
Statistica Sinica 9(1999), 247-261

AN ASYMPTOTICALLY HONEST PREDICTION SET

FOR THE MULTIVARIATE REGRESSION MODEL
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Abstract: This paper constructs an asymptotically honest prediction set for the

response variable, measured with error, in the multivariate regression model. By

asymptotic honesty we mean that the limit inferior of the infimum coverage prob-

ability over the parameter space converges to the nominal level as the sample size

goes to ∞. In the univariate case a desirable property of the length of this asymp-

totically honest prediction interval is obtained. A small simulation study shows

that the coverage probability of this prediction set is close to the nominal level

in the finite sample as well. Finally, we show that in errors-in-variables models,

calibration and prediction problems can be solved by treating the models as special

cases of the aforementioned model when the errors and the calibrated variables are

assumed to be normally distributed.
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1. Introduction

It often happens that variables of interest are difficult or expensive to obtain
and we replace them by variables obtained by some quick or cheap methods, but
measured with errors. There are a lot of literatures concerning measurement error
models and most of them are interested in problems with error in regressor. See
for example Kendall and Stuart (1979), Anderson (1984), Fuller (1987), Cheng
and Van Ness (1994), and Carroll, Ruppert and Stefanski (1995). Errors in
response variables have received less attention because the inference of the major
parameters can be handled by standard methodology when the measurement
error is additive (see Buonaccorsi (1996)). But, if the objective is the prediction
set (or interval) for the true response variable, the problem can not be resolved
by the standard approach since the intuitive estimator of the variance of the true
response is not a reasonable one. As a result, the coverage probability of the
usual prediction set is appreciably below the nominal level for some values of
parameters, even for large sample sizes.

Consider the usual multivariate regression model

Yi = βXi + εi, i = 1, . . . , n, (1.1)
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where β is the p by q unknown coefficient matrix, Xi are q-dimensional column
vectors with first component 1, εi are p-dimensional equation errors, and n ≥
p+q. Here it is assumed that the matrix (X1, . . . ,Xn) is of rank q if Xi are fixed
vectors, and that (X1, . . . ,Xn) is of rank q almost surely if Xi are i.i.d. continuous
vector random variables. However, in the above setting we can not observe Yi

exactly. Instead we only observe Ui which is the true response Yi plus an additive
error δi, i.e.,

Ui = Yi + δi, i = 1, . . . , n. (1.2)

Model (1.1)-(1.2) is called a measurement error model in the response. It is
assumed that (εi, δi) are i.i.d. N [0, diag(Σεε,Σδδ)] and Σδδ is known, where
Σεε and Σδδ are the covariance matrices of εi and δi, respectively. Knowledge
of the covariance matrix Σδδ of the measurement error δi can come either from
previous experiments or from repeated measurements on Yi. It is also allowed
that some components of Yi are measured exactly and some are measured with
error. Hence the covariance matrix Σδδ is only assumed non-negative definite.
The present work focuses on a prediction problem where an unobservable future
true response Yn+1 is to be predicted:

Yn+1 = βXn+1 + εn+1. (1.3)

We are interested in constructing a prediction set for Yn+1 based on Xn+1 and
(Ui,Xi), 1 ≤ i ≤ n. For instance, suppose that we have two variables X and
Y satisfying the relation (1.1) where X can be observed exactly but Y cannot.
In experiments, X is usually the value pre-assigned by the experimenters and
Y, which is difficult to obtain, represents the outcome of an expensive and time
consuming method. Therefore a surrogate U of Y, U = Y+δ, is observed instead
by some other inexpensive and quick method. Based on a new X and the training
data, we want to construct a prediction set for the true response Y associated
with X.

Throughout the paper, a 1−α (0 < α < 1) prediction set R for Yn+1 is said
to be asymptotically honest if

lim inf
n→∞ inf

θ∈Ω
P (Yn+1 ∈ R) = 1 − α, (1.4)

where θ is the vector consisting of all parameters and Ω is the corresponding
parameter space.

In the rest of this section, we demonstrate the deficiency of the coverage
probability of the traditional prediction set. The discussion will focus on the
univariate model (p = 1 and q = 2), the general case will be treated in Section
2. For now, model (1.1)-(1.3) reduces to

Yi = β0 + β1Xi + εi, Ui = Yi + δi, i = 1, . . . , n + 1, (1.5)
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where Yi,Xi, εi, Ui, and δi are all one-dimensional. In the situation where there
is no measurement error δi in (1.5), a 1 − α prediction interval for Yn+1 is given
by {

Yn+1 :
(Yn+1 − β̂0 − β̂1Xn+1)2

[1 + 1
n + (Xn+1−X̄)2∑n

1
(Xi−X̄)2

]σ̂2
ε

≤ F 1
n−2(α)

}
, (1.6)

where β̂0 = Ȳ − β̂1X̄, β̂1 =
∑n

1 (Xi − X̄)Yi/
∑n

1 (Xi − X̄)2, σ̂2
ε =

∑n
1 (Yi − β̂0 −

β̂1Xi)2/(n−2), and F 1
n−2(α) is the 1−α quantile of the F distribution with 1 and

n − 2 degrees of freedom. The prediction interval (1.6) has coverage probability
1−α. When the response variable Yi is measured by some instrument and there
exists a measurement error δi, the approach to the estimation of β0 and β1 is
the same (cf. Huwang (1996)) as if there is no measurement error in Ui. Now,
however, the prediction interval for Yn+1 needs to be modified in order to satisfy
(1.4).

It is easy to show that the conditional distribution of Yn+1 − β̂0 − β̂1Xn+1

given X1, . . . ,Xn+1 is
N(0, σ2

Y |X + Hσ2
U |X), (1.7)

where σ2
Y |X and σ2

U |X are respectively the conditional variances of Yi and Ui given
Xi, and H = n−1 + (Xn+1 − X̄)2/

∑n
1 (Xi − X̄)2. Intuitively, one should use

σ̂2
Y |X = σ̂2

U |X − σ2
δ (1.8)

to estimate σ2
Y |X if (1.8) is positive, where σ̂2

U |X =
∑n

1 (Ui− β̂0− β̂1Xi)2/(n−2) is
the unbiased estimator of σ2

U |X and σ2
δ is the variance of δi. Consequently, when

n is large,

F =
(Yn+1 − β̂0 − β̂1Xn+1)2

(1 + H)σ̂2
U |X − σ2

δ

(1.9)

has an approximate F 1
n−2 distribution and an approximate 1 − α prediction in-

terval for Yn+1 is given by

{Yn+1 : F ≤ F 1
n−2(α)}. (1.10)

Note that unlike the prediction interval (1.6), (1.10) does not have an exact cover-
age probability 1−α since F in (1.9) has only an approximate F 1

n−2 distribution.
In fact, even for large n, the probability of (1 + H)σ̂2

U |X − σ2
δ being negative can

be close to 0.5 for some parameters. For example, in (1.5) assume that Xi, i =
1, . . . , n, are fixed numbers satisfying X̄ → c1 and

∑n
1 (Xi − X̄)2/n → c2 > 0

where c1 and c2 are constants. If σ2
ε = O(1/n), (1 + H)σ̂2

U |X − σ2
δ has mean

(1 + H)σ2
U |X − σ2

δ and variance 2(1 + H)2σ4
U |X/(n − 2), both of order O(1/n).
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Therefore, the mean goes to zero faster than the standard deviation. Conse-
quently, P [(1 + H)σ̂2

U |X − σ2
δ < 0] can be close to 0.5 for σ2

ε close to 0. In
particular,

lim inf
n→∞ inf

θ∈Ω
P [Yn+1 satisfies (1.10)] ≤ 1

2
(1.11)

if we use [(1+H)σ̂2
U |X −σ2

δ ]∨0 to estimate (1+H)σ2
U |X −σ2

δ and hence to replace
(1+H)σ̂2

U |X −σ2
δ in (1.9). Furthermore, even if we substitute | (1+H)σ̂2

U |X −σ2
δ |

for (1 + H)σ̂2
U |X − σ2

δ in (1.9), for the commonly adopted value of 1− α, the left
hand side of inequality (1.11) is still less than the nominal level (this is due to
the fact that σ2

ε /(σ
2
ε +σ2

δ ) goes to zero at a rate equal to n− 1
2 , see Remark 3 after

Theorem 4 for an explanation). In summary, even for large n, there are values
of parameters for which the coverage probability of the traditional prediction
interval (1.10) is appreciably below 1 − α. To construct an honest prediction
interval for Yn+1, we will have to modify the usual approach.

The rest of this article is organized as follows. In Section 2 we construct an
asymptotically honest prediction set for model (1.1)-(1.3). A small simulation
of coverage probabilities showing that the proposed prediction set is superior to
the traditional one is provided as well. We investigate the desirable property of
the expected length of the asymptotically honest prediction interval in Section
3. Section 4 discusses the related calibration and prediction problems in the
errors-in-variables model. Proofs are presented in the Appendix.

2. The Asymptotically Honest Prediction Set

In this section we consider the general model (1.1)-(1.3). To construct an
asymptotically honest prediction set for Yn+1, we first observe that

Yn+1 − β̂Xn+1 | X1, . . . ,Xn+1 ∼ N(0,ΣY Y |X + HΣUU |X), (2.1)

where β̂=
∑n

1 UiX
′
i(

∑n
1 XiX

′
i)
−1 is the m.l.e. of β, H =X

′
n+1(

∑n
1 XiX

′
i)
−1Xn+1,

ΣY Y |X and ΣUU |X are respectively the covariance matrices of Yi and Ui given
Xi, and ΣY Y |X = ΣUU |X − Σδδ. Traditionally one uses

Σ̂Y Y |X = Σ̂UU |X − Σδδ (2.2)

to estimate ΣY Y |X if (2.2) is positive definite, where

Σ̂UU |X =
1

n − q

n∑
1

(Ui − β̂Xi)(Ui − β̂Xi)
′

(2.3)

is the unbiased estimator of ΣUU |X . It follows that when n is large,

F = (Yn+1 − β̂Xn+1)
′ n − p − q + 1

(n − q)p
[(1 + H)Σ̂UU |X − Σδδ]−1(Yn+1 − β̂Xn+1)

(2.4)
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has an approximate F p
n−p−q+1 distribution. Consequently, an approximate 1−α

prediction set for Yn+1 is given by

{Yn+1 : F ≤ F p
n−p−q+1(α)}, (2.5)

where F p
n−p−q+1(α) is the 1 − α quantile of the F distribution with p and n −

p − q + 1 degrees of freedom. Prediction set (2.5), of course, does not have an
exact coverage probability 1 − α because F is only an approximate F p

n−p−q+1

distribution. Arguing as in Section 1, it is easy to show that the probability
that (1 + H)Σ̂UU |X − Σδδ is positive definite will not converge to 1 uniformly
over the parameter space as n → ∞. Due to this, and the coverage probability
of (2.5) based on some simulation results not reported here, we conjecture that
the prediction set (2.5) is not asymptotically honest. To overcome the difficulty,
a matrix anΣδδ is added to (1 + H)Σ̂UU |X − Σδδ , where an satisfies certain
conditions imposed below. The probability that the resultant matrix is positive
definite converges to 1 uniformly in all parameters as n → ∞.

Lemma 1. Let an be a positive sequence satisfying ann1/2 → ∞ and an → 0.
Then as n → ∞,

inf
θ∈Ω

P [(1 + H)Σ̂UU |X + (an − 1)Σδδ is positive definite] → 1.

Lemma 1 indicates that the modified estimator (1 + H)Σ̂UU |X + (an − 1)Σδδ of
ΣY Y |X + HΣUU |X is a reasonable one in the sense of the asymptotic uniformity
of probability when n is large. Theorem 2 below then constructs a bounded
asymptotically honest prediction set for Yn+1.

Theorem 2. Assume model (1.1) − (1.3) holds and an satisfies the conditions
in Lemma 1. Let

G=

{
(1 + H)Σ̂UU |X + (an − 1)Σδδ if the defined matrix is positive definite,
{[(1+H)Σ̂UU |X +(an−1)Σδδ]2} 1

2 otherwise.

The approximate 1 − α prediction set for Yn+1

Rh =
{
Yn+1 : (Yn+1−β̂Xn+1)′

n − p − q + 1
(n − q)p

G−1(Yn+1−β̂Xn+1)≤F p
n−p−q+1(α)

}
(2.6)

is asymptotically honest.

Remark 1. Note that G is also positive definite even if (1 + H)Σ̂UU |X + (an −
1)Σδδ is not, and this guarantees that (2.6) is always a bounded set. Moreover,
the definition of G in the case where (1+H)Σ̂UU |X +(an − 1)Σδδ is not positive
definite does not affect Rh being asymptotically honest, Lemma 1.
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Remark 2. The asymptotically honest prediction set (2.6) reduces to the ordi-
nary confidence ellipsoid in the absence of measurement error in the response.

The major difference between (2.6) and (2.5) is the presence of anΣδδ. With
fixed values of parameters, this term is negligible in estimating ΣY Y |X +HΣUU |X
when n is large. Thus for large samples, the additional term anΣδδ does not
increase the volume of (2.6) much and helps achieve asymptotic honesty.

In Tables 1 and 2 we compare the simulation coverage probabilities of (2.6)
with an = 0 and an = log(log n)/(n)

1
2 . The case an = 0 corresponds to the tra-

ditional prediction set, whereas an = log(log n)/(n)
1
2 corresponds to an asymp-

totically honest one. (Based on some simulation results, we find that the value
log(log n)/(n)

1
2 is an adequate choice.)

For definiteness, assume model (1.1)-(1.3) with p = q = 2,

β = (
1 1
2 −1

),Xi = (
1
Xi

), Xi ∼ N(0, 1),Σεε = (
1 0.5

0.5 1
),Σδδ = (

1 0.5
0.5 1

)d,

and d = 0.5, 1, 1.5, 2, 5. For each sample size n, we simulated 5,000 samples and
calculated the coverage probability. In each cell of the tables, the number in the
parenthesis is the coverage probability of (2.6) with an = log(log n)/n1/2 and the
other one with an = 0. From the tables we see that all coverage probabilities
of the traditional prediction set are appreciably below the nominal levels. For
fixed n, it seems that the shortage of the coverage probability becomes more
serious when d is large. On the other hand, for fixed d, the coverage probabilities
of the asymptotically honest prediction set improve as n increases. Finally, the
asymptotically honest prediction set, except for the case n ≤ 50, gives values
close to the nominal levels.

Table 1. Coverage probabilities of (2.6) with an = 0 and an = log(log n)/n1/2

(the values in the parentheses), nominal level= 0.9, replication= 5, 000

sample d

size n 0.5 1 1.5 2 5
20 0.853 0.793 0.762 0.749 0.813

(0.900) (0.871) (0.860) (0.843) (0.846)
30 0.873 0.818 0.771 0.760 0.780

(0.903) (0.890) (0.867) (0.872) (0.851)
50 0.885 0.849 0.811 0.775 0.756

(0.907) (0.903) (0.902) (0.890) (0.864)
100 0.888 0.881 0.851 0.822 0.738

(0.904) (0.916) (0.916) (0.909) (0.899)
200 0.887 0.889 0.879 0.854 0.765

(0.902) (0.914) (0.916) (0.917) (0.918)
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Table 2. Coverage probabilities of (2.6) with an = 0 and an = log(log n)/n1/2

(the values in the parentheses), nominal level= 0.95, replication= 5, 000

sample d

size n 0.5 1 1.5 2 5
20 0.903 0.854 0.824 0.809 0.859

(0.934) (0.920) (0.908) (0.887) (0.883)
30 0.924 0.877 0.825 0.812 0.834

(0.950) (0.938) (0.911) (0.912) (0.889)
50 0.935 0.905 0.865 0.832 0.809

(0.952) (0.947) (0.942) (0.934) (0.901)
100 0.940 0.932 0.911 0.877 0.795

(0.953) (0.957) (0.953) (0.946) (0.931)
200 0.943 0.939 0.929 0.914 0.822

(0.952) (0.957) (0.959) (0.959) (0.945)

3. The Univariate Case

In the univariate case the prediction set Rh for Yn+1 in (2.6) reduces to the
interval

Ih =
{
Yn+1 :

(Yn+1 − β̂0 − β̂1Xn+1)2

| (1 + 1
n + (Xn+1−X̄)2∑n

1
(Xi−X̄)2

)σ̂2
U |X + (an − 1)σ2

δ |
≤ F 1

n−2(α)
}
, (3.1)

where the dependence of Ih on n has been suppressed,

β̂1 =
∑n

1 (Xi − X̄)Ui∑n
1 (Xi − X̄)2

, β̂0 = Ū − β̂1X̄, and σ̂2
U |X =

∑n
1 (Ui − β̂0 − β̂1Xi)2

n − 2
.

Since the prediction interval (3.1) is asymptotically honest, it is expected to
have a longer length than the traditional asymptotic prediction interval. Gener-
ally, an asymptotic prediction interval for Yn+1 is defined to be any sequence of
intervals whose coverage probability converges to the nominal level as n → ∞.
The interval Ih has the following desirable property.

Theorem 3. Let I be any 1 − α asymptotic prediction interval for Yn+1 with
length having finite first moment. Assume that

∑n
1 Xi/n → c1 and

∑n
1 (Xi −

X̄)2/n → c2 > 0, c1 and c2 constants, if Xi are fixed numbers; assume (Xn+1 −
X̄)2/

∑n
1 (Xi − X̄)2 converges to 0 in L1 if Xi are i.i.d. continuous random vari-

ables. Then

lim inf
n→∞

EL(I)
EL(Ih)

≥ 1,∀ θ,

where EL(I) and EL(Ih) denote expected lengths of I and Ih, respectively.
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Next we proceed to a formula which will facilitate the computation of the
coverage probability of Ih.

Theorem 4. Under the assumptions of Theorem 3 the coverage probability of Ih

in (3.1) depends on the parameters only through c = σ2
δ/(σ

2
δ + σ2

ε ), and

P (Yn+1 ∈ Ih)=1−2E{Φ[−tn−2(α/2) | m − c + anc

m − c
(1+

√
2

n − 2
mχ

m − c + anc
) | 12 ]},
(3.2)

where χ is a standardized χ2
n−2 random variable, tn−2(α/2) is the 1−α/2 quantile

of tn−2, Φ is the c.d.f. of N(0, 1), and m = 1+1/n+(Xn+1−X̄)2/
∑n

1 (Xi−X̄)2.
Furthermore, if X1, . . . ,Xn+1 are i.i.d. normal random variables, then (Xn+1 −
X̄)2/

∑n
1 (Xi − X̄)2 has (n + 1)[n(n − 1)]−1F 1

n−1 distribution and is independent
of χ.

Remark 3. In Theorem 4 assume that the Xi are fixed numbers (the case of
random Xi can be dealt with similarly). If an = 0, we choose σ2

ε = {1/[m(1 −
(2/(n−2))

1
2 ]−1}σ2

δ or equivalently m(2/(n−2))
1
2 /(m− c) = 1 (i.e., in this case,

σ2
ε /(σ

2
ε +σ2

δ ) goes to 0 at the rate n− 1
2 ). Then since χ

L→ N(0, 1) and tn−2(α/2) →
zα/2, the 1 − α/2 quantile of N(0, 1), (3.2) converges to 1 − 2E{Φ[−zα/2 | 1 +

N(0, 1) | 12 ]} which can be computed numerically (it is approximately 0.877, 0.831,
and 0.747 if α = 0.05, 0.1, and 0.2, respectively) and is less than 1 − α for the
usual nominal levels. This means that if we drop the term anσ2

δ from (3.1), the
resultant interval will no longer be an asymptotically honest prediction interval.

By Theorem 4 we see that the coverage probability of Ih is a function of c for
a given an, and hence the infimum of this coverage probability over the parameter
space can be approximated by the minimum simulation coverage probability for
0 < c < 1. For a given an and each c = 10−2i, 1 ≤ i ≤ 100, we generate 5,000
realizations of m and χ, where m and χ are independent random variables with
distributions described in Theorem 4 and X1, . . . ,Xn+1 are i.i.d. N(0, 1). Then
the approximate coverage probability can be computed by taking the average of
these 5,000 values of Φ as the expectation of the Φ function. Among the values of
the approximate coverage probabilities corresponding to different c

′
s, the mini-

mum value is taken as the approximate infimum of the coverage probability. Table
3 gives the results for an = n− 1

2 log(log n) and an = 0, n = 10, 20, 30, 50, 100, 200,
and nominal level= 0.9, 0.95. From the table we see that the approximate infi-
mum coverage probabilities of the asymptotically honest prediction interval differ
from the nominal levels by less than 3% when n ≥ 30, and are very close (within
1%) to the nominal levels when n ≥ 50. On the other hand, those of the usual
interval have a shortage greater than 7% for all sample sizes.
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Table 3. Approximate infimum coverage probabilities of Ih

an = n− 1
2 log(log n) an = 0

sample nominal level sample nominal level
size n 0.9 0.95 an size 0.9 0.95

10 0.854 0.908 0.263 10 0.824 0.877
(0.52) (0.66) (0.61) (0.64)

20 0.885 0.917 0.245 20 0.820 0.867
(0.69) (0.68) (0.75) (0.71)

30 0.896 0.930 0.223 30 0.819 0.868
(0.78) (0.71) (0.77) (0.80)

50 0.899 0.942 0.193 50 0.818 0.867
(0.05) (0.82) (0.80) (0.82)

100 0.899 0.950 0.153 100 0.820 0.865
(0.01) (0.10) (0.87) (0.86)

200 0.900 0.950 0.117 200 0.822 0.871
(0.03) (0.01) (0.88) (0.91)

Number in each cell is the simulation value of the approximate

inf
0<c<1

(
1−2E{Φ[−tn−2(α/2) | m−c+anc

m − c
(1+(

2
n−2

)
1
2

χm

m−c+anc
) | 12 ]}

)
.

Number in the parenthesis is the value of c when coverage probability
attains the minimum.

4. Calibration and Prediction in Errors-in-Variables Model

There are two problems in the errors-in-variables model related to model
(1.1)-(1.3). One is the calibration problem and the other is the prediction prob-
lem.

Suppose that we have the following errors-in-variables model:

Wi = a + bZi + ei, Vi = Zi + τi, 1 ≤ i ≤ n, (4.1)

where Zi ∼ N(µz, σ
2
z), ei ∼ N(0, σ2

e), and τi ∼ N(0, σ2
τ ) are three i.i.d. sequences

of random variables. Here we can only observe (Wi, Vi), 1 ≤ i ≤ n. It is assumed
that σ2

τ , the variance of the measurement error τi, is known. In the calibration
problem, based on the observed Wn+1 and (Wi, Vi), 1 ≤ i ≤ n, we would like
to construct an asymptotically honest calibration interval for Zn+1. In the pre-
diction problem, if a true Zn+1 can be observed (for example, the instrument
has been improved), we want to construct an asymptotically honest prediction
interval for Wn+1 on the basis of Zn+1 and (Wi, Vi), 1 ≤ i ≤ n.

4.1. Calibration interval
Suppose that we are interested in interval estimation of Zn+1 based on Wn+1

and (Wi, Vi), 1 ≤ i ≤ n. This problem can be treated as a prediction problem
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under (1.1)-(1.3). Since (Wi, Vi) has a bivariate normal distribution, we can
inversely regress Zi on Wi to obtain the model

Zi = a∗ + b∗Wi + e∗i , Vi = Zi + τi, 1 ≤ i ≤ n + 1, (4.2)

where b∗ = bσ2
z/(b

2σ2
z +σ2

e), a∗ = (1−bb∗)µz−ab∗, and e∗i = Zi−a∗−b∗Wi. Note
that the error term e∗i is uncorrelated with Wi. Obviously (4.2) is a special case of
(1.1)-(1.3) except that the variables and parameters have been renamed. Hence
the calibration problem in model (4.1) becomes one of prediction in the model
(1.1)-(1.3) and we can apply the results in Section 3 to obtain an asymptotically
honest calibration interval for Zn+1.

4.2. Prediction interval

In model (4.1) suppose that we can observe a true Zn+1 in the future. It
is not difficult to construct an asymptotic prediction interval for Wn+1 which
has finite length almost surely on the basis of Zn+1 and (Wi, Vi), 1 ≤ i ≤ n.
But, according to result of Hwang (1992), Theorem 2.2, such an interval can
not be asymptotically honest. (This is due to the fact that the variance σ2

z

of Zi in the parameter space can be arbitrarily close to 0 and consequently,
this reduces the information toward estimation of the parameter b.) In other
words, any asymptotically honest prediction interval for Wn+1 based on Zn+1

and (Wi, Zi), 1 ≤ i ≤ n, must have a positive probability of having an infinite
length. We can use Theorem 2 to derive such a prediction interval.

As described in Section 4.1, we have model (4.2). To adopt the notations in
model (1.1)-(1.3), we let Xi = Wi, Yi = Zi, Ui = Vi, εi = e∗i , δi = τi, β0 = a∗, and
β1 = b∗. Then we can find a prediction interval for Xn+1 (= Wn+1) by solving the
inequality in (3.1) for Xn+1 instead for Yn+1. Although this prediction interval
for Xn+1 could be unbounded, it is asymptotically honest due to Theorem 2.

Appendix

Let A and B be any two matrices of the same dimension. From now on, the
notation A < B means B − A is a positive definite matrix.

Proof of Lemma 1. We only consider the case where X1, . . . ,Xn+1 are i.i.d.
continuous random vectors. The case where X1, . . . ,Xn+1 are fixed vectors can
be dealt with similarly. In this case the matrix Σ̂UU |X is positive definite almost
surely. From model (1.1)-(1.3), we know that ΣUU |X = Σεε + Σδδ and

(1 + H)Σ̂UU |X + (an − 1)Σδδ > Σ̂UU |X + (an − 1)ΣUU |X .

Consequently,

P [(1 + H)Σ̂UU |X + (an − 1)Σδδ is p.d.] > P (Σ̂UU |X + (an − 1)ΣUU |X is p.d.).
(A.1)
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The probability on the right of inequality (A.1) is equivalent to

P [k
′
(Σ̂UU |X + (an − 1)ΣUU |X)k > 0 ∀ k with ‖ k ‖= 1]. (A.2)

Let T be a nonsingular matrix such that T
′
ΣUU |XT = Ip, the p by p identity

matrix. Then (A.2) is P [k
′
(Îp − Ip + anIp)k > 0, ∀ ‖ k ‖= 1], where Îp =

T
′
Σ̂UU |XT. It is clear that Îp has a Wishart(Ip, n−q) distribution. Consequently,

the elements of Îp−Ip have order Op(n− 1
2 ) and their distributions are independent

of all parameters. This implies that k
′
(Îp − Ip)k = Op(n− 1

2 ) independent of all
parameters for any ‖ k ‖= 1. As a consequence, (A.2) is P [Op(n− 1

2 ) + an >

0, ∀ ‖ k ‖= 1], independent of all parameters, and hence converges to 1 as
n → ∞. Combining this with (A.1), Lemma 1 is proved.

In order to prove Theorem 2, we need the following lemma.

Lemma 5. Let {Mn} be a sequence of symmetric r by r random matrices and
let {λn} be the maximum absolute latent roots of {Mn}. Then, as n → ∞, every
element of {Mn} converges to 0 in probability if λn does the same.

Proof of Theorem 2 (Case 1). First we consider the case where X1, . . . ,Xn+1

are fixed vectors. For convenience, let Σ··|X represent the covariance matrix
conditioned on Xi even if Xi are fixed vectors. Let S = {(t1, . . . , tn+1) : ti ∈
Rq, 1 ≤ i ≤ n+1 and the matrix (t1, . . . , tn) is of rank q }, X∗ = (X1, . . . ,Xn+1),
M = (1 + H)ΣUU |X + (an − 1)Σδδ , M̂ = (1 + H)Σ̂UU |X + (an − 1)Σδδ , and
V = Yn+1 − β̂Xn+1. We prove Theorem 2 by showing the following results:

lim inf
n→∞ inf

θ∈Ω
P [V

′
M−1V ≤ pF p

n−p−q+1(α)] = 1 − α (A.3)

and
| V′

M̂−1V − V
′
M−1V |≤ op(1), (A.4)

where op(1) converges to 0 in probability uniformly in all parameters.
Due to the fact that V′(M − anΣδδ)−1V ∼ χ2

p and M ≥ M − anΣδδ > 0,
we have

lim inf
n→∞ inf

θ∈Ω
P [V

′
M−1V≤pF p

n−p−q+1(α)]≥P [V
′
(M−anΣδδ)−1V ≤ χ2

p(α)]=1−α,

(A.5)
where χ2

p(α) is the 1 − α quantile of χ2
p. Since an → 0 in (A.5), by Slutsky’s

Theorem it is obvious that

lim
n→∞P [V

′
M−1V ≤ χ2

p(α)] = 1 − α.

Then with (A.5), (A.3) is established.
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Remark 4. Since the result of (A.3) holds for all X∗ ∈ S, in fact we have proved
that

lim inf
n→∞ inf

θ∈Ω
inf

X∗∈S
P [V

′
M−1V ≤ pF p

n−p−q+1(α)] = 1 − α.

To prove (A.4), let C = M̂ − M = (1 + H)(Σ̂UU |X − ΣUU |X). By Muir-
head (1982), Pg.592, there exists a nonsingular matrix Γ such that Σ−1

UU |X =

Γ
′
Γ and M−1 = Γ

′
DΓ, where D = diag(d1, . . . , dp) with d1, . . . , dp being latent

roots of ΣUU |XM−1. Consequently,

Γ
C

1 + H
Γ

′
= ΓΣ̂UU |XΓ

′ − Ip. (A.6)

Since (n − q)Σ̂UU |X has a Wishart(ΣUU |X , n − q) distribution, it follows that
(n− q)ΓΣ̂UU |XΓ

′
has a Wishart(Ip, n− q) distribution. By (A.6), we know that

the elements of ΓCΓ
′
/(1 + H) have order Op(n− 1

2 ) and their distributions are
independent of all parameters.

From the fact (H + an)ΣUU |X ≤ M ≤ (1 + H)ΣUU |X , we have

Σ−1
UU |X

1 + H
≤ M−1 ≤

Σ−1
UU |X

H + an
. (A.7)

Let the latent vectors associated with the latent roots di of ΣUU |XM−1 be de-
noted by νi. Then ν

′
iM

−1νi − diν
′
iΣ

−1
UU |Xνi = 0. Consequently, by (A.7)

1
1 + H

ν
′
iΣ

−1
UU |Xνi ≤ diν

′
iΣ

−1
UU |Xνi ≤ 1

H + an
ν

′
Σ−1

UU |Xνi

and hence
1

1 + H
≤ di ≤ 1

H + an
. (A.8)

By a straightforward matrix computation,

M̂−1 − M−1 = (M + C)−1 − M−1 = −M−1C(Ip + M−1C)−1M−1. (A.9)

Moreover,

M−1C = Γ
′
DΓC =

1 + H

(H + an)
√

n
Γ

′
ΨΓ−1′ , (A.10)

where Ψ = (n)
1
2 (H +an)DΓCΓ

′
/(1+H). Here the elements of the matrix Ψ are

Op(1) free of all parameters, by (A.6) and (A.8). Substituting (A.10) in (A.9)
and simplifying the result, we have

Γ−1′ [M̂−1 − M−1]Γ−1 = KD, (A.11)
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where
K =

−(1 + H)
(H + an)

√
n
Ψ[Ip +

1 + H

(H + an)
√

n
Ψ]−1.

As n → ∞ (and hence an(n)
1
2 → ∞),

1 + H

(n)
1
2 (H + an)

≤
{

2
n1/2an

if 0 < H ≤ 1,
2

n1/2 if H > 1,

converges to 0. Consequently, K converges to the zero matrix in probability uni-
formly over the parameter space. From (A.11) it is obvious that KD is symmetric
and hence

D− 1
2 KD

1
2 = D− 1

2 D
1
2 D

1
2 K

′
D− 1

2 = D
1
2K

′
D− 1

2 .

Thus, D− 1
2 KD

1
2 is symmetric as well. Note that the latent roots of K converge

to 0 in probability uniformly in all parameters since the matrix K does the same.
As a result, D− 1

2 KD
1
2 , which has the same latent roots as K, converges to

the zero matrix in probability uniformly in all parameters by Lemma 5. Recall
that M−1 = Γ

′
DΓ and V

′
M−1V ≤ V

′
(M − anΣδδ)−1V ∼ χ2

p. This implies

that V
′
Γ

′
D

1
2 D

1
2ΓV = Op(1) or ‖ D

1
2ΓV ‖= Op(1), where Op(1) is free of all

parameters. By this, the uniformity result on D− 1
2 KD

1
2 , and (A.11) we have

V
′
(M̂−1−M−1)V = V

′
Γ

′
KDΓV = V

′
Γ

′
D

1
2 D− 1

2KD
1
2 D

1
2ΓV = op(1), (A.12)

where op(1) is free of all parameters.

Remark 5. In the previous proof, the norm of D
1
2ΓV is Op(1), free of all

parameters and the values of X1, . . . ,Xn+1. Also K converges to the zero matrix
in probability uniformly over the parameter space and S. Consequently the
supremum of the term on the left of (A.12) over S converges to 0 in probability
uniformly in all parameters. Combining this and Remark 4, we obtain

lim inf
n→∞ inf

θ∈Ω
inf

X∗∈S
P [V

′
M̂−1V ≤ pF p

n−p−q+1(α)] = 1 − α,

which is stronger than Theorem 2.

Proof of Theorem 2 (Case 2). Suppose that X1, . . . ,Xn+1 are i.i.d. contin-
uous random vectors with joint distribution function Gθ∗(x1, . . . ,xn+1), θ∗ the
vector parameter involved in this distribution. Let η= (θ,θ∗) be the entire vec-
tor parameter where θ consists of all parameters not involved in Gθ∗ and let ∆
be the corresponding parameter space. Since Gθ∗ is continuous, it is obvious that
P (X∗ ∈ S) = 1, where X∗ and S are defined the same as in the proof of Case 1.
Consequently,

Pη[V
′
M̂−1V ≤ pF p

n−p−q+1(α)] =
∫

S
Pθ [V

′
M̂−1V

≤ pF p
n−p−q+1(α) | X1 = x1, . . . ,Xn+1 = xn+1]dGθ∗(x1, . . . ,xn+1). (A.13)
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Since the integrand of the integral on the right side of equality (A.13) is larger
than

inf
x∗∈S

Pθ[V
′
M̂−1V ≤ pF p

n−p−q+1(α) | X1 = x1, . . . ,Xn+1 = xn+1],

so is the probability Pη[V
′
M̂−1V ≤ pF p

n−p−q+1(α)]. By Remark 5 in Case 1, it
follows that

lim inf
n→∞ inf

η∈∆
Pη(V

′
M̂−1V ≤ pF p

n−p−q+1(α)) ≥ 1 − α.

It is trivial to prove that the equality holds exactly.

Proof of Theorem 3. We only provide the proof where X1, . . . ,Xn+1 are fixed
numbers. The proof where X1, . . . ,Xn+1 are i.i.d. continuous random variables
can be dealt with similarly. By the assumptions,

EL(Ih) = E
[
2tn−2(α/2)((1+

1
n

+
(Xn+1 − X̄)2∑n

1 (Xi − X̄)2
)σ̂2

U |X +(an−1)σ2
δ )

1
2

]
→ 2zα/2σε,

where tn−2(α/2) and zα/2 are respectively the 1 − α/2 quantiles of tn−2 and
N(0, 1). Suppose that there exists a θ0 such that

lim inf
n→∞

EL(I)
EL(Ih)

= 1 − ε < 1,

where 0 < ε < 1. Due to the fact that EL(Ih) → 2zα/2σε, there exists a
subsequence nk of n such that

EL(I)
2zα/2σε

< 1 − ε

2
for n = nk.

Moreover, since Yn+1 is normally distributed with mean EYn+1, we have

P (Yn+1 ∈ I) ≤ P
(
| Yn+1 − EYn+1

L(I)
|≤ 1

2

)
= P

(
| Yn+1 − EYn+1

σε
|≤ L(I)

2σε

)

= 1 − 2EΦ[−L(I)
2σε

] < 1 − 2Φ[−EL(I)
2σε

] < 1 − α for n = nk.

Strict inequality is valid by Jensen’s inequality. This shows that I is not a 1−α

asymptotic prediction interval for Yn+1, which contradicts the assumption.

Proof of Theorem 4. Given X1, . . . ,Xn+1, the conditional distribution of
Yn+1 − β̂0 − β̂1Xn+1 is N [0,mσ2

U |X − σ2
δ ]. Let

V1 = mσ2
U |X − σ2

δ , V2 = mσ2
U |X + (an − 1)σ2

δ , V̂2 = mσ̂2
U |X + (an − 1)σ2

δ .
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Then

P (Yn+1 ∈ Ih) = P
[ (Yn+1 − β̂0 − β̂1Xn+1)2

| mσ̂2
U |X + (an − 1)σ2

δ | ≤ F 1
n−2(α)

]

= P
[
| Z |≤ tn−2(α/2)(

V2

V1

| V̂2 |
V2

)
1
2

]
, (A.14)

where Z = (Yn+1 − β̂0 − β̂1Xn+1)/
√

V1 is N(0, 1). Note that the distribution
of Z is independent of Xi and σ̂2

U |X and hence Z is independent of V̂2. By a
straightforward computation, we have

V̂2

V2
= 1 + χ(

2
(n − 2)

)
1
2

m

m − c + anc
and

V2

V1
=

m − c + anc

m − c
, (A.15)

where χ = [(n − 2)σ̂2
U |X/σ2

U |X − (n − 2)]/(2(n − 2))
1
2 . Since σ̂2

U |X is independent
of

∑n
1 (Xi − X̄)2, X̄ and Xn+1, it follows that m is independent of χ. Theorem

4 is an obvious consequence if we replace V̂2/V2 and V2/V1 in (A.14) by those in
(A.15), respectively.
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