ
and the supremum norm less than A. Put

Fs∞∞(M) = {g ∈ Bs∞∞ : supp g ⊆ [0, 1] , ‖g‖s∞∞ ≤M} .

Then it may be shown that the set VdτA{Fs∞∞(M)} of all functions of the form
g1+g2, with g1 ∈ PdτA and g2 ∈ Fs∞∞(M), is a subset of H(0, s, 0, A,M,Cτ,N, v)
if C = C(s,A,M,N, v) > 0 is chosen sufficiently large.
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Example 3.2. Chirp and Doppler functions. Let D(α, β, τ,A) denote the set of
restrictions to [0, 1] of functions of the form

f(x) =
τ∑

m=1

Am(x− xm)βm cos{(x− xm)−αm} ,

with βm ≥ β, αm ≤ α and |Am| ≤ A. Let DF (α, β, τ,A, s,M) denote the set
of functions g1 + g2 with g1 ∈ D(α, β, τ,A) and g2 ∈ Fs∞∞(M). The following
proposition shows that all such functions lie in the class H. It will be proved in
Section 5.

Proposition 3.1. If max(s, β) < N then for each v > 0 there exists C = C(α, β,
A, s,M, v) > 0, chosen sufficiently large, such that

DF (α, β, τ,A, s,M)⊆H
( (N − s)β

(α+ 1)N − β
, s,

(s− β + αN ) ∨ 0
(α+ 1)N − β

, 2NA,C,Cτ,N, v
)
.

More generally still, the function g may involve a mixture of jump disconti-
nuities and Chirp and Doppler irregularities. Indeed, the convergence rates that
we shall describe are available over somewhat larger classes than H. It is difficult,
however, to provide clear motivation for such larger classes, and to relate them
to practically-occurring signals to which wavelet methods might be applied.

The conditions defining H have direct implications for the wavelet expansion
of a function g ∈ H, described in the next lemma. Let αij and βij denote the
wavelet coefficients of g, defined in Section 2.

Proposition 3.2. For every g ∈ H(s1, s2, γ, C1, C2, C3, N, v),

|βij | ≤ ‖ψ‖1 C1 2−i(s1+1/2) if j ∈ Si ,

|βij | ≤ ‖ψ‖1 C2 2−i(s2+1/2) if j /∈ Si ,

|αij − g(j/2i)| ≤ ‖φ‖1 C1 2−i(s1+1/2) if j ∈ Si ,

|αij − g(j/2i)| ≤ ‖φ‖1 C2 2−i(s2+1/2) if j /∈ Si .

4. Main Results

Our main theorem provides an upper bound to convergence rates uniformly
over functions in H. Since the bound is of the same size as the minimax lower
bound (see Remark 4.1), then it is optimal. As a prelude to stating the bound,
we introduce regularity conditions.

Let φ be a Coiflet, and ψ the associated wavelet, with Daubechies number
N and support contained in the interval [0, v] for some 0 < v < ∞. Define the
indices i0 and i1 in terms of N by 2i0−1 ≤ n1/(2N+1) ≤ 2i0 and 2i1−1 ≤ n ≤ 2i1 .
Assume that the errors εm in the model at (2.1) are independent and identically
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distributed as normal N(0, σ2). Put li = l = (log n)2 for each i, and assume that
c ≥ 48σ2, 0 ≤ s1 ≤ s2 < N and 0 ≤ γ < (2s1 + 1)/(2s2 + 1); and that for all
δ > 0,

C3 = O
(
n{1/(2s2+1)}−{γ/(2s1+1)}+δ

)
.

(Recall that c is the threshold constant in the formula for ĝ (see (2.4)).) We call
these conditions (C). It will be convenient to write c = 48V 2 where V ≥ σ.

The condition γ < (2s1 +1)/(2s2 +1) is crucial. It effects a balance between
the number of “bad” wavelet coefficients at level i (C32γi) and the difference
between the irregularities of the components g1 and g2 of g.

Theorem 4.1. If conditions (C) hold, and if the estimator ĝ is as defined at
(2.4), then for eachC1, C2>0 there exists a constantK=K(s1, s2, γ, C1, C2, V,N, v)
> 0 such that

sup
f∈H(s1,s2,γ,C1,C2,C3,N,v)

∫
E(ĝ − g)2 ≤ n−2s2/(2s2+1) {K + o(1)} .

Remark 4.1. Achievement of minimax convergence rate. Minimax theory (see
e.g. Kerkyacharian and Picard (1993)) declares that the convergence rate over
Fs∞∞(M) is at best n−2s/(1+2s). Now, Fs2∞∞(C2) ⊆H(s1, s2, γ, C1, C2, C3, N, v).
Therefore, the estimator ĝ attains the minimax lower bound exactly, without any
extraneous logarithmic factors.

Remark 4.2. Adaptivity to different levels of regularity. Let C(a), a ∈ A,
denote a sequence of classes of functions f , where A is a general index set.
We have particularly in mind C(a) = VdτA{Fs∞∞(M)}, where a = (d,A, s,M)
and τ = τ(n) does not increase too quickly (see Proposition 4.1); or C(A) =
DF (α, β, τ,A, s,M), where a = (A, s,M), α and β are fixed, and again τ(n)
does not diverge too rapidly (see Proposition 4.2). Minimax optimality may
be interpreted as an expression of adaptivity, as follows. An estimator f� is
said to be adaptive for the class {C(α), α ∈ A} if for each α ∈ A there exists
K(α) > 0 such that for all n, Rn{f�; C(α)} ≤ K(α) inf f̂ Rn{f̂ ; C(α)}, where

Rn(f̂ ;F) = supf∈F
∫
E(f̂ − f)2. Propositions 4.1 and 4.2 express adaptation

properties of the estimator ĝ in the contexts of Examples 3.1 and 3.2, respectively.

Proposition 4.1. (Discontinuities.) The estimator ĝ defined at (2.4) is adaptive
for the class of functions VdτA{Fs∞∞(M)}, defined in Example 3.1, provided d ≤
N − 1, 0 < A <∞, 0 < s < N , 0 < M < ∞, σ2 ≤ V 2 and τ = O(n{1/(1+2s)}+δ)
for all δ > 0.

Proposition 4.2. (Chirps and Dopplers.) The estimator ĝ defined at (2.4) is
adaptive for the class of functions DF (α, β, τ,A, s,M), defined in Example 3.2,
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provided that 0 < A <∞, 0 < M <∞, σ2 ≤ V 2,

0 < s < 1
4

[
{(1 + 2αN)2 + 8N(2β + 1)}1/2 − (1 + 2αN)

]
(4.1)

and τ = O(n{1/(1+2s)}−[{(s+Nα−β)∨0}/{N(1+α)+β{2(N−s)−1}]+δ ) for all δ > 0.
Proposition 4.1 follows from Theorem 4.1, and Proposition 4.2 follows from

Theorem 4.1 and Proposition 3.1. Note that in Proposition 4.1 we allow dis-
continuities at the edges of the interval I, and do not require the pair (φ,ψ) to
be adapted to edges or discontinuities. In Proposition 4.2, observe that if N is
sufficiently large then condition (4.1) is implied by 0 < s < (1 + 2β)/(2α), which
is the condition noted in the third paragraph of Section 1.

Remark 4.3. Choice of block length. Theorem 4.1 remains valid, although for a
different constant K, if the sequence li is nondecreasing and satisfies C(log n)1+η≤
li = O(i2) for some C, η > 0.

Remark 4.4. Versions of the theorem for Lp risk. The theorem remains valid,
albeit with a different constant, if the L2 norm is replaced by the Lp norm for
1 ≤ p < ∞, if the definition of B̂ik is changed to l−1

i

∑
j∈Bik

|β̂ij |p, and if the
threshold c/n is changed to c/np/2.

Remark 4.5. Assumption of normal errors. The assumption of normally dis-
tributed errors εm in the model at (2.1) may be replaced by the condition that for
some C > 0, P (|εm| ≤ C) = 1, without affecting the validity of the theorem. In
that case, at the point of the proof where we bound large deviations, we employ
an inequality due to Talagrand (1994) instead of one due to Cirel’son, Ibragimov
and Sudakov (1976).

Remark 4.6. Use of Coiflets. If we may restrict the value of s1 to (1
2 ,∞) then

there is no need to assume that φ is a Coiflet, and the estimator ĝ may be con-
structed without using a projection argument. In this case the only assumptions
necessary for the error distribution are that E|εm|C1 < ∞ for some C1 > 1 suf-
ficiently large, and E(εm) = 0. Block length, however, must now increase more
rapidly than the rate (log n)2 assumed in Theorem 4.1, and in fact we should ask
that l = li = nC2 , where C2 = C2(C1) > 0 is a decreasing function of C1.

Remark 4.7. Extension to heteroscedastic errors and irregular design. Gener-
alization of our results to the case of heteroscedastic errors is straightforward,
provided we may write εm = σmε

′
m where the σm’s are bounded positive constants

and the ε′m’s are independent normal N(0, 1) random variables. To achieve the
generalization, simply choose the threshold constant c sufficiently large; it suf-
fices to have c ≥ 48 supm σ2

m, instead of c ≥ 48σ2 in conditions (C). In practice,
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noting the possibility for heteroscedasticity and choosing the threshold accord-
ingly can be important. Arguably the most appropriate approach is to estimate
the variance function, graph it, and select an appropriate upper bound.

The non-normal case is similar, provided the ε′m’s are independent and iden-
tically distributed and (as noted in Remark 4.6) block length is chosen appro-
priately with respect to the number of the finite moments of the distribution of
ε′m.

Extension to the case of irregular design, where the observed data have the
form (xi, Yi) with x1 < · · · < xn, instead of (i/n, Yi), may often by achieved
by an interpolation argument, as follows. First, fit a piecewise-linear function
Y (x) through the points (xi, Yi) by simply joining (xi, Yi) to (xi+1, Yi+1) for
each i. (Horizontal extrapolation is appropriate for defining Y (x) for x < x1

or x > xn.) Then, define functions α̂i(t) and β̂i(t) (analogues of α̂ij and β̂ij ,
respectively) through integration rather than summation. For example, with
ψit(x) = 2i/2ψ(2ix− t) let

ProjWi
(Ĝi1)(x) =

∫ −∞

∞
β̂i(t)ψit(x) dt .

Finally, with integration over t in α̂i(t) and β̂i(t) replacing summation over j in
α̂ij and β̂ij, define first B̂i(u) (the analogue of B̂ik) and then ĝ as in Section 2.
Versions of all our results may be established for this ĝ, provided the design points
xi may be expressed either as F−1(i/n) or F̂−1(i/n), where F is a distribution
function whose density is smooth, supported on I and bounded away from zero
there, and F̂ is the empiric of a random sample drawn from F .

5. Proofs of Theorem 4.1 and Proposition 3.1

Proof of Theorem 4.1. We shall consider only the setting where n is dyadic,
in which case n = 2i1 . Other contexts may be treated similarly.
Part (a): Properties of the projection operator. Observe that

αi1m ≈ n−1/2g(m/2i1)
∫
φ = n−1/2g(m/n) .

Hence, for a small number ri1m we have n−1/2g(m/n) = αi1m + ri1m. In this
notation,

Ĝi1(x) =
n∑

m=1

(αi1m + ri1m)φi1m(x) + n−1/2
n∑

m=1

εm φi1m(x) .

Similarly we may write

ProjWi
(Ĝi1) =

∑
−∞<j<∞

(βij + uij + Uij)ψij(x) ,
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ProjVi0
(Ĝi1) =

∑
−∞<j<∞

(αi0j + vi0j + Vi0j)φi0j(x) ,

where uij and vi0j denote real numbers, and Uij and Vi0j are normally distributed
random variables with zero mean. By Parseval’s identity,∑

i0≤i<i1

∑
−∞<j<∞

u2
ij +

∑
−∞<j<∞

v2
i0j =

∑
m

r2i1m .

The bounds noted in Proposition 3.2 may be employed to show that the last-
written sum does not exceed C1C3n

−(2s1+1−γ) + C2n
−2s2, which in turn equals

C(n)n−2s2/(2s2+1), where C(n) = C1C3n
−{4s1s2/(2s2+1)}−η + C2n

−4s2
2/(2s2+1) and

η = {(2s1 + 1)/(2s2 + 1)} − γ. Therefore,∑
i0≤i<i1

∑
−∞<j<∞

u2
ij +

∑
−∞<j<∞

v2
i0j ≤ C(n)n−2s2/(2s2+1). (5.1)

Define 〈p, q〉 =
∫
pq, the usual inner product on the space of square-integrable

functions on I. In this notation, uij =
∑

l ri1l 〈φi1l, ψi1j〉, and also, |〈φi1lψi1j〉| ≤
2i/2‖ψ‖∞ 2−i1/2‖φ‖1 and |ri1l| ≤ (C1 ∨C2) 2−i(s1+1/2), whence it follows that

|uij | ≤ a(C1 ∨C2) 2−i(s1+1/2), (5.2)

where the constant a depends only in the pair (φ,ψ). In similar fashion,

Uij = n−1/2
n∑

m=1

εm 〈φi1m, ψij〉 , Vi0j = n−1/2
n∑

m=1

εm〈φi1m, φi0j〉 ,

whence it follows that

the variables Uij and Vi0j are both normally distributed

with zero means with variances not exceeding σ2/n. (5.3)

Part (b): Decomposition of the quadratic risk. We may decompose the quad-
ratic risk as

E‖ĝ − g‖2
2 = T1 + T2 + T3 + T4 , (5.4)

where, recalling that
∑

(ik) denotes summation over j ∈ Bik,

T1 =
∞∑

i=i1

∑
−∞<j<∞

β2
ij , T2 = E‖ProjVi0

(Ĝi1 − g)‖2
2 ,

T3 =
i1−1∑
i=i0

∑
−∞<k<∞

E
{
I(B̂ik > n−1 c)

∑
(ik)

(β̂ij − βij)2
}
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=
i1−1∑
i=i0

∑
−∞<k<∞

E
{
I(B̂ik > n−1 c)

∑
(ik)

(uij + Uij)2
}
,

T4 =
i1−1∑
i=i0

∑
−∞<k<∞

P (B̂ik ≤ n−1 c)
∑

(ik)
β2

ij .

The remainder of the proof consists of bounding T1, . . . , T4.
Bound for T1. By Proposition 3.2,

T1 ≤ n−2s2/(2s2+1)
[
{C1C3/(1 − 22s1+1−γ)}n−{(4s1s2/(2s2+1)}−η

+{C2/(1 − 2−2s2)}n−1/(2s2+1)
]
. (5.5)

Bound for T2. Using (5.1) we obtain,

T2 ≤ C(n)n−2s2/(2s2+1) + n−2N/(2N+1)σ2 . (5.6)

Bounds for T3 and T4. We begin with T3. Again by (5.1), writing

T ′
3 =

i1−1∑
i=i0

∑
−∞<k<∞

E
{
I(B̂ik > n−1 c)

∑
(ik)

U2
ij

}
,

we have

1
2 T3 ≤

i1−1∑
i=i0

∑
−∞<j<∞

u2
ij + T ′

3 ≤ C(n)n−2s2/(2s2+1) + T ′
3 . (5.7)

Let i′ − 1 denote the integer part of the base-2 logarithm of n1/(2s2+1); thus,
2−i′ is of the optimal order for a bandwidth in kernel estimation of a function
of known smoothness s2. Put Bik = l−1 ∑

(k) (βij + uij)2, where l = li denotes
block length, and write

T ′
3 = T31 + T32 + T33 + T34 , (5.8)

where

T31 =
i′∑

i=i0

∑
−∞<k<∞

E
{
I(B̂ik > n−1 c)

∑
(ik)

U2
ij

}
,

T32 =
i1−1∑

i=i′+1

∑
k∈Si

E
[
I(B̂ik > n−1 c) I{Bik > (2n)−1 c}

∑
(ik)

U2
ij

]
,

T33 =
i1−1∑

i=i′+1

∑
k/∈Si

E
[
I(B̂ik > n−1 c) I{Bik > (2n)−1 c}

∑
(ik)

U2
ij

]
,

T34 =
i1−1∑

i=i′+1

∑
−∞<k<∞

E
[
I(B̂ik > n−1 c) I{Bik ≤ (2n)−1 c}

∑
(ik)

U2
ij

]
.
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By (5.3),

T31 ≤ n−1σ2
i′∑

i=i0

2i ≤ 2σ2 n−2s2/(2s2+1) . (5.9)

By (5.2), (5.3) and Proposition 4.2, for each r ≥ 1,

T32 ≤ (2rσ2l/crn1−r)
i1−1∑

i=i′+1

C3 2iγ{(a+ 1)2(C2
1 + C2

2 ) 2−i(2s1+1)}r .

If r ≥ γ/(2s1 + 1) then the right-hand side does not exceed[
C3{(a+ 1)2(C2

1 + C2
2 )}r2rσ2l

/
cr(1 − 2(2s1+1)r−γ)

]
nζ ,

where

ζ =
(2s1 + 1) r − γ

2s2 + 1
+ 1 − r = − 2s2

2s2 + 1
− 1 − γ − 2r (s2 − s1)

2s2 + 1
.

Recall the definition of η just above (5.1), and take r = γ/(2s1 + 1), to obtain
the identity ζ = −2s2/(2s2 + 1) − η/(2s1 + 1). Combining the results between
(5.9) and here we deduce finally the bound,

T32 ≤
[
C3{(a+ 1)2(C2

1 + C2
2 )}r2rσ2l

/
cr

]
n−2s2/(2s2+1)−η/(2s1+1) . (5.10)

Again by (5.1), (5.2) and Proposition 4.2,

T33 ≤ (4σ2/c) {C2
2 + C(n)}n−2s2/(2s2+1) . (5.11)

In Parts (c) and (d) of the proof we shall show that

T34 = O(n−λ) for all λ > 0 , (5.12)

T4 ≤ {2c+ C2 + o(1)} n−2s2/(2s2+1) . (5.13)

Results (5.7)–(5.12) imply that

T3 ≤ 2
{
2σ2 + (4σ2/c)C2

2 + o(1)
}
n−2s2/(2s2+1) ,

which in conjunction with (5.4)–(5.6) and (5.13) gives Theorem 4.1.

Part (c): Derivation of (5.12). First we prove:

Lemma 5.1. If ∑
(ik)

(βij + uij)2 ≤ 1
2n

−1cl (5.14)

then {∑
(ik)

(βij + uij + Uij)2 ≥ n−1cl
}
⊆

{∑
(ik)

U2
ij ≥ 1

12n
−1cl

}
.
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Proof. Since |‖u‖2 − ‖v‖2| ≤ ‖u− v‖2 + 2‖u− v‖ ‖v‖ then if (5.14) holds,

1
2n

−1cl ≤
∑

(ik)
(βij + uij + Uij)2 −

∑
(ik)

(βij + uij)2

≤
∑

(ik)
U2

ij + 2
(∑

(ik)
U2

ij

)1/2
( 1
2n

−1cl)1/2 .

This implies that
∑

(ik) U
2
ij ≥ (1

2n
−1cl) (

√
2 − 1)2 ≥ 1

12n
−1cl.

Lemma 5.2. For each positive integer i, each integer k, and all t > 0,

P
{∑

(ik)
U2

ij ≥ σ2ln−1(1 + t)2
}
≤ e−lt2/2 .

Proof. Let Aik denote the set of sequences {aj : j ∈ Bik} such that
∑

j a
2
j = 1.

By (5.3),

E
(∑

(ik)
U2

ij

)1/2 ≤
(
E

∑
(ik)

U2
ij

)1/2 ≤ (lσ2/n)1/2 ,

and also, ∑
(ik)

U2
ij = sup′(∑

(ik)
ajUij

)2
,

where sup′ denotes the supremum over all sequences {aj} ∈ Aik. Hence, noting
Cirel’son, Ibragimov and Sudakov (1976),

P
{(∑

(ik)
U2

ij

)1/2 ≥ (lσ2/n)1/2 + λ
}
≤ exp { − nλ2/(2σ2)} .

The lemma follows on taking λ2 = lt2σ2/n.
Using Lemmas 5.1 and 5.2, and defining t by σ2(1 + t)2 = 1

12c in the latter,
we may prove that T34 = O(n−λ) for all λ > 0, which establishes (5.12).

Part (d). Derivation of (5.13). We divide T4 into five parts,

T4 = T41 + T42 + T43 + T44 + T45 , (5.15)

where

T41 =
i1−1∑
i=i0

∑
k∈Si

P (B̂ik ≤ n−1c and Bjk ≥ 2n−1c)
∑

(ik)
β2

ij ,

T42 =
i′∑

i=i0

∑
k/∈Si

P (B̂ik ≤ n−1c and Bjk ≥ 2n−1c)
∑

(ik)
β2

ij ,

T43 =
i′∑

i=i0

∑
−∞<k<∞

P (B̂ik ≤ n−1c and Bjk < 2n−1c)
∑

(ik)
β2

ij ,
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T44 =
i1−1∑

i=i′+1

∑
k∈Si

P (B̂ik ≤ n−1c and Bjk < 2n−1c)
∑

(ik)
β2

ij ,

T45 =
i1−1∑

i=i′+1

∑
k/∈Si

P (B̂ik ≤ n−1c)
∑

(ik)
β2

ij .

Shortly we shall show that

T41 ≤ C2
1C3 n

−(2s1+1−γ)/(2N+1) e−lt2/2 = o(n−2s2/(2s2+1)) , (5.16)

T42 ≤ C2
2 n

−2s2/(2N+1) e−lt2/2 = o(n−2s2/(2s2+1)) , (5.17)

T43 ≤ 2{c+ C(n)}n−2s2/(2s2+1) , (5.18)

T44 = o(n−2s2/(2s2+1)) , (5.19)

T45 ≤ C2 n
−2s2/(2s2+1) . (5.20)

Combining (5.15)–(5.20) we deduce that, under the conditions of Theorem 4.1,
(5.13) holds.

Results (5.16) and (5.17) follow from Lemma 5.2 and the following analogue
of Lemma 5.1: if

∑
(ik) (βij + uij)2 ≥ 2n−1cl then

{∑
(ik)

(βij + uij + Uij)2 ≤ n−1cl
}
⊆

{∑
(ik)

U2
ij ≥ 1

12n
−1cl

}
.

For example, to derive (5.16), observe that

T41 ≤ C2
1C3

i1−1∑
i=i0

2iγ 2−i(2s1+1) e−lt2/2 ≤ C2
1C3n

−(2s1+1−γ)/(1+2N) e−lt2/2 .

To obtain (5.18), note that since

1
2

∑
(ik)

β2
ij ≤

∑
(ik)

(βij + uij)2 +
∑

(ik)
u2

ij

then

T43 ≤ 2
i′∑

i=i0

(2i/l) (n−1cl) + 2
i′∑

i=i0

∑
−∞<j<∞

u2
ij ≤ 2{c + C(n)}n−2s2/(2s2+1) .

Similarly,

T44 ≤ 2
i1−1∑

i=i′+1

∑
k∈Si

P (B̂ik ≤ n−1c and Bjk < 2n−1c)

×
∑

(ik)
(βij + uij)2 + 2

i1−1∑
i=i′+1

∑
−∞<j<∞

u2
ij
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≤ 2
i1−1∑

i=i′+1

∑
k∈Si

(2n−1cl)r
{∑

(ik)
(βij + uij)2

}1−r
+ 2C(n)n−2s2/(2s2+1)

≤ 2(2n−1cl)r
i1−1∑

i=i′+1

C3 2iγ
{
(a+ 1)2 (C2

1 + C2
2 ) 2−i(2s1+1)

}1−r

+2C(n)n−2s2/(2s2+1)

= o(n−2s2/(2s2+1)) ,

which establishes (5.19). Finally, to derive (5.20) note that

T45 ≤
i1−1∑

i=i′+1

2i C2 2−i(2s2+1) ≤ C2 n
−2s2/(2s2+1) .

Proof of Proposition 3.1. We treat only the function f(x) = xβ cos(x−α),
showing that it is an element of the appropriate function class H. Let Iij denote
the interval [j/2i, (j + v)/2i]. Using Leibnitz’ formula for the differential of a
product of two functions we may show that

sup
x∈Iij

∣∣∣∣ dm

dxm
xβ cos (x−α)

∣∣∣∣ ≤ C(m,α, β)
m∑

l=0

(j/2i)β−l (j/2i)−(m−l)(α+1) .

Hence, by Taylor expansion,

sup
x∈Iij

∣∣∣∣xβ cos (x−α) −
m−1∑
l=0

ak (x− 2−ij)k
∣∣∣∣

≤ 2−imC(m,α, β)
m∑

l=0

(j/2i)β−l (j/2i)−(m−l)(α+1) .

Taking m = N and j ≥ 2iγ , where γ = (s−β+αN)/{(α+1)N −β}, we see that
the right-hand side equals O(2−is) as i → ∞. This establishes the appropriate
Taylor expansion in the definition of H, in the case where j /∈ Si = {j : 0 ≤ j ≤
2iγ}. When j ∈ Si we have, more simply,

sup
j∈Si

sup
x∈Iij

∣∣∣xβ cos (x−α) − (j/2i)β cos {(j/2i)−α}
∣∣∣ ≤ 2 sup

j∈Si

(j/2i)β ≤ 2−is1+1 ,

where s1 = (N − s)β/{(α + 1)N − β}. This gives the Taylor expansion in the
definition of H for the case j ∈ Si.
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Centre for Mathematics and its Applications, Australian National University, Canberra, ACT

0200, Australia.

E-mail: halpstat@pretty.anu.edu.au
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