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Abstract: The estimation of the variance of the regression estimator for a two-

phase sample is considered. Given the covariance matrix of the first-phase control

variables, a replication variance estimator that uses only the second-phase sample is

developed. The procedure has computational advantages for surveys with second-

phase samples that are small relative to the first-phase sample.
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1. Introduction

Two-phase samples are samples in which a vector of characteristics, denoted
by X t where t denotes an individual element, is observed on a relatively large
sample. An extended vector, denoted by (X t,Y t) is observed on a subsample
of the large sample. We denote the first sample by s(1) and the second sample
by s(2). Estimation for two-phase samples is discussed in texts such as Cochran
(1977), Särndal, Swensson and Wretman (1992), and Wolter (1985). Different
procedures can be used to combine the information from the first and second
samples to obtain estimators of functions of (X,Y ). We will concentrate on the
regression method.

Variance estimation for two-phase samples based on standard Taylor argu-
ments is described in the references previously cited. A jackknife procedure has
been suggested for the ratio estimator by Rao and Sitter (1995) and for the
regression estimator by Sitter (1997). These procedures involve creating jack-
knife replicates using the entire first-phase sample. Särndal and Swensson (1987)
discuss variance estimation for regression estimation in the general two-phase
situation. Kott (1990, 1995), discussed variance estimation in a situation where
the stratified design for the second-phase differs from the stratified design for
the first-phase. He suggests a jackknife estimator of variance for a particular
two-phase estimator. Breidt and Fuller (1993) suggested a replication variance
estimator for multiphase samples.The Breidt and Fuller procedure is particularly
applicable if the first-phase and second-phase primary sampling units are the
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same and if there are at least two second-phase primary sampling units in each
first-phase stratum.

In the classical two-phase situation the investigator specifies the selection
probabilities for both sample selections. The methodology of two-phase samples
is also used for situations in which the second-phase selection probabilities are
not under the control of the investigator. One example is the case of nonresponse.
See Särndal and Swensson (1987), Fuller, Loughin and Baker (1994), and An,
Breidt and Fuller (1994). The two-phase model has also been used in biometry
and epidemiology. Unfortunately, the term two-stage sampling has been used by
authors in those areas. See Flander and Greenland (1991) and Zhao and Lipsitz
(1992).

2. Variance Estimation

We study the situation in which the selection probabilities are known. We
shall investigate estimation of the mean of Y using the regression estimator. Let

µ̂X(1)= estimator of the population mean of X constructed from s(1).

µ̂X(2)= estimator of the mean of X constructed from s(2). This can
also be considered an estimator of µ̂X(1).

µ̂Y (2)= estimator of the mean of Y constructed from s(2).

(µX(F ),µY (F ))= vector of finite population means.

We assume a sequence of samples and finite populations such as that de-
scribed in Fuller (1975). We let the sequence be indexed by n and assume that
the size of the finite populations, denoted by Nn, increases as the sample size n

increases such that the limit of N−1
n n is a finite fraction, perhaps zero. The sam-

ple moments of the finite population are assumed to converge to finite constants
such that the difference between the moments for the nth finite population and
the limiting moments is Op(N

−1/2
n ). We assume

E{µ̂X(1)n, µ̂X(2)n, µ̂Y (2)n} = (µX(F ), µX(F ),µY (F )), (2.1)

V {(β̂(2)n − β(F )n)′, µ̂X(1)n, µ̂X(2)n, µ̂Y (2)n} = O(n−1), (2.2)

where β̂(2)n is an estimator of the vector of coefficients in the regression of Y on
X computed from sample two and β(F )n is the finite population analog of β̂(2)n.

For simplicity, we consider a single Y and omit the subscript n in the remainder
of the discussion. All variance expressions extend immediately to covariance
matrices for a vector of regression estimators based on the common vector X.

Our estimator of µY (F ) is

µ̂Y (F ) = µ̂Y (2) + (µ̂X(1) − µ̂X(2))β̂(2) , (2.3)
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where β̂(2) is the coefficient vector computed from s(2) . If (Yj,Xj), j =1, 2, ..., n2,

are the observations on the second-phase sample, an estimator of β(2) is

β̂(2) =
( n2∑

t=1

π−1
t X ′

t Xt

)−1
n2∑
t=1

π−1
t X ′

t Yt ,

where π−1
t is the sampling weight. Usually, the sampling weight is the inverse of

the selection probability, where the selection probability is the first-phase selec-
tion probability multiplied by the conditional second-phase selection probability
given the first-phase sample. We assume that the estimator β̂(2) is such that the
estimator of the mean given in (2.3) can also be written

µ̂Y (F ) =
n2∑
t=1

wtYt, (2.4)

where
n2∑
t=1

wtXt = µ̂X(1), (2.5)

n2 is the number of units in the second-phase sample, and wt is the regression
weight. The representation (2.4) will hold for a large class of regression estima-
tors, β̂(2). A common procedure for cluster samples is to estimate β(F ) using
the observation unit regression of Y on X, instead of the cluster total regression.
While the representation (2.4) holds for such a procedure, the estimator may not
be fully efficient. If there are a large number of sampling units and the dimen-
sion of X is small, so that the large sample approximations are appropriate, the
variance of the estimator is minimized by computing β as the regression based
on the totals of the sampling units. See Rao (1994).

If the error in the estimators of moments is Op(n−1/2) and if β̂(2) is a function
of estimated moments, then β̂(2) − β(F ) = Op(n−1/2), and

µ̂Y (F ) − µY (F ) = µ̂e(2) + (µ̂X(1) − µX(F ))β(F ) + Op(n−1), (2.6)

where et = Yt − µY (F ) − (X t − µX(F ))β(F ) and

µ̂e(2) = µ̂Y (2) − µY (F ) + (µX(F ) − µ̂X(2))β(F ) . (2.7)

We call µ̂e(2) + (µ̂X(1) −µX(F ))β(F ) the leading term of (2.6). See Fuller (1975).
In most two-phase procedures, the second-phase estimator of the mean of X is
constructed to be unbiased, or consistent, for the first phase mean. We assume

E{µ̂X(2) − µ̂X(1)|s(1)} = 0, (2.8)
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or the weaker condition

E{µ̂X(2) − µ̂X(1)|s(1)} = Op(n−1).

Under assumption (2.8),

C{µ̂e(2), µ̂X(1)} = E{C[µ̂e(2) − µ̂e(1), µ̂X(1)|s(1)]}
+C{E[µ̂e(2) − µ̂e(1)|s(1)], E[µ̂X(1)|s(1)]} + C{µ̂e(1), µ̂X(1)}

= C{µ̂e(1), µ̂X(1)}. (2.9)

If
C{µ̂e(1), µ̂X(1)} = 0 , (2.10)

and (2.8) holds, then

V {µ̂Y (F ) − µY (F )} .= V {µ̂e(2)} + β′
(F )V XX11β(F ), (2.11)

where V XX11 denotes the covariance matrix of µ̂X(1) − µX(F ).The covariance
between µ̂e(1) and µ̂X(1) will be zero if the regression equation is calculated using
the first-phase primary sampling unit totals as the observations in the second-
phase regression. Alternatively, for example, if the first-phase sample is a cluster
sample and if the second-phase regression is computed using the elements as
observations, then it is possible for µ̂e(2) and µ̂X(1) to be correlated.

Conditioning on µ̂X(1), not on the entire first-phase sample, the variance of
the leading term of (2.6) is

V {µ̂Y (F )} .= E{V [µ̂e(2)|µ̂X(1)]} + V {E[µ̂e(2)|µ̂X(1)]}
+2C{E[µ̂e(2)|µ̂X(1)], µ̂X(1)β(F )} + V {µ̂X(1)β(F )}. (2.12)

If V {E[µ̂e(2)|µ̂X(1)]} = o
(
n−1

)
then

V {µ̂Y (F )} .= E{V [µ̂e(2)|µ̂X(1)]} + β′
(F )V XX11β(F ), (2.13)

where terms in the variance expression (2.12) of smaller order than O
(
n−1

)
are

omitted to obtain the approximation. For stratification at the second-phase,
µ̂X(1) is essentially the vector of estimated fractions in the second-phase strata.
In this case, (2.12) is satisfied because the conditional expectation in (2.12) is
zero. See Section 3.

Thus, conceptually, it is easy to use (2.11) or (2.13) to define an estimator
of the variance of µ̂Y (F ). One computes the regression of Y on X in sample
two to obtain the estimator β̂(2). Then one uses any standard estimating pro-
cedure to estimate the variance of the mean of Yt − Xtβ̂(2) as an estimator of
the population mean. Given an estimator of V XX11, denoted by V̂ XX11, one
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adds β̂
′
(2)V̂ XX11β̂(2), to the estimated variance of µ̂e(2). Unfortunately, this is

a cumbersome computational procedure when there are a large number of Y ’s
because the regression coefficient vector must be computed for each Y.

Our objective is to design a variance estimation scheme that is computation-
ally less burdensome. Assume that replicate weights have been constructed for
the second-phase sample to estimate the variance of µ̂e(2). These can be balanced
repeated replication weights or jackknife weights. Depending upon the situation,
one may construct replicates to estimate the first term of (2.11) or one may con-
struct replicates to estimate V {µ̂e(2)|µ̂X(1)}. The second procedure can be used
when the estimated conditional variance is also an estimator of the unconditional
variance. Let there be a set of r replicates such that the estimator for the ith
replicate is µ̂Y (2)i =

∑n2
t=1 witYt, where Yt is the observation on element t for any

Y characteristic and wit is the weight of replicate i for element t. Assume

E
{ r∑

i=1

(µ̂e(2)i − µ̂e(2))
2
}

= cV {µ̂e(2)} + Op(n−3/2), (2.14)

for some fixed c.
We now obtain a new set of weights that can be used to estimate the variance

of the two-phase estimator. We assume the number of replicates, denoted by r,
is greater than or equal to k, the dimension of X. Let δ1, δ2, . . . , δr be a set of
k-dimensional row vectors with the property that

r∑
i=1

δ′
iδi = cV̂ XX11, (2.15)

where c is the constant defined in (2.14). It is always possible to construct
δi, i = 1, . . . , r, satisfying (2.15) if r ≥ k. For example, if q′

i, i = 1, . . . , k, are
the characteristic vectors of V̂ XX11 and λi are the corresponding roots, then
δi = (cλi)

1/2 qi, i = 1, . . . , k, and δi = 0, i = k + 1, k + 2, . . . , r satisfy (2.15).
Define a new set of replication weights, denoted by ait, and the associated

estimators

µ̃Y i =
n2∑
t=1

aitYt = µ̂Y (2)i + (µ̂X(1) + δi − µ̂X(2)i)β̂(2)i, (2.16)

where β̂(2)i is the regression coefficient from the regression of Y on X in the ith
replicate of sample two using the weights wit as initial weights, and the ait satisfy

n2∑
t=1

aitX t = µ̂X(1) + δi, i = 1, . . . , r. (2.17)
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Then
µ̃Y i − µ̂Y (F ) = µ̂e(2)i − µ̂e(2) + δiβ(F ) + Op(n−1). (2.18)

If the δi are randomly assigned to the replicates, and if the Op(n−1) term in
(2.18) is ignored,

E
{ r∑

i=1

(µ̃Y i − µ̂Y (F ))
2
} .= cV {µ̂e(2)} + cβ′

(F )V XX11β(F ). (2.19)

Therefore, a replication estimator of the variance of the two-phase estimator is

V̂ {µ̂Y } = c−1
r∑

i=1

(
µ̃Y i − µ̂Y (F )

)2
, (2.20)

where µ̃Y i is defined in (2.16).
The replication estimator has two desirable features. Given the weights ait,

only the second-phase sample is used in the calculations for Ŷ and the variance
of Ŷ . This is a particular advantage for samples in which the first phase is large
relative to the second phase. Second, the estimated variance for the characteristic
X is the variance estimated from the first-phase sample.

We now examine the selection of δi. Assume a two-per-stratum design with
normally distributed observations. If jackknife replicates are created by deleting
one unit in a single stratum and doubling the weight of the other, the jackknife
difference for the y-variable for stratum i is wi (yi1 − yi2) when the second unit
in stratum i is deleted and the weight for stratum i is wi. Thus, the original
jackknife differences before the regression adjustment are independent in this
case. The jackknife difference for the regression estimator can be written

µ̃Y i − µ̂Y (F ) = εi + δiβ̂(2)i = εi + δiβ̂(2) + Op(n−3/2), (2.21)

where εi = Op(n−1). Now

r∑
i=1

(µ̃Y i − µ̂Y (F ))
2 =

r∑
i=1

(εi + δiβ(F ))
2 + Op(n−3/2), (2.22)

where r = 0.5n2 is the number of strata. If the εi are normally distributed,
V

{
ε2
i

}
= 2σ4

εi
. Then, under the assumptions that δi and εi are independent,

and that V̂ XX11 is independent of the εi,

V
{ r∑

i=1

(εi+δiβ(F ))
2
}

= 2
r∑

i=1

σ4
εi

+4
r∑

i=1

σ2
εi

β′
(F )V XX11β(F )+V {β′

(F )V̂ XX11β(F )}.
(2.23)

This computation suggests that the form of the δi is not overly important, given
that they satisfy (2.15) and are randomly assigned to replicates.
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The second term in (2.23) can be eliminated by creating a set of replicates
balanced on the δi. To illustrate, assume r initial replicates, where r ≥ k, and
assume (2.14) and (2.15). Define 2r + k replicates by

µ̃Y i1 = µ̂Y (2)i + (µ̂X(1) + δi − µ̂X(2)i)β̂(2)i, i = 1, . . . , k
µ̃Y i2 = µ̂Y (2)i + (µ̂X(1) − δi − µ̂X(2)i)β̂(2)i, i = 1, . . . , k
µ̃Y i = µ̂Y (2)i + (µ̂X(1) − µ̂X(2)i)β̂(2)i, i = k + 1, . . . , r.

(2.24)

The estimator of the variance is

V̂ {µ̂Y (F )}=c−1
{
0.5

k∑
i=1

[(µ̃Y i1−µ̂Y (F ))
2+(µ̃Y i2−µ̂Y (F ))

2]+
r∑

i=k+1

(µ̃Y i−µ̂Y (F ))
2
}

=c−1
r∑

i=1

(µ̃ei − µ̂e(F ))
2 + β̂

′
(F )V̂ XX11β̂(F ) + Op(n−3/2) (2.25)

and the efficiency of the variance estimator depends only on the efficiency of the
second-phase replication procedure.

3. Second-Phase Replication Procedures

In constructing the variance estimator, we assumed it is possible to create
replicates for the computation of an estimator of the unconditional variance for
the estimated population mean of et from the second-phase sample. We give some
situations in which unbiased or consistent variance estimators can be constructed
and suggest approximations for other designs.

Simple random sampling at both phases. In this case, the second-phase sam-
ple is a simple random sample from the entire population. Hence, any replicate
procedure appropriate for simple random sampling can be used to construct repli-
cates. A stratified first phase sample with a simple random second-phase sample
in each first phase stratum is an immediate extension of two phases of simple
random sampling.

Two-phase with second-phase stratified. Consider a two-phase sample with a
simple random sample first-phase and a second-phase that is a stratified sample
of the first-phase sample. Assume that the estimator is the stratified estimator
using estimated population sizes from the first-phase. The second-phase strati-
fied estimator is equivalent to the regression estimator (2.3) in which indicator
variables for the second-phase strata are the elements of the X-vector. Given
such X-variables, the mean of the e-variables is zero for every second-phase stra-
tum, and E{µ̂e(2)| (n11, . . . , n1H)} = 0, where n1j is the number of first-phase
units that fall in second-phase stratum j, µ̂X(1) = n−1 (n11, . . . , n1H) , and H

is the number of second-phase strata. It follows that the variance of µ̂e(2) is
the expected value of the conditional variance given µ̂X(1). Therefore, replicates
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constructed to give an unbiased estimator of the conditional variance also give
an unbiased estimator of the unconditional variance. Observe that the first-
phase sample need not be a simple random sample. The requirement is that the
conditional expected value of µ̂e(2) given µ̂X(1) be zero.

Poisson Sampling. In some situations the observations on the first-phase
are used to determine the probabilities of selecting units at the second-phase,
stratification being only one example. To investigate estimation for such sit-
uations, let a Poisson first-phase sample be selected from a population of N

elements with probabilities p1t. From that Poisson sample, select a second-phase
Poisson sample with conditional probabilities p2t. Then the second-phase sam-
ple is a Poisson sample from the original population with selection probabilities
πt = p1tp2t, where πt is the inverse of the sampling weight. It is permissible for
p2t to be a fixed function of the value of an X-vector, perhaps only observed on
the elements selected at the first-phase. Let the population mean be estimated
with

µ̂ =
( ∑

s(2)

π−1
t

)−1( ∑

s(2)

π−1
t Yt

)
, (3.1)

where
∑

s(2) denotes the summation over elements in the second-phase sample.
Let np(2) be the second-phase expected sample size and assume

E{(µ̂ − µ)2} = O(n−1
p(2)),

E {(Yt − µ) (µ̂ − µ)} = O(n−1
p(2)) for all t.

Then, the usual Taylor approximation for the error in µ̂ of (3.1) is

µ̂ − µ
.=

[
E{

∑

s(2)

π−1
t }

]−1 ∑

s(2)

π−1
t (Yt − µ) , (3.2)

and an estimator of the variance is

V̂T (µ̂) =
( ∑

s(2)

π−1
t

)−2 ∑

s(2)

[
π−1

t (Yt − µ̂)
]2

(1 − πt) . (3.3)

Observe that variability due to the random sample size in Poisson sampling
has little impact on the variance of the mean and Poisson sampling furnishes
a good approximation for nonreplacement simple random sampling. See Hajek
(1960). If the second-phase sampling rates are fixed in advance, then Poisson
sampling furnishes a good approximation to two-phase schemes in which the
second-phase rate is a function of the first-phase X-values.

The approximation is further improved if X-variables are used to construct
a regression estimator. Assume that

π−1
t = (1, X t) α, (3.4)
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where X t is the vector used to construct estimator (2.3) and α is a fixed vector.
Then E{π−1

t et} = 0, where et is defined in (2.6). If, furthermore, E{et|πt} = 0,
then E{µ̂e(2)|µ̂X(1)} = 0 and the unconditional variance is the expectation of the
conditional variance. The expectation E{et|πt} = 0 when the πt are constant
within categories defined by X . Therefore, (3.3) is a useful approximation to
the unconditional variance of et in an extended class of designs in which second-
phase selection probabilities are functions of the first-phase X-values. Jackknife
or half sample replicates can be used to construct estimators of the variance.

Table 1. Observations in second-phase sample.

Variable Weights
Category Y Z C1 C2 C3 C4 C5 C6 wt a1t

1 6.122 5.024 1 0 0 0 0 0 0.098 0.000
1 4.614 3.577 1 0 0 0 0 0 0.136 0.217

2 6.685 5.974 0 1 0 0 0 0 0.084 0.087
2 4.806 5.335 0 1 0 0 0 0 0.096 0.085

3 6.072 7.082 0 0 1 0 0 0 0.043 0.069
3 5.599 3.979 0 0 1 0 0 0 0.090 0.062

4 5.670 4.050 0 0 0 1 0 0 0.112 0.075
4 8.297 7.633 0 0 0 1 0 0 0.048 0.085

5 8.015 8.020 0 0 0 0 1 0 0.076 0.073
5 8.990 8.817 0 0 0 0 1 0 0.064 0.074

6 7.099 7.954 0 0 0 0 0 1 0.043 0.044
6 8.131 8.721 0 0 0 0 0 1 0.037 0.045

7 11.867 10.488 0 0 0 0 0 0 0.040 0.041
7 12.242 11.332 0 0 0 0 0 0 0.033 0.042

4. Illustration

As an example of the variance computations, we consider a two-phase sample
in which the first-phase is a simple random sample. In the first-phase sample, the
observations are placed in one of seven categories and observations are made on
a characteristic, denoted by Z. The second-phase sample is a stratified sample
of the first-phase with two observations in each of the seven categories. Table 1
contains the fourteen observations in the second-phase sample. The phase one
mean of 150 observations is

µ̂X(1) = ( 6.1084, 0.2333, 0.1800, 0.1333, 0.1600, 0.1400, 0.0800) ,
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where the first entry is the mean of Z and the last six entries in the vector are
the fractions in the first six categories.

Let X = (Z, C), where C is the vector of dummy variables for the categories
defined in Table 1 and Z is the continuous regression variable. The covariance
between e and X is zero by the property of regression residuals. Thus, either
the unconditional or conditional form of the variance estimator can be used. The
variance of the leading term in (2.6) can be written

V
{
µ̂e(2) + (µ̂X(1) − µX(F ))β(F )

}

= E
{
V [µ̂e(2)|µ̂C(1)]

}
+ V

{
E[µ̂e(2)|µ̂C(1)]

}
+ V {µ̂X(1)β}.

The conditional expectation, E[µ̂e(2)|µ̂C(1)], is zero because C is a vector of
dummy variables for categories and the mean of e is zero for each category.
Therefore, the variance of µ̂e(2) can be estimated by estimating the variance
conditional on µ̂C(1). This is equivalent to estimating the variance for the second-
phase sample, treating the sample as a stratified sample with the categories as
strata. We assume the first-phase sample is a small fraction of the population and,
hence, ignore the finite population correction. Because the conditioning for the
second-phase sample is on µ̂C(1), not on the entire sample, no finite population
correction is required for the conditional variance. If a finite population correction
were relevant, the estimated rate of 2N̂−1

h could be used for the hth second-
phase stratum, where N̂h is the first-phase estimate of the population number in
stratum h.

The estimated mean of Y as defined by (2.4) is 6.718, where the vector
of weights is given as wt in the next-to-last column of Table 1. The regression
estimator was computed using the inverse of the category sampling rates as initial
weights. If we estimate the two terms in (2.13), we have

V̂ {µ̂Y (F )} = V̂ {µ̂e(2)|µ̂C(1)} + β̂
′
(F )V̂ XX11β̂(F )

= 0.0353 + 0.0330 = 0.0683,

where the first term is the sum of squares of the weighted regression residuals
divided by six. The first term can be considered to be an estimator conditional
on µ̂C(1) or on µ̂X(1).

Table 2 contains seven vectors δi such that Σδ′
iδi = V̂ XX11. The vectors

are λ0.5
i qi, where q′

i are the characteristic vectors of V̂ XX11 and the λi are the
characteristic roots. The vector of the diagonal elements of V̂ XX11 is

0.01 (5.018, 0.120, 0.099, 0.078, 0.090, 0.081, 0.049) .

Seven replicates were created, where the ith replicate was formed by deleting the
first element in the ith stratum. Seven sets of replicate weights were constructed
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using µ̂X(1) + δi, i = 1, 2, . . . , 7, in (2.16). The weights associated with
replicate one of Table 2 are given in the last column of Table 1. These weights
applied to Z yield 6.3324 = 6.1084 + 0.2240, where 0.2240 is the first entry in
Table 2 and 6.1084 is the first phase mean. The weights applied to C1 give
0.217 = 0.233 − 0.016, where −0.016 is the second element of the first row of
Table 2.

Table 2. Vectors for the construction of replicates.

Replicate δ-Vectors
1 0.2240 -0.0160 -0.0073 -0.0019 -0.0010 0.0070 0.0087
2 -0.0011 -0.0279 0.0228 0.0035 0.0058 -0.0011 -0.0018
3 -0.0007 -0.0072 -0.0167 0.0038 0.0272 -0.0038 -0.0020
4 -0.0007 -0.0068 -0.0095 0.0259 -0.0108 0.0042 -0.0018
5 -0.0011 -0.0050 -0.0043 -0.0076 0.0003 0.0267 -0.0070
6 -0.0014 -0.0055 -0.0042 -0.0029 -0.0020 0.0024 0.0188
7 0.0002 0.0033 0.0031 0.0030 0.0029 0.0025 0.0021

The estimated variance of µ̂Y using seven replicates is 0.0590. If an additional
seven replicates are created using −δi in place of δi, the estimated variance
calculated from the 14 replicates is 0.0701. The jackknife variance estimate is
slightly larger than the Taylor estimate of 0.0683. This is the usual ordering of
the size of the two estimation procedures.
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