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Abstract: We consider the problem of finding an efficient design for estimating the

model parameters and the mean response surface simultaneously when the true

degree of the polynomial model is unknown. A precision constraint is imposed on

one of these estimates and the optimal design is found using the theory of canonical

moments. Robustness properties of the optimal designs to model assumptions and

their performances relative to similar designs are studied.
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1. Introduction

Suppose an experiment is run and N independent observations of the re-
sponse y are measured according to the model

yi = fT (xi)β + ei, xi ∈ [0, 1] and i = 1, 2, . . . , N. (1.1)

Here fT (x) = (1, x, x2, . . . , xm), β is the vector of unknown parameters and the
ei’s are unobservable random errors with mean zero and constant variance. The
problem of interest here is how to find an efficient design for estimating the model
parameters and the mean response surface simultaneously when the true degree
of the model (i.e. m) is unknown.

Some pioneering work addressing design issues when there is model uncer-
tainty are Atwood (1971), Stigler (1971) and Läuter (1974). Both Atwood and
Stigler’s work are seminal; they formalized the concepts of robust design and
found optimal designs for some simple models. Läuter (1974) proposed algo-
rithms for generating D-optimal designs when it is possible to postulate the
true model is in a class of models. Subsequent works include Studden (1982),
Lee (1988), and Rosenberger and Pukelsheim (1993), where efficient designs are
found when the mean regression function is not known precisely.

Stigler (1971) proposed two robust design criteria when there is model un-
certainty. They were generalized by Studden (1982) as Drm and Grm-optimality.
These designs are optimal for estimating the model parameters and the mean
response surface respectively when the assumed model is a polynomial of degree
r but, at the same time, also ensure a certain level of precision for estimating
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if additional terms xr+1, . . . , xm are needed. Studden (1982) used the theory of
canonical moments and found closed form descriptions for Drm-optimal designs
when m > r and r = 1, 2. Stigler (1971) and Studden (1982) noted that the
Drm-optimal designs are ‘somewhat simpler to calculate than the Grm-optimal
designs’. Except in the simplest case, when m = 2 and r = 1, no other Grm-
optimal designs were found. One of the difficulties is that the G-optimality
criterion is not differentiable and standard algorithms cannot be used to find the
optimal design.

In this paper, we construct Grm-optimal designs and derive explicit analytic
formulae in terms of canonical moments, for any m > r and r = 1, 2. In addi-
tion, we show that D1m and G1m-optimal designs are equivalent for any m > 1.
Robustness properties of Grm-optimal designs to model assumptions are stud-
ied, and their performances relative to Drm-optimal designs and the constrained
designs in Pukelsheim and Rosenberger (1993) are compared.

2. The Drm and Grm-optimality Criteria

Let ξ denote a design with nj observations at the point xjε[0, 1], j = 1, . . . , J ,
subject to

∑
nj = N . We will treat ξ as a probability measure which puts mass ξj

at xj without insisting that each Nξj is an integer, subject to the constraint that
they sum to 1. Such designs are called continuous designs and, they are easier
to study and generate than the traditional discrete designs (Kiefer (1959)). The
information matrix of ξ is

Mm(ξ) =
∫ 1

0
f(x)f(x)T ξ(dx)

and the covariance matrix of the LSE (least squares estimate) of β is propor-
tional to Mm(ξ)−1, if Mm(ξ) is non-singular. Designs are non-singular if their
information matrices are non-singular.

Various optimality criteria have been proposed, and many are formulated as
convex functions of Mm(ξ). For instance, a design is D-optimal if it maximizes
|Mm(ξ)| over the set Ξ containing all designs on [0, 1]. Another criterion is G-
optimality, which seeks to minimize over Ξ, the maximum of the standardized
variance function dm(x, ξ) = fT (x)Mm(ξ)−1f(x). Thus, D-optimal designs are
useful for parameter estimation and G-optimal designs are useful for estimating
the response surface. Kiefer and Wolfowitz (1960) showed that D and G-optimal
designs are equivalent when the model is homoscedastic.

Let fT (x) = (fT
1 (x), fT

2 (x)) where fT
1 (x) = (1, x, . . . , rr), fT

2 (x) = (xr+1, . . . ,
xm) and βT = (βT

1 , βT
2 ). The model of interest becomes Ey = fT

1 (x)β1+fT
2 (x)β2.

For any arbitrary design ξ, its information matrix can be partitioned as

Mm(ξ) =

(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)
,
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where M11(ξ) has size r + 1 and M22(ξ) has size m − r. The covariance matrix
of the LSE of β1 is proportional to M11(ξ)−1 if the polynomial model of degree
r is fitted. In this case, the standardized variance function of the design ξ at the
point x is given by dr(x, ξ) = fT

1 (x)M11(ξ)−1f1(x). On the other hand, if the
polynomial model of degree m is fitted, the covariance matrix of the LSE of β2

is proportional to M22.1(ξ)−1, where

M22.1(ξ) = M22(ξ) − M21(ξ)M11(ξ)−1M12(ξ).

Let d̄r(ξ) = max0≤x≤1 dr(x, ξ) whenever M11(ξ)−1 exists.

Definition 2.1. (The Drm-problem) A design is called Drm-optimal if it

maximizes |M11(ξ)| subject to |M22.1(ξ)| ≥ ρm−r max
η∈Ξ

|M22.1(η)|.

Definition 2.2. (The Grm-problem) A design is called Grm-optimal if it

minimizes d̄r(ξ) subject to |M22.1(ξ)| ≥ ρm−r max
η∈Ξ

|M22.1(η)|.

These definitions are motivated by design efficiencies: Recall that if the
D-optimal design for model (1.1) is ξ∗, then the D and G-efficiency of a non-
singular design ξ is {|Mm(ξ)|/|Mm(ξ∗)|}1/(m+1) and (m + 1)/d̄m(ξ) respectively.
The reciprocal of these numbers represent how many times the design ξ has to
be replicated for it to do as well as the optimal design. Clearly, designs with high
efficiencies are sought. It follows that the inequalities in the above definitions
ensure that the Drm and Grm-optimal design has a guaranteed D-efficiency of at
least ρ for estimating β2, while still being as close to optimal as possible under
the other criterion. If ρ = 0(1), this corresponds to the case when estimating
β1(β2) is the only goal: intermediate values of ρ represent a compromised goal
of balancing model uncertainty and precision of the various estimates. We will
call the set of all information matrices that satisfy the inequality constraint in
the above definitions as the constrained set.

3. Canonical Moments

We now define and review properties of canonical moments useful for finding
Grm-optimal designs. For an arbitrary design ξ on [0, 1], let ck denote the kth
ordinary moment of ξ, k = 0, 1, . . . Given a set of moments c0, c1, . . . , ci−1, let
c+
i be the maximum value of the ith moment over the set of designs having the

given moments c0, c1, . . . , ci−1. Similarly, let c−i be the corresponding minimum.
The canonical moments are defined by

pi = (ci − c−i )/(c+
i − c−i ) i = 1, 2, . . .
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Note that 0 ≤ pi ≤ 1 and if c−i = c+
i , pi is left undefined and the sequence is

terminated. There are many interesting properties of canonical moments; for
example, if p2m = 1, the design is supported at (m+1)points (Dette and Roeder
(1996)). Other pertinent facts about canonical moments include the following.

Property 3.1. (Skibinsky (1986)) Every probability measure on [0, 1] is uniquely
determined by its canonical moment sequence.

Property 3.2. (Skibinsky (1969), Lau (1983)) The canonical moments are in-
variant under linear transformations, and all odd canonical moments of a design
on [0, 1] are equal to 1/2 if and only if the design is symmetric about x = 1/2.

Property 3.3. (Lau (1983)) For the polynomial regression model of degree m,
|Mm(ξ)| =

∏m
i=1(ζ2i−1ζ2i)m+1−i where ζi = piqi−1, qi = 1 − pi, i = 1, 2, . . . and

q0 = 1.
Property 3.3 is useful because it facilitates the calculation of the optimal

design; each pi varies independently over the space [0, 1] so the determinant
can be maximized by maximizing each pi one at a time. Once the canonical
moments are found, the optimal design is recovered using standard technique
(see, for example, the appendix in Dette and Roeder (1996)).

4. Grm-optimal Designs

In general it is quite laborious to find Grm-optimal designs. The following
lemmas help reduce the complexity of the problem.

Lemma 1. There exists a symmetric Grm-optimal design about the midpoint of
the design space [0, 1].

Proof. We observe that the constrained set is convex because log |M22.1(ξ)| is
concave on the set {Mm(ξ)|ξ ∈ Ξ and |M11(ξ)| > 0} (Pázman (1986), p. 104) and
the logarithm function is an increasing function. This implies that the set of all
Grm-optimal designs is convex and consequently, there exists a symmetric Grm-
optimal design since d̄r(ξ) is strictly convex on {M11(ξ)|ξ ∈ Ξ and |M11(ξ)| > 0}
(Pázman (1986), p. 86).

Lemma 2. If ξ is a symmetric non-singular design on [0, 1], then the standard-
ized variance function dm(x, ξ) is symmetric about x = 1/2.

Proof. This is immediate if the design is transformed linearly onto [−1, 1],
observing that the resulting variance function is symmetric with respect to 0.

Lemma 3. The information matrix of a Grm-optimal design is on the boundary
of the constrained set. In other words, if ξ∗ is a Grm-optimal design, then

|M22.1(ξ∗)| = ρm−r max
η∈Ξ

|M22.1(η)|.
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Proof. Since d̄r(ξ) is strictly convex on {M11(ξ)|ξ ∈ Ξ and |M11(ξ)| > 0}
(Pázman (1986), p. 86), it is also strictly convex on {Mm(ξ)|ξ ∈ Ξ and |M11(ξ)| >

0}. If Mm(ξ∗) is an interior point of the constrained set, then clearly d̄r(ξ∗) is
the global minimum and hence ξ∗ is a unconstrained G-optimal design for the
problem when ρ = 0. Since f1(x) is a polynomial of degree r, ξ∗ is supported at
r + 1 points. This implies |M22.1(ξ∗)| = |Mm(ξ∗)|/|M11(ξ∗)| = 0 because m > r

by assumption. This is impossible and so Mm(ξ∗) is on the boundary of the
constrained set.

We now consider the problem of finding G1m and G2m-optimal designs
(though the procedure can be generalized to find Grm-designs when m > r > 2).
Theorem 4.1 assumes a simple linear model but some protection is needed for the
terms β2, β3, . . . , βm. The result extends the equivalence result found by Stigler
(1971) where he showed G12 and D12-optimal designs coincide.

Theorem 4.1. For any ρ and m, the G1m and D1m-optimal designs are equiv-
alent.

Proof. By Lemma 1 and Property 3.2, we only need to consider designs ξ, which
are symmetric and non-singular. Since c1 = p1, c2 = p1(p1 + q1p2), we have

M11(ξ)−1 =
1
p2

(
1 + p2 −2
−2 4

)

and the standardized variance function is d1(x, ξ) = (4x2 − 4x + 1 + p2)/p2.
By definition, the constrained set for the G1m problem is the same con-

strained set as the D1m-problem. Since d̄1(ξ) = d1(0, ξ) = 1 + 1/p2, the G1m-
optimal design minimizes 1 + 1/p2, or maximizes p2, among all designs whose
information matrices are in the constrained set. But Studden (1982) showed the
D1m-optimal design maximizes p2 among designs from the same set; consequently
their sequences of canonical moments coincide and by Property 3.1, the G1m and
D1m-optimal designs are equivalent. Formulas for D1m-optimal designs are given
in Studden (1982).

We now state and prove the results for G2m-optimal design.

Theorem 4.2. Let ρ, m be given , let R(p) = {1 +
√

1 − ρ/[4p(1 − p])}/2 and
let p2 be the root bounded between (1 ±√

1 − ρ)/2 of the following equation:

d

dp
{1
p

+
1 − p

pR(p)
} = 0 if ρ > 0.96, (4.0)

or
2p − 1 − (1 − p)R(p) = 0 if ρ ≤ 0.96. (4.1)
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The G2m-optimal design has canonical moments given by p2i−1 = 1/2, i =
1, 2, . . . ,m, p2 (above), p4 = R(p2), p2i = (m−i+1)/(2m−2i+1), i = 3, . . . ,m−1
and p2m = 1.

Proof. We prove the result for m = 3 first. The first diagonal block of the
information matrix of any design for the G23-problem is 3×3 and can be expressed
in terms of canonical moments. Replacing all odd canonical moments by 1/2, a
direct calculation shows the standardized variance function is

d2(x, ξ) = {(p2 − 2p2
2 + p3

2 + p2q2p4 + p2
2q2p4) + 4(2p2

2 − 2p2 − p2q2p4)x

+4(6p2 − 2p2
2 + p2q2p4)x2 − 32p2x

3 + 16p2x
4}/p2

2q2p4.

This function depends only on the second and fourth canonical moments of ξ

and it is instructive to write d2(x, ξ) as d2(x, p2, p4) in what is to follow. By
property 3.3, we have |M22.1(ξ)| = (p1q1)(p2q2)(p3q3)(p4q4)(p5q5)p6. Thus, when
we replace the odd moments by 1/2 and set p6 = 1, the problem is reduced to

minimize d̄2(ξ) subject to p2q2p4q4 = ρ/16 (4.2)

by Lemma 3. The nature of the constraint implies that for each p2 satisfying

L = {1 −√1 − ρ}/2 ≤ p2 ≤ {1 +
√

1 − ρ}/2 = U (4.3)

we must have p4 = R(p2) or r(p2) where

R(p2) =
1
2

+
1
2

√
1 − ρ

4p2q2
and r(p2) =

1
2
− 1

2

√
1 − ρ

4p2q2
.

It follows that for each p2 satisfying (4.3), it suffices to compare d̄2(p2, R(p2))
and d̄2(p2, r(p2)). Because d2(x, p2, p4) is a 4th order polynomial with positive
coefficient of x4 and symmetric about x = 0.5 (Lemma 2), this function at-
tains its maximum at 0 and 1, and/or at x = 0.5; thus d2(x, p2, R(p2)) and
d2(x, p2, r(p2)) are maximized at x = 0 and 1 and/or 0.5. A direct calculation
shows d2(0, p2, p4) = 1+1/p2+q2/(p2p4) and d2(0.5, p2, p4) = 1+p2/(q2p4). Since
R(p2) > r(p2), we have d2(0, p2, R(p2)) < d2(0, p2, r(p2)) and d2(0.5, p2, R(p2)) <

d2(0.5, p2, r(p2)). Hence, d̄2(p2, R(p2)) < d̄2(p2, r(p2)) for all p2 satisfying (4.3).
To find the G2,3-optimal design, we search for p2 in (4.3) to minimize d̄2(p2,

R(p2)) or equivalently to minimize max {d2(0, p2, R(p2)), d2(0.5, p2, R(p2))}.
Claim. If ρ ≥ 0.96, max{d2(0, p2, R(p2)), d2(0.5, p2, R(p2))} = d2(0, p2, R(p2))
for all p2 satisfying (4.3).

Proof. Let g(p2) = d2(0.5, p2, R(p2))−d2(0, p2, R(p2)) = 2p2−1−(1−p2)R(p2),
ignoring an unimportant positive constant. For L ≤ p2 ≤ 1/2, observe that
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g(p2) ≤ 0 − (1 − p2)R(p2) ≤ 0 and so d̄2(p2, R(p2)) = d2(0, p2, R(p2)). If 1/2 ≤
p2 ≤ U , R(p2) is a decreasing function and so g(p2) is an increasing function. This
implies g(U) = 2U − 1− (1−U)R(U) = 2U − 1− (1/2)(1−U) = (5U − 3)/2 ≤ 0
if U ≤ 0.6, or equivalently if ρ ≥ 0.96. Thus, d̄2(p2, R(p2)) = d2(0, p2, R(p2)) for
all p2 satisfying (4.3) as claimed.

The optimal p2 is the one which minimizes d2(0, p2, R(p2)) in the interval
[L,U ]. It can be verified that this value is the root of the equation in (4.0); its
existence is guaranteed since

lim
p→L

d

dp
{1/p+(1−p)/(pR(p))} = −∞ and lim

p→U

d

dp
{1/p+(1−p)/(pR(p))} = ∞.

On the other hand, if ρ < 0.96, we have L ≤ 0.4, U ≥ 0.6, g(L) ≤ 0 and
g(U) ≥ 0. This implies the optimal value of p2 is found by solving g(p) = 0
given in (4.1). Again, the existence of a root between U and L is assured since
g(U)g(L) = (5U − 3)(5L − 3)/4 < 0. This completes the proof when m = 3.

To obtain G2,m-optimal designs when m > 3, a direct calculation yields
|M22.1(ξ)| = (p1q1p2q2p3q3p4q4p5q5)m−2pm−2

6 qm−3
6 (p7q7)m−3pm−3

8 qm−4
8 · · · p2m. If

we replace all odd moments by 1/2 and set p2k = (m − k + 1)/(2m − 2k + 1),
k = 3, . . . ,m − 1, p2m = 1, the problem is reduced exactly to (4.2). Thus, the
G2,m-optimal design has the same p2 and p4 as G23 has, with p2k = (m − k +
1)/(2m − 2k + 1), k = 3, . . . ,m. This completes the proof of the theorem.

As an example, suppose ρ = 0.8. The G23-optimal design has canonical
moments p1 = p3 = p5 = 1/2, p2 = 0.6282, p4 = 0.6896 and p6 = 1. Table 1
shows some G23-optimal designs. All designs are supported at 0, 1 − t, t and 1
with mass w, 1/2 − w, 1/2 − w and w respectively. The corresponding numbers
for the D23-optimal design are given in Studden (1982) and are displayed in
parentheses.

Table 1. G23(D23)-optimal designs for various values of ρ.

ρ p2 p4 t w

0.1 0.6634 (0.6633) 0.9712 (0.9712) 0.5691 (0.5691) 0.3284 (0.3284)
0.2 0.6600 (0.6595) 0.9408 (0.9408) 0.5988 (0.5988) 0.3231 (0.3229)
0.3 0.6562 (0.6551) 0.9085 (0.9087) 0.6225 (0.6223) 0.3171 (0.3166)
0.4 0.6520 (0.6499) 0.8739 (0.8743) 0.6434 (0.6429) 0.3104 (0.3094)
0.5 0.6474 (0.6436) 0.8363 (0.8373) 0.6628 (0.6618) 0.3028 (0.3010)
0.6 0.6422 (0.6357) 0.7946 (0.7968) 0.6816 (0.6797) 0.2939 (0.2908)
0.7 0.6360 (0.6254) 0.7470 (0.7515) 0.7006 (0.6971) 0.2831 (0.2782)
0.8 0.6282 (0.6109) 0.6896 (0.6992) 0.7208 (0.7143) 0.2691 (0.2616)
0.9 0.6168 (0.5872) 0.6096 (0.6339) 0.7454 (0.7318) 0.2476 (0.2371)
0.98 0.5675 (0.5450) 0.5212 (0.5548) 0.7606 (0.7463) 0.2031 (0.1996)
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Table 1 shows that the second canonical moments of the D23- and G23-
optimal design are different; thus by Property 3.1, G2m and D2m-optimal designs
are no longer equivalent.

5. Discussion

To see if Grm-optimal designs are robust to model misspecification, we con-
sider the case where r = 2 and the true model is of degree 1, 2 and 3. Let ξG,2m

denote the G2m-optimal design. From Property 3.3, the D-efficiencies of ξG,rm

for the kth degree polynomial can be expressed in terms of canonical moments.
When k = 1, 2 and 3, these expression are respectively given by, for all m > 2,

eD
1 (ξG,2m) = p

1/2
2 , eD

2 (ξG,2m) = 3(0.25p2
2q2p4)1/3,

eD
3 (ξG,2m) = {(m − 2)/(2m − 5)}1/4eD

3 (ξG,23)

and
eD
3 (ξG,23) = 0.5(55p3

2q
2
2p

2
4q4)1/4.

A similar argument shows that the G-efficiencies of ξG,rm for the simple and
quadratic models are independent of m if m > 2, and are eG

1 (ξG,2m) = 2p2/(1+p2)
and eG

2 (ξG,2m) = 3p2
2q2p4/(p2 − 2p2

2 + p3
2 + p2q2p4 + p2

2q2p4), respectively. Table
2 shows the D- and G-efficiencies of the G23-optimal designs for various ρ under
different model assumptions. Note that the fourth column is specific to the G23-
optimal designs only; the entries in the other columns apply to G2m-optimal
designs for any m > 2. Unlike the other columns, the entries in the fourth
column increase as ρ increases until ρ is roughly 0.8 and it decreases after that.
The rationale for this observation is that for very high values of ρ, one essentially
estimates only the cubic coefficient in the cubic model and therefore the efficiency
for estimating all the parameters declines. This pattern is also reflected in Table
3 of Studden (1982) for Drm-optimal designs.

Table 2. Selected D and G-efficiencies of Grm-optimal designs.

ρ eD
1 (ξG,2m) eD

2 (ξG,2m) eD
3 (ξG,23) eG

1 (ξG,2m) eG
2 (ξG,2m)

0.1 0.8145 0.9903 0.6474 0.7977 0.9902
0.2 0.8124 0.9798 0.7637 0.7951 0.9795
0.3 0.8101 0.9683 0.8377 0.7924 0.9675
0.4 0.8075 0.9556 0.8914 0.7894 0.9541
0.5 0.8046 0.9414 0.9320 0.7860 0.9387
0.6 0.8014 0.9250 0.9627 0.7821 0.9207
0.7 0.7975 0.9055 0.9846 0.7775 0.8986
0.8 0.7926 0.8806 0.9970 0.7716 0.8695
0.9 0.7854 0.8434 0.9940 0.7630 0.8241
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Note that for the quadratic model, all G2m-optimal designs have very high
D and G-efficiencies for small ρ, and the efficiencies decrease rather slowly as ρ

increases. For the cubic model, these efficiencies grow rather fast as ρ increases.
In any case, all the efficiencies remain quite stable if the linear model is assumed.

We also evaluate the D and G-efficiency of ξG,2m relative to the D2m-optimal
design ξD,rm when the assumed polynomial model is of degree k. For any
two designs ξ1 and ξ2, these relative D-efficiencies are defined by {|Mk(ξ1)|/
|Mk(ξ2)|}1/(k+1) and d̄(ξ2)/d̄(ξ1). Since the canonical moments of ξG,2m and
ξD,2m differ only in p2 and p4, the above for these designs are independent of
m for k = 1 and 2. Our calculation showed these efficiencies range from 0.99
to 1.05 when 0.1 ≤ ρ ≤ 0.9, suggesting that the G2m and D2m-optimal designs
have almost identical performances if we have simple, quadratic or cubic models.
This means the D2m and the G2m-optimal designs are roughly optimal for both
parameter estimation and response surface estimation, and at the same time
offer some protection against model miss-specification for low order polynomial
models.

Finally, we compare our designs with the constrained optimal designs ob-
tained by Pukelsheim and Rosenberger (1993). We follow their notation and let
Θ3 denote the ‘cubic’ coefficient, let Θ(A) denote the vector of parameters in
the quadratic model and let ΘT

(B) = (ΘT
(A),Θ3). They reported the efficiencies

of two D-optimal designs for Θ(A), (a) and (b) below, which guarantee a 50%
efficiency for estimating Θ3. In our case, the G23-optimal design with ρ = 0.5 is
symmetrically supported on ±1 and ±0.3256 with mass 0.3208 at 1 and 0.1972
at 0.3256 respectively. Table 3, row (c), shows this design performs similarly to
theirs and has the same numerical efficiencies with the D23-optimal design.

Table 3. Comparing some properties of Grm-optimal designs with those
obtained by Pukelsheim and Rosenberger (1993).

Efficiencies
design description Θ3 Θ(B) Θ(A)

(a) D-optimal for Θ(A), 50% efficient for Θ3 on [−1, 1] 0.50 0.93 0.94
(b) D-optimal for Θ(A), 50% for Θ3 on ±1, ±1/2, 0 0.50 0.92 0.93
(c) G-optimal for Θ(A), 50% for Θ3 on [−1, 1] 0.50 0.93 0.94
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