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Abstract: This note explores variance estimation of a combined ratio estimator from

a purely model-based viewpoint. It shows that given a sample containing two dis-

tinct primary sampling units in every stratum, many of the standard randomization-

based variance estimators are equally good estimators of model variance. In fact,

model-based comparisons of four variance estimators, a form of the linearization

variance estimator, the standard form of the jackknife, and two common forms of

balanced half sampling parallel well-known randomization-based results. By con-

trast, a “textbook” version of the linearization variance estimator does not estimate

model variance as well as these four. Part of the analysis can be extended to es-

timated linear regression coefficients and to regression estimators for population

means expressible in projection form.
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1. Introduction

There is no longer much controversy about how to estimate the variance
of a combined ratio estimator given sample data from two primary sampling
units per stratum. Assuming that the finite population correction can be ig-
nored, many variance estimators based on Taylor series linearization and repli-
cation have identical first-order randomization-based properties and well-known
second-order properties (Rao and Wu (1985)). This note shows that one form
of the linearization variance estimator, the standard form of the jackknife, and
two common forms of balanced half sampling have model-based properties that
closely parallel their randomization-based ones. Another version of the lineariza-
tion variance estimator, by contrast, is not as effective at estimating model vari-
ance. The proofs of the near model unbiasedness of the four variance estimation
techniques alluded to above can be extended to cover variance estimators for
linear regression coefficients, and to regression estimators for population means
expressible in projection form.
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2. The Framework

In this note, we restrict our attention to a stratified single stage or multi-
stage sampling design. Let h denote one of H strata, and assume that the
first-stage sample consists of two distinct primary sampling units (PSU’s) per
stratum. The mechanism used to choose those units, and when appropriate the
elements enumerated within the sampled PSU’s, has little bearing on the purely
model-based analysis to be conducted here.

The interested reader is directed to the works of Richard Royall for more
background on the purely model-based view of survey sampling and inference
taken here; for example, Royall (1970), Royall (1976), Royall and Cumberland
(1978) and Royall and Cumberland (1981). This view, although useful for our
present purpose, is sharply questioned in Hansen, Madow, and Tepping (1983).

Let n = 2H be the total number of PSU’s in the sample. In this note, we
consider the variance of an estimator of the form:

t =
∑H

h=1(yh1 + yh2)/n∑H
h=1(xh1 + xh2)/n

=
y

x
, (1)

where z (which can be y or x)=
∑H(zh1 + zh2)/n. Each zhi has a nonnegative

value. Often, zhj will be a survey-weighted aggregate derived from subsampled
elements within PSU j of stratum h. The totals in both the numerator and
denominator of equation (1) have been divided by n for subsequent asymptotic
analyses.

The expression t in equation (1) is an unbiased estimator of b in the model:

yhj = bxhj + ehj , (2)

where the ehj are independent of each other, E(ehj) = 0, and Var(ehj) = vhj.

The (model) variance of t is Var(t) = Var{∑H(yh1 + yh2)/
∑H(xh1 + xh2)} =

Var{∑H(eh1 + eh2)/
∑H(xh1 + xh2)} = (nx)−2 ∑

(vh1 + vh2). If we assume that
the vhj are bounded from above as the number of strata — and thus n— grows
arbitrarily large, Var(t) = O(1/n).

The model in equation (2) treats the xhj as fixed. Treating the xhj as ran-
dom, which some argue is more natural in a survey sampling setting, has little
affect on the analyses to be presented. They can simply be viewed as being
conditioned on the realized values of the xhj. Indeed, Royall uses the term “con-
ditional” to refer to the purely model-based inferences made about estimators
like t.

3. The Linearization Variance Estimator

We do not know the values of the ehj. If we did, a potential unbiased estima-
tor for Var(t) would be (nx)−2 ∑

(eh1 − eh2)2. An obvious way to estimate each



A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN 1167

ehj is with yhj − (y/x)xhj . This leads to one version of the so-called linearization
variance estimator:

varL(t) = (nx)−2
H∑

h=1

{[yh1 − (y/x)xh1] − [yh2 − (y/x)xh2]}2. (3)

The name comes from the randomization-based process used to derive VarL(t).
Observe that VarL(t) = (nx)−2 ∑

[(yh1 − yh2)− (y/x)(xh1 − xh2)]2 = (nx)−2
∑

[(eh1 − eh2) − (e/x)(xh1 − xh2)]2. Taking the model expectation of varL(t)
yields:

E[varL(t)] = (nx)−2
∑

[(vh1 + vh2) − 2(vh1 − vh2)(xh1 − xh2)/(nx)

+v(xh1 − xh2)2/(nx2)] = Var(t) + O(1/n2), (4)

assuming that the vhj and xhj are bounded from above as H grows arbitrarily
large. Thus, the relative model bias of varL(t) under mild conditions is O(1/n).
The twin assumptions that the vhj and xhj are bounded from above are stronger
than we need to establish the asymptotic results in this note. We invoke them
here because of their simplicity.

4. The Jackknife Variance Estimator

Although the literature contains several versions of the jackknife, we consider
only the following one, which has become the standard in this context (see Rust
(1985), p. 387):

varJ(t) = (1/2)
H∑

h=1

2∑

j=1

[(y(hj)/x(hj)) − (y/x)]2,

where z(hj) = (1/n)[
∑

g �=h(zg1 + zg2)+2zhj′ ], j′ = 2 when j = 1, and j′ = 1 when
j = 2.

Observe that z(hj) − z = (zhj′ − zhj)/n. A little manipulation reveals

varJ(t) = (1/2)
∑ ∑

[(e(hj)/x(hj)) − (e/x)]2

= (1/2)
∑ ∑

[(e(hj) − e)/x + e(hj)(x − x(hj))/(xx(hj))]
2

= (2nx)−1
∑ ∑

[(ehj′ − ehj) + (e(hj)/x(hj))(xhj − xhj′)]2

= (2nx)−1
∑ ∑

[(ehj′ − ehj) + (e(hj)/x)(xhj − xhj′)

+e(hj)(xhj − xhj′)2/(nx) + O(1/n2)]2.

So

E[varJ(t)] = (nx)−2
∑

[(vh1 + vh2) − 2(vh1 − vh2)(xh1 − xh2)/(nx)

+v(xh1 − xh2)2/(nx2) + O(1/n2)], (5)

which is E[varL(t)] + O(1/n3).
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5. Balanced Half Sampling

Suppose one of the two sampled PSU’s within each stratum were assigned
to an entity named replicate r, and suppose there were R such replicates fully
balanced (see Wolter (1985)) so that

R∑

r=1

(xr − x) = 0, and (6.1)

R∑

r=1

(xr − x)(zr − z) =
H∑

h=1

(xh1 − xh2)(zh1 − zh2)/n2, (6.2)

where zr = (1/H)
∑

hjεr zhj (for our not-yet-revealed purposes, z can be either
x or v). A set of replicates satisfying equation (6.2), but not necessarily (6.1) is
said to be balanced.

One common balanced half sampling variance estimator for t is

varH1(t) = (1/R)
R∑

r=1

[(yr/xr) − (y/x)]2. (7)

Let v[r1] = [(yr/xr)− (y/x)]2 = [(er/xr)− (e/x)]2, and observe that E(e2
r) =

(2/n)vr, E(e2
re) = vr/n, and E(v[r1]) = E[(er − e)/x + er(x − xr)/(xxr)]2 =

(nx)−2[(
∑ ∑

vhj) − 2n(vr/xr)(xr − x) + 2n(vr/x
2
r)(xr − x)2].

The selection of PSU’s for inclusion in replicate r has effectively been done
at random, at least across strata. In what follows, we treat this selection as if it
had been done randomly to make use of randomization-based property: xr − x

is Op(1/
√

n). This implies that 1/xr = (1/x){1 − [xr − x]/x + Op(1/n)}. Thus,
we can write

E(v[r1])=(nx)−2[(
∑ ∑

vhj)−2n(vr/x)(xr−x)+4n(vr/x
2)(xr−x)2+Op(n−3/2)]

= (nx)−2[(
∑ ∑

vhj) − 2n(v/x)(xr − x) − 2n(vr − v)(xr − x)/x

+4n(v/x2)(xr − x)2 + Op(n−3/2)]

= (nx)−2[(
∑ ∑

vhj) − 2n(v/x)(xr − x) + Op(1/n)], (8)

which is equal to Var(t)+Op(n−3/2). Consequently, the relative bias of each v[r1]

term in varH1(t) =
∑R v[r1]/R is Op(1/

√
n). The relative variance of varH1(t)

itself, however, is Op(1/n) because equation (6.1) forces 2n(v/x)
∑R(xr−x) = 0.

In fact, from equations (8) and (6.2), we can deduce

E[varH1(t)] = (nx)−2
∑

[(vh1 + vh2) − 2(vh1 − vh2)(xh1 − xh2)/(nx)

+4v(xh1 − xh2)2/(nx2) + Op(n−3/2)], (9)
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which is equal to Var(t) + Op(1/n2).
Another common balanced half sampling variance estimator is

vH2(t) = (1/[4R])
R∑

r=1

[(yr/xr) − (yr′/xr′)]2, (10)

where zr′ = 2z− zr. Let v[r2] = (1/4)[(yr/xr)− (yr′/xr′)]2. Let us again treat the
allocation of PSU’s to replicate r as if it were random. Thus, 1/x2

r = (1/x2){1−
2[xr − x]/x + 3([xr − x]/x)2 + Op(n−3/2)}; and

E(v[r2])=(1/[2n])[vr/x
2
r + vr′/x

2
r′ ]

=(1/[2n]){(vr/x
2)(1 − 2(xr − x)/x + 3[(xr − x)/xr]2)

+(vr′/x
2)(1 + 2(xr − x)/x + 3[(xr − x)/xr]2) + Op(n−3/2)} (11)

=(nx)−2{
∑ ∑

vhj−2n(vr−v)(xr−x)/x+3nv[(xr−x)/x]2+Op(n−3/2)},

which is equal to Var(t) + Op(1/n2).
Unlike v[r1], the relative model variance of v[r2] is Op(1/n) as is that of

VarH2(t). In fact, continuing from equation (11), we have

E[varH2(t)] = (nx)−2
∑

[(vh1 + vh2) − 2(vh1 − vh2)(xh1−xh2)/(nx)

+3v(xh1 − xh2)2/(nx2) + Op(n−3/2)]. (12)

6. Discussion

The linearization variance estimator, varL(t), and the jackknife variance es-
timator, VarJ(t) are both nearly unbiased estimators for the model variance of
t. That is to say, they have relative model biases of O(1/n). In fact, equa-
tions (4) and (5) reveal that the model biases of the two variance estimators
are O(1/n3). This result closely parallels equation (47) in Rao and Wu’s (1985)
strictly randomization-based analysis (assuming all nh = 2 in their equation,
each se2xh becomes zero).

The two balanced half sampling variance estimators under discussion,
varH1(t) and varH2(t), have relative model biases of Op(1/n). Thus, they too
are nearly unbiased estimators of the model variance of t. Other versions of the
balanced half sampling variance estimator have properties similar to those of the
two versions discussed here. Explicit treatment of these other variations has been
avoided for the sake of brevity.

The alert reader may have already observed that the large sample properties
of random sampling were invoked to support the near model unbiasedness of the
two balanced half sampling variance estimators. Nevertheless, it is the model
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variance of t that is being estimated and the model expectation of the variance
estimators that is being assessed. At no time are we averaging over potential
samples as would be done in a randomization-based analysis.

The four main results of this note were captured in equations (4), (5), (9),
and (12). Comparing them, it is easy to see that to Op(n−5/2), E[varH1(t)] ≥
E[varH2(t)] ≥ E[varL(t)] = E[varJ(t)]. The first part of this is similar to equation
(54) in Rao and Wu. In fact, the main differences between the four equations
above and their analogues in Rao and Wu is that (1) the expressions here are con-
ditioned on realized xhj and vhj values in typical model-based fashion and not av-
eraged over potential realizations of those values, and (2) the Rao and Wu results
for the two balanced half sampling estimators contain an additional nonnegative
term which has a model expectation of zero (c in their equation (57) captures the
square of the correlation, if any, between xhj and yhj − xhj[Ep(y)/Ep(x)], where
Ep denotes expectation under the sampling design).

There is another important difference between the randomization-based anal-
ysis in Rao and Wu and the model-based analysis described here. In our set up,
t is an estimator for the model parameter b in equation (2), while the sampled
PSU’s are assumed to be distinct and thus (model) independent. In Rao and
Wu’s framework t is an estimator for Y/X , where Y and X are the randomiza-
tion expectations of y and x respectively. In addition, the PSU’s are assumed
to be sampled independently, which means with replacement sampling is used
within strata. As a result, the sampled PSU’s need not be distinct.

The relationship between the vhj and xhj in equations (4), (5), (9), and
(12) will depend on the sampling design used to select the sample. For many
self-weighting designs (in which every sampled element has an identical selection
probability), xhj is an estimate of the population size of stratum h. Often vhj is
roughly proportional to xhj. If that proportional relationship were exact, then it
is easy to see that VarL(t) ≈ VarJ(t) would have a slight downward model bias,
while VarH1(t) and varH2(t) would have a slight upward bias.

For a single stage design with a sole target variable of interest, it is good
practice from a model-assisted viewpoint to select units with unequal selection
probabilities in such a way that the vhj are all roughly equal (see Brewer (1963)).
If all the vhj were, in fact, equal, then each of the four variance estimators under
discussion would have a small positive model bias.

Finally, let us turn to the definition of the linearization variance estimator.
Suppose X were known, and (nX)−2 were used in place of (nx)−2 in equation
(3), as is recommended by most textbooks (for example, see Cochran (1977), pp.
169-171; Särndal, Swensson and Wretman (1992), is an exception). If we assume
that the PSU’s have been randomly selected so that x−X is Op(1/

√
n), then the

variance estimator, var∗L(t) = (nX)−2 ∑{[(yh1 − (y/x)xh1]− [(yh2 − (y/x)xh2]2},



A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN 1171

would have a relative model bias of order Op(1/
√

n), since 1/x2 = (1/X2){1 −
2[x − X]/X + Op(1/n)} = (1/X2) + Op(1/

√
n).

The four variance estimators discussed in this note are all better estimators
of the model variance of t than the “textbook” linearization variance estimator.
Intuitively, this is because the four estimators contain realized sample values in
their “denominators” and consequently estimate the variance of t conditioned on
the realized xhj better than the textbook estimator can.

7. Two Extensions

Under the sampling design we have been discussing, an estimated regres-
sion coefficient vector has the form t = (

∑H ∑2 zhj
′zhj)

∑ ∑
zhj

′qhj, where
zhj is a row vector with K members. Let yhj = zhj

′qhj, and Xhj = zhj
′zhj,

which is symmetric. The estimator t can be rendered as t = [n−1 ∑
(Xh1 +

Xh2)]−1[n−1 ∑
(yh1 + yh2)] = X−1y, which is simply equation (1) in matrix

form.
The model in equation (2) generalizes to yhj = Xhjb+ehj , where the ehj are

uncorrelated with each other, E(ehj) = 0K and Var(ehj) = E(ehjehj
′) = Vhj is

positive definite. Note that Var(ehj) = Var(yhj) = zhj
′Var(qhj)zhj .

The variance of t is Var(t) = n−2X−1∑H(Vh1 + Vh2)X−1. Its linearization
variance estimator is varL(t) = n−2X−1 ∑{[yh1−Xh1X−1y]−[yh2−Xh2X−1y]}2

X−1, where z2 denotes zz′. After some manipulation, varL(t)=n−2X−1 ∑{[eh1−
eh2] − [Xh1 − Xh2]X−1e}2X−1, which has the following model expectation:

E[varL(t)] = n−2X−1
H∑

h=1

{[Vh1 + Vh2] − [Xh1 − Xh2]X−1[Vh1 − Vh2] − [Vh1

−Vh2]X−1[Xh1−Xh2] + [Xh1 − Xh2]X−1VX−1[Xh1 − Xh2]}X−1.

This is Var(t)+O(1/n2), assuming that all the members of each Vhj and Xhj are
bounded as H grows arbitrarily large with K fixed. Thus, the relative model bias
of each term of the linearization variance estimator is O(1/n). The asymptotic
bounds on the members Vhj and Xhj are stronger assumptions than are needed
here, but they have the advantage of simplicity.

Similar extensions of the analysis in Sections 4 and 5 can be applied to the
jackknife variance estimator:

varJ(t) = (1/2)
H∑

h=1

2∑

j=1

[X−1
(hj)y(hj) − X−1y]2,

where Q(hj) = (1/n)[
∑

g �=h(Qg1 + Qg2) + 2Qhj′ ], j′ = 2 when j = 1, and j′ = 1
when j = 2, and to the two balanced half sampling estimators: varH1(t) =
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(1/R)
∑

[X−1
r yr − X−1y]2, and varH2(t) = (1/R)

∑
[X−1

r yr − X−1
r′ yr′ ]2, where

Qr = (1/H)
∑

hj∈r Qhj and Qr′ = 2Q−Qr. All three revolve around expressions
of the form: X−1

+ y+−X−1y = X−1
+ e+−X−1e = X−1[XX−1

+ e+−e] = X−1[(e+−
e) + (X+ − X)X−1

+ e+], where the subscript “+” denotes “(hj)”,“r”, or “r” as
needed.

It is a straightforward exercise, closely paralleling the arguments in Sections 4
and 5, to show that the difference between the expected values of the linearization
and jackknife variance estimators is O(n−3). Moreover, the difference between
the expected values of either of the two balanced half sample estimators and the
true variance of t is OP (n−2), assuming full balance.

We have seen that the four variance estimation techniques under investiga-
tion provide variance estimates for t with bias of order O(1/n2) or OP (1/n2). By
contrast, the the standard error of all these variance estimators is dominated by
the standard error of n−2X−1 ∑H(eh1 − eh2)2X−1, which is OP (n−3/2). Thus,
asymptotically at least, the standard error of these variances estimators play
a most important role in inference than their biases. Kott (1994) proposes a
method of estimating the effective degrees of freedom for the linearization vari-
ance estimator. That method, based on computing the effective degrees of free-
dom for n−2X−1 ∑H(eh1 − eh2)2X−1, applies equally well to the other three
variance estimators.

Consider now an estimator of the form tG = pt, where p is a K member
row vector. If the members of this vector are bounded from above and below by
positive numbers as H grows arbitrarily large, then it is not hard to see that the
four variance estimation techniques would provide variance estimates that are
O(1/n2).

Recall that t = (
∑H ∑2 zhj

′zhj)
∑ ∑

z′hjqhj . If p =
∑

zhj/M, where the
summation is over all PSU’s in the population and M is the number of elements in
the population, then tG would be a regression estimator for the population mean
of q-values expressed in projection form. It should be noted that the variance
of tG is defined here with respect to the modified model parameter pb rather
than the finite population total of q-values. Hence, one could argue that the
linearization, jackknife, and half sample variance estimators in our discussion are
natural estimators of model variance.

In a recent article, Valliant (1996) demonstrates, in seeming contradiction to
the results presented here, that balanced half sampling can perform poorly from
a model-based viewpoint. Valliant’s model, however, has stratum effects, which
our original model for the combined ratio estimator (equation (2)) lacks. It is of
some interest to note that a separate ratio estimator, which implicitly assumes a
linear relationship between yhj and xhj that may differ across strata, can be put
in the form tG = pt, where the K = H members of p are stratum population
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totals for the x-value. Unfortunately, the asymptotic results of this section do
not apply. They require that K be fixed as H grows arbitrarily large, which can
not happen in this context.
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