
Statistica Sinica 9(1999), 229-246

NONPARAMETRIC ESTIMATION OF THE SURVIVAL

FUNCTION BASED ON CENSORED DATA WITH

ADDITIONAL OBSERVATIONS FROM THE

RESIDUAL LIFE DISTRIBUTION

Paul H. Kvam, Harshinder Singh and Ram C. Tiwari

Georgia Institute of Technology, Panjab University
and University of North Carolina, Charlotte

Abstract: We derive the nonparametric maximum likelihood estimator (NPMLE) of

the distribution of the test items using a random, right-censored sample combined

with an additional right-censored, residual-lifetime sample in which only lifetimes

past a known, fixed time are collected. This framework is suited for samples for

which individual test data are combined with left-truncated and randomly censored

data from an operating environment. The NPMLE of the survival function using

the combined sample is identical to the Kaplan-Meier product-limit estimator only

up to the time at which the test items corresponding to the residual sample were

known to survive. The limiting distribution for the NPMLE, discussed in detail,

leads to confidence bounds for the survival function. For the uncensored case, we

study the relative efficiency for the estimator based on the combined sample with

respect to the analogous estimator based only on the simple random sample.
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1. Introduction

In various industrial settings it is not always possible to observe the uncen-
sored lifetime of a test item, and this leads to analytical difficulties if inference for
the entire lifetime of the system is pursued. The development of highly reliable
test items, combined with limited product-testing budgets, have made random
right-censoring increasingly common in many applied lifetesting experiments.
Additionally, some settings dictate that only residual lifetimes are available for
observation. For instance, a consumer might observe only a product’s residual
lifetime. If the item has a limited burn-in period, the manufacturer can choose
to test the product for a limited time before making it available to the consumer,
thus minimizing the item’s perceptible failure rate.

In survival analysis of medical data, we might observe the recorded lifetimes
of patients in preliminary stages of a terminal disease, often right censored due to
the patients’ recovery or their removal from the study. The data might include
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remaining lifetimes of patients who are known to survive time t0 beyond the
initial stage of the disease, thus the study fails to include some patients who
were known to have died of the disease before time t0. These latter observations
constitute a residual-lifetime sample. Analysis of AIDs survival data involving
residual lifetimes with right-censoring is discussed in Gross and Lai (1996), for
example.

Naturally the underlying distribution of the test items is not necessarily
identifiable if only (left-truncated) residual lifetime data is observed. To draw
inference about the distribution of the test items extra sample information is
required, such as an ordinary sample of independent and identically distributed
(i.i.d.) lifetimes. If the censoring mechanism is independent of the lifetime dis-
tribution and has the same positive support, identifiability of the underlying
distribution can be preserved.

Inference based on combining information from such related samples appears
in many parts of the statistical literature. Vardi (1982) obtained the nonpara-
metric maximum likelihood estimator (NPMLE) for a distribution function us-
ing a complete random sample supplemented with additional observations from
a length biased sample. The length-biased sample distribution G is a functional
of the original lifetime distribution F given by G(t) = 1

µ

∫ t
0 xdF (x), t > 0, where

0 < µ < ∞ is the mean for F (x). In such nonparametric estimation problems,
we implicitly adopt the generalized maximum likelihood approach introduced by
Kiefer and Wolfowitz (1956). Vardi (1985) later extended his previous results
to general uncensored biased samples; the biased sample contains lifetimes with
distribution G(t) =

∫ t
0 w(x)dF (x)/

∫∞
0 w(x)dF (x), where w(x) is a known, non-

negative bias function. Large sample theory for biased samples is explored by
Gill, Vardi and Wellner (1988).

A sample of residual lifetimes in which test items have survived past a pos-
itive, known time t0 can be written as a biased sample with w(x) = I(x > t0),
where I(A) is the indicator function of an event A. The residual lifetime survival
function and the corresponding expected lifelength are

Ḡ(t) = F̄ (t + t0)/F̄ (t0), EG(T ) =
1

F̄ (t0)

∫ ∞

t0
F̄ (u)du, (1.1)

where for any distribution F , F̄ = 1 − F denotes its survival function. For ease
of notation in the sections to follow, residual lifetimes are characterized via a
truncated distribution, which differs from the residual distribution in (1.1) by a
location shift:

Ḡ0(t) = F̄ (t)/F̄ (t0), for t > t0. (1.2)

Barlow and Proschan (1975), Shaked and Shanthikumar (1994), among others,
have emphasized the important role played by residual lifetimes in the analysis of
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system reliability and aging characteristics. Englehart, Williams and Bain (1993)
discuss the analysis of residual reliability data using the Power Law process.

In this paper we consider the problem of estimating the underlying distribu-
tion function using a “conventional” sample of randomly right-censored lifetimes
in addition to independent items generated from the residual lifetime in (1.2),
which might also be right censored. The special case for which only uncensored
samples are observed, which is featured by Vardi (1985), will be discussed here
for purpose of illustration and to further study properties of the estimator that
are not discussed in Vardi’s paper. In Section 2, we derive the NPMLE of the
underlying survival function F̄ using the combined samples. The NPMLE is a
product estimator that can be intuitively explained by treating the residual data
as left-censored with missing values. We observe that the NPMLE of the survival
function is identical to the Kaplan-Meier (1958) product-limit estimator for all
values of t < t0, but differs for values of t > t0. In the case of no censoring, the
estimator is an unbiased estimator of F̄ (t) for all t > 0, with variance bounded
below by the variance of the empirical distribution function (EDF) based on the
conventional sample.

In Section 3, we derive the limiting distribution for the NPMLE of F̄ using
the Nelson-Aalen hazard function estimator, as first explained by Aalen (1975)
in his Ph.D. thesis. The asymptotic results lead to the construction of variance
estimates, confidence bands, goodness-of-fit tests, and quantile estimators for F̄ .
In Section 4, we demonstrate the NPMLE for a combined sample, and investigate
the estimator’s efficiency (with respect to the conventional estimator) as obser-
vations from the residual life distribution are added to a simple random sample.
For the reader’s benefit, we have relegated proofs of theorems and corollaries to
the appendix.

2. The Nonparametric Maximum Likelihood Estimator

Let X0
1 ,X0

2 , . . . ,X0
m represent m independent observations from a distribu-

tion F , where F (0) = 0. Let X0
m+1,X

0
m+2, . . . ,X

0
m+n be n independent ob-

servations generated by the distribution defined in (1.2). Define C1, . . . , Cm to
be m i.i.d. random variables with distribution function H1 having support on
[0,∞), and Cm+1, . . . , Cm+n to be i.i.d. with distribution H2 having support on
(t0,∞). Here, H1 and H2 represent censoring distributions for the conventional
and residual-lifetime samples, respectively. Define

Xi = X0
i ∧ Ci and δi = I(X0

i ≤ Ci), i = 1, . . . ,m;

X̃i = X0
i ∧ Ci and δ̃i = I(X̃0

i ≤ Ci), i = m + 1, . . . ,m + n. (2.1)

We assume that F is absolutely continuous with density function f(t) and hazard
rate function α(t) = f(t)/F̄ (t) for all values of t for which F (t) < 1. The
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cumulative hazard function can be expressed as Λ(t) =
∫ t
0

dF (u)
F̄ (u)

=
∫ t
0 α(u)du.

Let Z1 ≤ · · · ≤ Zm+n represent the ordered values of the combined m + n

observations in (2.1), and let δ∗(1), . . . , δ
∗
(m+n) be the concomitant values of δi and

δ̃i associated with Z1, . . . , Zm+n. For convenience, define Z0 = 0. The NPMLE
for F follows in Theorem 2.1.

Theorem 2.1. Given a sample of n + m random observations as at (2.1), the
nonparametric maximum likelihood estimator of the survival function F̄ (t) =
1 − F (t) is given by

ˆ̄F (t) =




∏
i:zi∈[0,t]

(1 − δ∗
(i)

m−i+1), t ≤ t0

s∏
i=1

(1 − δ∗
(i)

m−i+1)
∏

i:zs+i∈[t0,t]
(1 − δ∗

(s+i)

m+n−s−i+1), t0 < t < Zm+n

0, Zm+n < t

(2.2)

where s ∈ {0, 1, . . . ,m} is such that Zs ≤ t0 < Zs+1.
For the uncensored case, ˆ̄F (t) can be obtained from an intuitive argument

based on left-censoring and missing data. If n observations are made on G0

(or, equivalently, G), we may treat the sample as a left censored one, with an
unknown number (say, w) of observations less than or equal to t0 that were
not observed, and therefore treated as missing values. Given n + w observa-
tions from the completed residual-lifetime sample, the expected number of ob-
servations greater than t0 is (n + w)F̄ (t0). Thus a natural estimator for w is
ŵ = nFm(t0)/F̄m(t0) = ns/(m − s), where Fm is the EDF based on the conven-
tional sample. The hypothetical EDF will assign mass 1/(m + n + ŵ) to each of
the m + n actual observations Z1, . . . , Zm+n. From the ŵ left censored values,
assign mass 1/(m + n + ŵ) evenly (i.e., using ŵ/s according to Fm) over the
points Z1, . . . , Zs that are less than t0. As a result, one estimates

dF̂ (zi) =

{
1

m+n+ŵ + ŵ
s(m+n+ŵ) , i = 1, . . . , s

1
m+n+ŵ , i = s + 1, . . . ,m + n.

(2.3)

From (2.3) it is easy to show that dF̂ (zi) = 1/m for i = 1, . . . , s and dF̂ (zi) =
(m − s)/[m(m + n − s)] for i = s + 1, . . . ,m + n, as in Theorem 2.1. The next
result follows directly from Theorem 2.1 by taking δi = 1 for i = 1, . . . ,m + n.

Corollary 2.2. (Uncensored Case) Let X0
i be defined as before with i=1, . . . ,m+

n, and let Zi represent the ordered values of X0
i so that 0 = Z0 < Z1 < · · · <

Zn+m. Suppose 0 ≤ s ≤ m is such that Zs ≤ t0 < Zs+1. The following
hold.
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(a) For Zj ≤ t < Zj+1, the NPMLE of F is given by

F̂ (t) =

{
j/m, j = 0, . . . , s

s
m + (j−s)(m−s)

m(m+n−s) , j = s + 1, . . . ,m + n.

(b) The NPMLE from (a) is an unbiased estimator of F (t) for all t > 0.
(c) Var [F̂ (t)] = F (t)F̄ (t)/m for t ≤ t0, and for t > t0,

Var [F̂ (t)] =
F (t0)F̄ (t0)Ḡ0(t)2

m

+
G0(t)Ḡ0(t)

m2

m∑
k=0

(m − k)2

m + n − k

(
m

k

)
· F (t0)k[1 − F (t0)]m−k.

(d) Var [F̂ (t)] ≤ Var [Fm(t)] for t > t0, where Fm is the EDF based on X1, . . . ,Xm.
(e) Let R(F̂ , F ) be the average (integrated) variance of F̂ . Then,

R(F̂ , F ) =
1

6m

{
F (t0)(2 − F (t0)) +

1
m

(1 − F (t0))E
[ (m − S)2

m + n − S

]}
,

where S is Binomial (m,F (t0)). Furthermore, R(F̂ , F ) ≤ R(Fm, F ) = 1/6m.

n = 5

n = 10

n = 20

n = 40

F (t0)

Figure 1. Relative risk of NPMLE for uncensored sample, based on m = 20
and various residual-lifetime sample sizes (n).

Figure 1 illustrates the potential decrease in risk (in Corollary 2.2(e)) earned
by adding residual lifetime data to the conventional sample. The relative risk,
R(F̂ , F )/R(Fm, F ), is plotted as a function of the population quantile F (t0). In
this figure, m = 20 and residual lifetime samples of size n = {5, 10, 20, 40} are
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considered. The curves suggest that significant reductions in risk are realized
even with modest additions of residual data. For example, if (m,n) = (20, 5),
risk is reduced over 15% if t0 is such that F (t0) ≤ 0.20.

3. Asymptotic Properties

To further examine properties of the NPMLE derived in Section 2, we re-
frame our discussion in terms of counting processes and product integrals. By
expressing the NPMLE estimator from (2.2) in terms of its corresponding in-
tensity process, we produce a product integral that makes limit properties more
easily attainable from existing martingale theory. Several clarifying examples of
this technique are discussed in Chapter IV of Andersen, Borgan, Gill and Keiding
(1993).

We consider the counting process N1(t) =
∑m

i=1 I(Xi ≤ t, δi = 1), denot-
ing the number of failures up to time t from the conventional sample. Let
Y1(t) =

∑m
i=1 I(Xi ≥ t) represent the corresponding process for the number

of items “at risk” just before time t. We define similar counting processes
for the residual-lifetime data: N2(t) =

∑m+n
i=m+1 I(t0 ≤ X̃i ≤ t, δ̃i = 1) and

Y2(t) =
∑m+n

i=m+1 I(X̃i ≥ t), and denote the combined processes N = N1 + N2,
Y = Y1 + Y2.

Using these processes, we can express the NPMLE of survival function in
terms of the product integral

ˆ̄F (t) =




∏
[0,t]

(1 − dN1
Y1

), t ≤ t0

∏
[0,t0]

(1 − dN1
Y1

)
∏

[t0,t]
(1 − dN

Y ), t0 < t < τ,
(3.1)

where τ = τ1 ∧ τ2 with τ1 = sup{u : F̄ (u)H̄1(u) > 0} and τ2 = sup{u :
Ḡ0(u)H̄2(u) > 0} = sup{u : F̄ (u)H̄2(u) > 0}.

For convenience, we examine the cumulative hazard function estimator cor-
responding to ˆ̄F (t), which is analogous to the Nelson-Aalen estimator presented
in Chapter IV of Andersen, Borgan, Gill and Keiding (1993):

Λ̂(t) =




∫ t
0

dN1
Y1

, t ≤ t0∫ t0
0

dN1
Y1

+
∫ t
t0

dN
Y , t0 < t < τ.

(3.2)

Let m and n tend to infinity so that m/(n + m) → ρ, 0 < ρ < 1. Let D[a, b] be
the space of functions on [a, b] that are right continuous with left limits, equipped
with the Skorohod topology. We shall assume that conditions (C.1) :

∫ τ
0

dF (u)
H̄(u−)

<

∞, and (C.2) :
∫ τ
0

dF (u)
H̄2(u−)

< ∞ hold. To further characterize the asymptotic
distribution for (3.2), we need the following lemma:



OBSERVATIONS FROM THE RESIDUAL LIFE DISTRIBUTION 235

Lemma 3.1. For t ∈ (t0, τ), the asymptotic covariance between
∫ t0
0

dN1
Y1

and∫ t
t0

dN
Y is zero.
Asymptotically, the two distinct processes included in (3.2) have independent

increments. Under (C.1), (C.2), and employing Lemma 3.1, (m + n)1/2(Λ̂ −
Λ) d−→W1 on D[0, t0] as m, n → ∞, where W1 is a mean zero Gaussian process
with Cov (W1(u),W1(v)) = σ2

1(u ∧ ν), and

σ2
1(t) =

∫ t∧t0

0

α(u)du

ρF̄ (u)H̄1(u)
= −

∫ t∧t0

0

dF̄ (u)
ρF̄ (u)2H̄1(u)

. (3.3)

Also, (m + n)1/2(Λ̂ − Λ) d−→W2 on D(t0, τ ] as m, n → ∞, where W2 is a mean
Gaussian process with Cov (W2(u),W2(v)) = − ∫ t0

0
dF̄ (u)

ρF̄ (u)2H̄1(u)
+ σ2

2(u ∧ ν), and

σ2
2(t) =

∫ t

t0

α(u)du

ρF̄ (u)H̄1(u) + (1 − ρ)Ḡ0(u)H̄2(u)

= −
∫ t

t0

dF̄ (u)
ρF̄ (u)2H̄1(u) + (1 − ρ)F̄ (u)Ḡ0(u)H̄2(u)

= −
∫ t

t0

dḠ0(u)
ρF̄ (u)Ḡ0(u)H̄1(u) + (1 − ρ)Ḡ0(u)2H̄2(u)

. (3.4)

From (3.2) - (3.4), using the relationship between F and Λ (see IV.3.1 of An-
dersen, Borgan, Gill and Keiding (1993)), the following theorem and corollary
follow.

Theorem 3.2. (m + n)1/2( ˆ̄F (t)− F̄ (t)) d−→
{
−F̄ (t)W1(t) t≤ t0
−F̄ (t)W2(t) t0 <t<τ

as m,n →
∞ with the covariance kernel given by

Cov (−F̄ (u)W1(u),−F̄ (ν)W1(ν)) = F̄ (u)F̄ (ν)σ2
1(u ∧ ν), and

Cov (−F̄ (u)W2(u),−F̄ (ν)W2(ν)) = F̄ (u)F̄ (ν)
[
−
∫ t0

0

dF̄ (u)
ρF̄ 2(u)H̄1(u)

+ σ2
2(u ∧ ν)

]
.

Corollary 3.3. For fixed t ≤ τ , as m,n → ∞,

(m + n)1/2( ˆ̄F (t)− F̄ (t)) d−→



N
(
0, F̄ (t)2σ1(t)

)
, t ≤ t0

N
(
0, F̄ (t)2

[
σ2

2(t) −
∫ t0
0

dF̄ (u)
ρF̄ (u)2H̄1(u)

])
, t0 < t < τ.

(3.5)
If we allow ρ → 1, the asymptotic variance of ˆ̄F from (3.5) is −F̄ (t)2∫ t

0
dF̄ (u)

F̄ (u)2H̄1(u)
for all t ∈ (0, τ1). On the other hand, if ρ → 0, so that only

the residual-lifetime sample is accessible, we can estimate Ḡ0(t) on (t0, τ2), us-
ing its product limit estimator,

∏
(t0,t](1 − dN2

Y2
), which has asymptotic variance
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−Ḡ0(t)2
∫ t
t0

dḠ0(u)
Ḡ0(u)2H̄2(u)

. For the uncensored case, define

σ2
0(t) =

F̄ (t)F (t)
ρ

(
1 − G0(t)

F (t)

( (1 − ρ)
(1 − ρ) + ρF̄ (t0)

))
. (3.6)

Corollary 3.4. (Uncensored Case) If there is no right censoring mechanism
(i.e., H̄1 = H̄2 = 1), then for fixed t > 0, and as m,n → ∞,

(m + n)1/2( ˆ̄F (t) − F̄ (t)) d−→



N
(
0, F (t)F̄ (t)/ρ

)
, t ≤ t0

N
(
0, σ2

0(t)
)

t > t0.
(3.7)

If ρ → 1, the asymptotic variance equals F (t)F̄ (t) for all t > 0. If ρ → 0, the
variance increases to infinity for t > 0. The next corollary follows easily using
basic inequalities.

Corollary 3.5. (Uncensored Case) Let σ2
0 be defined in (3.6). For t > t0, and

0 < ρ < 1, F (t)F̄ (t)F̄ (t0) ≤ σ2
0(t) ≤ F (t)F̄ (t)/ρ.

Corollaries 3.4 and 3.5 can be deduced from the general results of Gill, Vardi
and Wellner (1988), where the asymptotic efficiency is deduced for the uncensored
case. Using ρ̂ = m/(m + n), the variance components σ2

1(t), σ2
2(t) are estimated

consistently by

σ̂2
1(t) =

∫ t

0

dN1(u)
ρ̂Y 2

1 (u)
, and σ̂2

2(t) =
∫ t0

0

dN1(u)
ρ̂y2

1(u)
+
∫ t

t0

dN1(u)
ρ̂Y 2

1 (u) + (1 − ρ̂)Y1(u)Y2(u)
.

(3.8)
Likewise, we estimate σ2

0(t) by substituting ( ˆ̄F, ˆ̄G0) for (F̄ , Ḡ0) in (3.6). Con-
struction of confidence bands for the underlying distribution can be carried out
directly using the asymptotic limits produced above, as well as bootstrap proce-
dures explained by Akitas (1986) for the Kaplan-Meier estimator. See also Wells
and Tiwari (1994), Lu, Wells and Tiwari (1994), and Li, Tiwari and Wells (1996).

In studies of the survival function, quantiles have particular importance. For
0 < p < 1, define the pth quantile functional of F to be ξp = F−1(p) = inf{x :
F (x) ≥ p} = inf{x : F̄ (x) ≤ 1 − p}. Accordingly, define the estimated quantile
functional ξ̂p = inf{x : ˆ̄F (x) ≤ 1 − p}. We can write ξp = φ(F ), where φ is the
mapping from the space of distribution functions to the real line that is defined
by φ(F ) = F−1(ρ) = inf{x : F (x) ≥ p}; thus φ is compactly differentiable at
F with derivative dφ(F ) · h = −h(F−1(p))

f(F−1(p)) , provided f(ξp) > 0. From Theorem
IV.3.2 of Andersen Borgan, Gill and Keiding (1993), we get the following.

Theorem 3.6. If F has a positive derivative on (0, τ),

(m + n)1/2(ξ̂p − ξ̂p)
w−→



−(1−p)W1(F−1(p))
f(F−1(p)) , ξp ≤ t0

−(1−p)W2(F−1(p))
f(F−1(p)) , t0 < ξp

(3.9)
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with p ∈ (0, F (τ)), as m, n → ∞. In particular, when there is no censoring, we
have for fixed p in (0, 1)

(m + n)1/2(ξ̂p − ξp)
d−→N

(
0,

(1 − p)2σ̃2(ξp)
f(ξp)2

)
, (3.10)

where

σ̃2(ξp) =

{
F (ξp)F̄ (ξp)/ρ, ξp ≤ τ0

σ2(ξp), ξp > τ0.

The variance σ2
0(ξp) is estimated by σ̂2

0(ξ̂p), and the density f(ξp) from (3.9)
and (3.10) can be estimated by the kernel estimate f̂(t) = −1

b2n

∫
K ′( t−u

bn
)d ˆ̄F (u),

where K ′ is the derivative of the uniform kernel function, and bn = bn,m is
the selected bandwidth. See Example IV.2.1 from Andersen, Borgan, Gill and
Keiding (1993) for further description of this approach. Confidence regions can be
constructed using these estimates. An alternative method that does not require
the density estimation of f is to construct a critical region based on a hypothesis
test for H0 : ξp = ξ∗p vs. HA : ξp �= ξ∗p . Analogous test statistics, based on
suitably transforming the Kaplan-Meier estimator, are discussed by Brookmeyer
and Crowly (1982).

Other functionals, including the mean survival time, can be estimated sim-
ilarly. As a practical application of the quantile estimator, we might test H0 :
F = F0 vs. HA : F �= F0 based on ξ̂0.5. It is possible to extend tests to several
classes of distributions that might be pertinent in a given situation, such as tests
for increasing failure rate (IFR) (Proschan and Pyke (1967)), “new better than
used” (NBU) (Hollander and Proschan (1972)), and “new better than used in
expectation” (NBUE) (Koul (1978), among others). Test statistics for each of
these hypothesis tests are based on relatively simple functionals of ˆ̄F (t). For
example, F ∈ NBU if F̄ (x + y) ≤ F̄ (x)F̄ (y), which can be examined by using∫∞
0

∫∞
0

ˆ̄F (x + y)d ˆ̄F (x)d ˆ̄F (y) as the test statistic.

4. Relative Efficiency of the NPMLE to the EDF

To further study the performance of the NPMLE, we compare its properties
to those of Fm. Previously it was shown that the two estimators are identical
up to t0, the time at which the test items from the residual sample were known
to survive. For any value of t > 0, define the relative efficiency of the estimator
F1 with respect to F2 as e(F1, F2) = Var (F2)/Var (F1). The estimators’ relative
risk, directly related to e(F̂ , Fm), was illustrated in Figure 1 for the uncensored
case. In the case of censored data, one can compare the two estimators via the
asymptotic relative efficiency (ARE) of F̂ with respect to Fm, defined as the
ratio of their respective asymptotic variances. The asymptotic variance of F̂
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is inferred from (3.5), and the asymptotic variance of Fm is F (t)F̄ (t)/ρ. The
loss in efficiency due to censoring is also of practical interest. The potential
improvement due to adding observations from the residual-lifetime distribution
can be measured using the relative efficiency of the NPMLE with respect to Fm

at values of t > t0, as long as both estimators are (asymptotically) unbiased.

EDF

Weibull CDF

NPMLE

x

Figure 2. NPMLE (solid-line step function), EDF (dashed-line step function),
and true Weibull(2,1) distribution function for generated data with n = m =
20 and t0 = 0.5.

NPMLE

Weibull CDF

x

Figure 3. NPMLE (solid-line step function) and true Weibull(2,1) distribu-
tion function for generated data with n = m = 20, t0 = 0.5, and exponential
censoring distributions H̄1(t) = e−t/2, t > 0, and H̄2(t) = e−(t−t0)/2, t > t0.

Simulated estimation results are displayed in Figures 2 and 3. Both simula-
tions are based on t0 = 0.5 and data (m = 20, n = 20) generated from a Weibull
distribution (shape parameter “a”= 2 and scale parameter “b”= 1). For the
Weibull(2,1) distribution, t0 is the 0.2212 quantile of F . In Figure 2 the Weibull
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lifetimes are uncensored, and in Figure 3 exponential censoring distributions are
applied: H̄1(t) = e−t/2, t > 0 and H̄2(t) = e−(t−t0)/2, t > t0. In the latter
simulation, 12 of the 40 generated lifetimes are censored, including 7 out of 20
from the conventional sample. For Figure 2, the improvement gained in using
added residual-lifetime data is subtle, but apparent at values of t to the right of
t0 = 0.5.

Var(EDF)

Var(NPMLE)

Figure 4. Variance of NPMLE (solid line) vs. Variance of EDF (dashed
line) for uncensored Weibull(2,1) distribution function with n = m = 10 and
t0 = 0.5.

For the uncensored case, one can compare the estimators by using variance
formulas from Corollary 2.2. For values of t > t0, these variances are plotted
in Figure 4, using the same distribution from Figure 2, and sample sizes of
m = n = 10. Results using alternative lifetime distributions (e.g., Normal,
Lognormal, Gamma) are similar. From the EDF, the variance of the NPMLE
is reduced by nearly 50%, which seems intuitive because m = n, and the added
residual-lifetime data are less informative than lifetimes from the conventional
sample.

Figure 5 displays relative efficiency graphs of the NPMLE to the EDF for
three lifetime distributions of interest to the reliability engineer: (a) Weibull,
(b) Lognormal and (c) Gamma. The parameters are selected in order to make
the means and variances approximately equal for all three distributions. The
conventional sample size is kept constant at m = 20, and the residual sample
size is varied (n = 1, . . . , 40). The relative efficiencies are similar for all three
distributions, and the loss of efficiency is clear as to increases from 0.2 to 1.2. In
case (A), F (t0) = {0.04, 0.22, 0.47, 0.76} at the values of t0 = {0.2, 0.5, 0.8, 1.2}.
For all three distributions, the gain in efficiency seems modest for values of t0
past the 50th percentile.
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t0 = 0.2 t0 = 0.2

t0 = 0.5

t0 = 0.5
t0 = 0.8

t0 = 0.8

t0 = 1.2 t0 = 1.2

(a) Weibull(2,1) (b) Lognormal(0,0.4)

t0 = 0.2

t0 = 0.5

t0 = 0.8
t0 = 1.2

(c) Gamma(3.5, 0.25)

Figure 5. Relative efficiency of the NPMLE to the EDF using various values
to t0 and uncensored distributions: (a) Weibull(2,1), (b) Lognormal(0,0.4),
and (c) Gamma(3.5, 0.25). The horizontal axis represents the residual-
lifetime sample size (n), and m = 20.

ARE(t)
θ = 0.1

θ = 0.5

θ = 1.0

θ = 5.0 θ = 2.0

t

Figure 6. Asymptotic relative efficiency for the NPMLE (with respect to the
conventional sample MLE) as a function of t > t0 = 0.5, with equal sample
sizes (ρ = 1/2). Computations based on Weibull(2,1) lifetimes, H̄2(t) =
e−θ(t−t0), t > t0 and different values of θ > 0.
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For studying the effect of censoring on the performance of the NPMLE, we
make use of its asymptotic relative efficiency. A setting similar to those used
in the simulations of Figure 2 and Figure 3 are considered: conventional data
are generated from an uncensored Weibull(2,1) distribution (H̄1(t) = 1) with
an equal number of observations (ρ = 1/2) from a variably censored residual
lifetime sample with t0 = 0.5 and H̄2(t) = e−θ(t−t0) for t > t0, θ > 0. Fig-
ure 6 illustrates the ARE as a function of t and θ. For small rates of cen-
soring (θ = 0.10), the ARE can exceed two at some values of t > t0. At
higher rates of right-censoring (θ = 5.0), the ARE is scarcely over one. Ac-
cording to this model, the probability that any residual-lifetime observation
is censored equals {0.0524, 0.2246, 0.3789, 0.5700, 0.7932} at respective values of
θ = {0.1, 0.5, 1.0, 2.0, 5.0}.

CDF[t]

t

Figure 7. NPMLE (solid line) and EDF (dotted line) for the distribution of
aluminum specimens’ tensile strength.

Finally, we illustrate the NPMLE using uncensored data from an experiment
investigating the tensile strength of die-cast aluminum specimens, described in
Freeman (1947). The units of the measurements are pounds/inch2. Each obser-
vation in this data set is matched with covariates that can be used for a linear
regression. Because we disregard the covariates associated with tensile strength,
the analysis that follows is limited to the marginal inference of tensile strength,
thus its purpose is illustrative. Table 1 lists the two groups of strength data; the
left column contains a conventional sample of 30 i.i.d. measurements, and the
right column contains a set of 23 measurements left-truncated at t0 = 30, 000
pounds/inch2. Figure 7 displays the NPMLE, based on all 53 measurements, for
the distribution of aluminum specimens’ tensile strength (solid line). The EDF
based on just the 30 i.i.d. measurements (dotted line) is also plotted alongside
it. There is some disagreement between the estimators in the interval (30000,
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35000), but the difference is not substantial. The maximum difference between
the estimators never exceeds 0.05; such a test statistic would be insignificant at
test levels less than 0.25 when comparing independent samples of the same size
using the common Smirnov test.

Table 1. Uncensored measurements of tensile strength of die-cast aluminum
specimens.

m = 30 conventional n = 23 left-truncated
observations observations

29314 25810 31852 38580
34860 26460 31698 35636
36818 28070 30844 34332
30120 24640 31988 34750
30824 25770 36640 40578
35396 23690 41578 34648
31260 28650 30496 31244
32184 32380 32622 33802
33424 28210 32822 34850
37694 34002 30380 36690
34876 34470 34440 32344
24660 34470 34650
34760 29248
38020 28710
25680 29830
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Appendix

Proof of Theorem 2.1. Define s to be the number of observations less than
or equal to t0. Based on the observed censored data in (2.1), the corresponding
term of the likelihood function that only involves F can be expressed as

L(F ) =
m+n∏
i=1

[F (zi) − F (zi−1)]
δ∗
(i) F̄ (zi)

1−δ∗
(i)/F̄ (zs)n

=
m+n∏
i=1

[F̄ (zi−1) − F̄ (zi)]
δ∗
(i) F̄ (zi)

1−δ∗
(i)
/
F̄ (zs)n

=
m+n∏
i=1

F̄ (zi−1)
[
1 − F̄ (zi)

F (zi−1)

]δ∗
(i)
[ F̄ (zi)
F̄ (zi−1)

]1−δ∗
(i)
/
F̄ (zs)n.
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Set q0 = 1, and define qi = F̄ (zi)/F̄ (zi−1) for i = 1, . . . ,m + n. Then,

L(F ) =
{ s∏

i=1

(1 − qi)
δ∗
(i)q

m−i+1−δ∗
(i)

i

}{m+n−s∏
j=1

(1 − qs+j)
δ∗
(s+j)q

m+n−s−j+1−δ∗
(s+j)

s+j

}
.

The likelihood is maximized at q̂i = 1 − δ∗
(i)

m−i+1 for i = 1, . . . , s, and for j =

1, . . . ,m + n − s, q̂s+j = 1 − δ∗
(s+j)

m+n−s−j+1 . The NPMLE of the survival function
in (2.2) thus follows.

Proof of Corollary 2.2. Part (b): For t ≤ t0, F̂ (t) = Fm(t) and the unbiased-
ness of F̂ follows from that of Fm. For t > t0, F̂ (t) = S/m+R(m−S)/[m(m+n−
S)], where R equals the number of the n+m observations in (t0, t]. For fixed S =
s, E(R|S = s) = (m + n− s)G0(t), thus E(F̂ (t)|S = s) = s/m + (1− s/m)G0(t).
Because E(S) = mF (t0), it follows that E[F̂ (t)] = F (t0) + F̄ (t0)G0(t) = F (t).

Part (c): Given s, Var [R|S = s] = (m+n−s)G0(t)Ḡ0(t), thus Var [F̂ (t)|S =
s] = G0(t)Ḡ0(t)(m− s)2/[m2(m + n− s)]. As Var [E(F̂ (t)|S = s)] = Ḡ0(t)2F (t0)
F̄ (t0)/m, we have Var [F̂ (t)] = Var [E(F̂ (t)|S = s)] + E[Var (F̂ (t)|S = s)] =
Ḡ0(t)2F (t0)F̄ (t0)/m + G0(t)Ḡ0(t)E[(m−S)2/(m + n−S)]/m2. The rest follows
using the fact that S is a binomial random variable with parameters (m,F (t0)).

Part (d): If t ≤ t0, Var F̂ [(t)] = Var [Fm(t)]. For t > t0, we proceed as in
Part (c) above to show that Var [F̂ (t)] ≤ G0(t)2F (t0)F̄ (t0)/m+G0(t)Ḡ0(t)E[m−
S]/m2 = Ḡ0(t)2F (t0)F̄ (t0)/m+G0(t)Ḡ0(t)F̄ (t0)/m=Ḡ0(t)F̄ (t0)[1−Ḡ0(t)F̄ (t0)]/
m = F (t)F̄ (t)/m = Var [Fm(t)]. This proves the right-hand side of the inequality.

Part (e): The integrated variance can be obtained directly from the NPMLE
in (a) using R(F̂ , F ) =

∫∞
0 Var (F̂ (t))dF (t).

Proof of Lemma 3.1. For t < t0, define M1(t) = N1(t) −
∫ t
0 Y1(u)dΛ(u), and

for t > t0, M2(t) = N2(t) −
∫ t
t0

Y2(u)dΛ(u). For each equation, the right hand
side contains the difference between a counting process and its compensator,
thus M1(t) and M2(t) are local square integrable martingales. Note the following
limits:

Y1/(m + n)
p−→ρy1 = ρ(1 − F )(1 − H1) as Min(m,n) → ∞,

uniformly in t ∈ (0, τ),

Y2/(m + n)
p−→(1 − ρ)y2 = (1 − ρ)(1 − G)(1 − H2) as Min(m,n) → ∞,

uniformly in t ∈ (t0, τ).

We can write (m + n)1/2(
∫ t
0

dN1(u)
Y1(u) − ∫ t

0 dΛ(u)) = (m + n)1/2
∫ t
0

dM1(u)
Y1(u) , and for

t > t0,

(m+n)1/2
( ∫ t

t0

dN(u)
Y (u)

−
∫ t

0
dΛ(u)

)
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=(m+n)1/2
( ∫ t

t0

Y1(u)
Y1(u)+Y2(u)

· dN1(u)
Y1(u)

+
∫ t

t0

Y2(u)
Y1(u)+Y2(u)

· dN2(u)
Y2(u)

−
∫ t

0
dΛ(u)

)

=(m+n)1/2
( ∫ t

t0

ρy1

ρy1 + (1 − ρ)y2
· dM1

Y1
+
∫ t

t0

(1 − ρ)y2

ρy1 + (1 − ρ)y2
· dM2

Y2

)
+ op(1).

Hence for t > t0,

lim
m,n→∞Cov

[
(m + n)1/2

( ∫ t0

0

dN1(u)
Y1(u)

−
∫ t0

0
dΛ(u)

)
, (m + n)1/2

( ∫ t

t0

dN(u)
Y (u)

.

−
∫ t

t0
dΛ(u)

)]

= lim
m,n→∞Cov

[
(m + n)1/2

∫ t0

0

dM1(u)
Y1(u)

, (m + n)1/2
∫ t

t0

ρy1dM1(u)
(ρy1 + (1 − ρ)y2)Y1(u)

]

= lim
m,n→∞E

{
(m+n)1/2

∫ t0

0

dM1(u)
Y1(u)

E
(
(m+n)1/2

∫ t

t0

ρy1dM1(u)
(ρy1+(1−ρ)y2)Y1(u)

∣∣∣Ft0

)}
= 0,

where Fu = σ{N1(s) : s ≤ u}, for all u, is the filtration generated by the process
N1(·). Note that

∫ t0
0

dM1
Y1

is Ft0-measurable, and E(dM1
Y1

|Ft−0
) = E(dM1|Ft−0

)/Y =

0. Also, because
∫ t
t0

ρy1dM1(u)
(ρy1+(1−ρ)y2)Y1(u) is a stochastic integral with respect to the

local square integrable martingale M1, Y1 is predictable and locally bounded, and
ρy1/(ρy1+(1−ρ)y2) is also bounded. As a result,

∫ t
t0

ρy1dM1(u)
(ρy1+(1−ρ)y2)Y1(u) is a locally

square integrable martingale for t > t0, with E(
∫ t
t0

ρy1dM1(u)
(ρy1+(1−ρ)y2)Y1(u) − |Ft−0

) =
∫ t
t0

ρy1E(dM1(u)|F
t−
0

)

(ρy1+(1−ρ)y2)Y1(u) = 0.

Proof of Corollary 3.4. If there is no random right-censoring, H̄1 = H̄2 = 1
and for t ≤ t0, F̄ (t)2σ2

1(t) = −F̄ (t)2
∫ t
0

dF̄ (u)
ρF̄ (u)2

= − F̄ (t)2

ρ

[
−1

F̄ (u)

]t
0

= F̄ (t)2

ρ [F (t)
F̄ (t)

=
1
ρF (t)F̄ (t). For t > t0, the corresponding asymptotic variance in (3.5) simplifies
to

−F̄ (t)2
[ ∫ t0

0

dF̄ (u)
ρF̄ (u)2

+
∫ t

t0

dF̄ (u)
ρF̄ (u)2 + (1 − ρ)F̄ Ḡ0

]

= F̄ (t)2
[ F (t0)
ρF̄ (t0)

− F̄ (u)
ρ + (1 − ρ)F̄ (t0)−1

∫ t

t0

dF̄ (u)
F̄ (u)2

]

=
F̄ (t)F (t0)Ḡ0(t)

ρ
+

F̄ (t)G0(t)
ρ + (1 − ρ)F̄ (t0)−1

=
F̄ (t)F (t)

ρ
− F̄ (t)G0(t)

(1
ρ
− F̄ (t0)

(1 − ρ) + ρF̄ (t0)

)

=
F̄ (t)F (t)

ρ
− F̄ (t)G0(t)

( (1 − ρ)
ρ(1 − ρ) + ρ2F̄ (t0)

)
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=
F̄ (t)F (t)

ρ

(
1 − G0(t)

F (t)

( (1 − ρ)
(1 − ρ) + ρF̄ (t0)

))
.

Proof of Corollary 3.5. The left hand inequality is obtained by noting that
σ2

0 ≥ F̄ (t)F (t)
ρ (1 − 1−ρ

1−ρ+ρF̄ (t0)
) = F̄ (t)F (t)F̄ (t0)

1−ρ+ρF̄ (t0)
≥ F̄ (t)F (t)F̄ (t0). The right hand

inequality is clear.
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