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Abstract: In scientific applications, interest usually focuses on the “superpopula-

tion” parameters of a stochastic model hypothesized to underlie the generation of

the values in a finite population, rather than finite-population parameters them-

selves. Variance formulas for sampled data that incorporate finite-population cor-

rection factors are not appropriate for these applications. For simple random sam-

pling, it is common practice to ignore these correction factors in variance estimation;

this yields correct superpopulation inference under a simple superpopulation model.

This is shown to hold true for two-stage simple random sampling of clusters, but not

for stratified sampling or probability-proportional-to-size sampling. Asymptotically

unbiased variance estimators are provided for these latter two types of sampling

that are appropriate for superpopulation inference under a general superpopulation

model. An application is given using data from the 1987 National Health Inter-

view Survey which shows that the difference between classical repeated-sampling

variance estimators and a superpopulation variance estimator can be quite large.

Key words and phrases: Cluster sampling, finite-population correction factors,

probability-proportional-to-size sampling, stratified sampling.

1. Introduction

Classical sampling theory concerns inference for finite population parame-
ters, e.g., the mean of all the values of a variable Y over the units in the target
population. Stochastic models for Y , also known as superpopulation models
(Deming and Stephan (1941)) have been used extensively to evaluate designs
and estimators (Cochran (1946), Hartley and Sielken (1975), Cassel, Sarndal
and Wretman (1977), ch. 4-6), to estimate means for small areas (Ghosh and
Rao (1994)) to incorporate measurement error (Sarndal, Swensson and Wretman
(1992), ch. 16), and to handle missing data (Little and Rubin (1987), ch. 12).
The parameters of the stochastic models themselves, however, are probably of
more interest than the finite-population parameters for studies involving ques-
tions of science (as opposed to administrative or quality assurance applications).
Cochran (1977), p. 39 and Yates (1981), p. 178 suggest that in comparing two
domain means with simple random sampling that the finite-population correction
factors should be ignored, since interest will usually be in the superpopulation
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means (see also Deming (1953)). This advice is easily justified in section 2 below
using a simple superpopulation model.

In this paper we investigate variance estimation for superpopulation param-
eters under some more general without-replacement sampling designs. We ask
whether it is appropriate to use with-replacement variance estimators that ignore
finite-population correction factors for these designs. To address this, we utilize a
very general superpopulation model in section 3 that includes clustering, and for
pedagogical reasons, a simpler superpopulation model in section 2. We find that
for two-stage sampling with simple random sampling (without replacement) at
the first stage, the with-replacement variance estimator is appropriate. For strat-
ified simple random sampling at the first stage, however, an adjustment to the
with-replacement variance estimator is required. For probability-proportional-
to-size (pps) sampling from within strata, the with-replacement estimator is not
easily modified to achieve consistent estimation of the superpopulation variance.
In this situation, a modification of the without-replacement variance estimator
is given, and an additional ad hoc modification of the with-replacement estima-
tor is given for cases in which the joint inclusion probabilities are not known to
the analyst. The robustness of the variance estimation to misspecification of the
superpopulation model is considered.

In section 4 we present an application using data from the 1987 National
Health Interview Survey which shows that use of classical design-based variance
estimation can drastically underestimate the variance appropriate for a super-
population parameter. We restrict attention to variance estimation of the su-
perpopulation mean in sections 2 and 3, and consider other parameters in the
Discussion. We also give, in the Discussion, our reasons for why we believe
that the superpopulation variance estimators presented in this paper are often
more appropriate than classical repeated-sampling variance estimators. Suffi-
cient conditions for the asymptotic results are given in Appendix B; derivations
use standard conditioning and Taylor series arguments and are omitted for the
most part.

2. Unclustered Finite-Population/Superpopulation Model

The finite population consists of (Y1, η1), . . . , (YK , ηK) with Yi being a real-
ization of a random variable with mean mi and variance t2i , and with Y1, . . . , YK

being independent. The t2i represents the measurement error variance, and ηi

represents a stratum variable that can be used for stratified sampling. The
(mi, t

2
i , ηi) are assumed to be independent and identically distributed (i.i.d.), each

with the same distribution as the random vector (µ, σ2, η) which has trivariate
distribution F . The finite-population mean is always defined as the simple mean
of the Y observations in the finite population. The superpopulation mean is
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defined as µSP = EF (µ). Note that unlike Potthoff et al. (1992), the superpopu-
lation mean does not depend upon the realized finite population or the realized
sample from the finite population (see also Kott (1993)). With no measurement
error and no stratum variable, the model considered here is the superpopulation
model considered by Koop (1985).

Case 2.1. Simple random sampling without replacement

Let y1, . . . , yk be the values sampled from the finite population, and ȳ be the
sample mean. An unbiased estimator of the repeated-sampling variance of ȳ is
given by

V̂arwor(ȳ) =
(1 − f)

k

1
k − 1

k∑
i=1

(yi − ȳ)2, (2.1)

where (1−f) = (K−k)/K is the finite-population correction factor. If the finite-
population correction factor is set to 1, then one obtains the repeated-sampling
formula that would have been used if the sampling had actually been simple
random sampling with replacement:

V̂arwr(ȳ) =
1
k

1
k − 1

k∑
i=1

(yi − ȳ)2. (2.2)

Using the superpopulation model, we have Var (ȳ) = E{V̂arwr(ȳ)} = [EF (σ2) +
Var F (µ)]/k, and E[V̂arwor(ȳ)] = (1 − f)[EF (σ2) + Var F (µ)]/k, confirming the
advice to ignore the finite-population correction factor for superpopulation infer-
ence (see also Fuller (1975)). (Expectations and variances of sampled quantities
are to be interpreted as including the randomness from both the generation of
the finite population (using the superpopulation model) and the sampling of the
finite population.)

Case 2.2. Stratified simple random sampling without replacement

Assume that there are L strata, and let η ∈ {1, . . . , L} indicate in which of
the strata an observation appears. Let K be the number of observations in the
finite population and Kh be the number of observations in the finite population
in stratum h. From stratum h, kh = ch(Kh) observations are sampled as a
simple random sample without replacement: yh1, . . . , yhkh

. The functions ch can
depend upon h since we may wish to utilize different sampling rates depending
upon prior knowledge of stratum characteristics, e.g., the variability of the y’s in
the different strata. Let ȳ = (K1ȳ1+· · ·+KLȳL)/K be the stratified mean, where
ȳh is the mean of the sampled observations in stratum h. The repeated-sampling
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variance estimator, ignoring the finite-population correction factors, is given by

V̂arwr(ȳ) =
L∑

h=1

K2
h

K2

1
kh

s2
h,

where

s2
h =

1
kh − 1

kh∑
i=1

(yhi − ȳh)2.

(By the “repeated-sampling variance” of a sampled quantity, we mean the vari-
ance of that quantity over repeated independent samples from a fixed finite pop-
ulation.) Using the superpopulation model, we have

Var (ȳ) =
1

K2

L∑
h=1

σ2
hE

[ K2
h

ch(Kh)

]
+ ∆st and

E[V̂arwr(ȳ)] =
1

K2

L∑
h=1

σ2
hE

[ K2
h

ch(Kh)

]
,

where ∆st = 1
K [

∑L
h=1 πhµ2

h − (
∑L

h=1 πhµh)2], πh = PF [η = h], µh = EF [µ|η = h],
and σ2

h = Var F [µ|η = h] + EF [σ2|η = h]. To get a feel for the magnitude of the
underestimation of the variance, Table 1 presents the relative bias of V̂ar wr(ȳ)
when the sampling fractions are the same for the different strata. In this table,
the “between-strata variance” refers to K∆st, and the “within-stratum variance”
refers to

∑
πhσ2

h. Recall that we are considering the performance of the variance
estimator without finite-population correction factors. For stratified variance
estimators with the correction factors, the relative biases in Table 1 would be
larger. With or without finite-population correction factors, however, the relative
bias of V̂arwr(ȳ) is negligible with small sampling fractions.

Table 1. Relative (negative) bias of the variance estimator V̂arwr(ȳ) for
stratified sampling with the same sampling fractions in the different strata

Ratio of between-strata to
within-stratum variances

Sampling Fraction 0.1 1 2
1% < 1% 1% 2%

10% 1% 9% 17%
25% 2% 20% 33%

For large sampling fractions, one should correct V̂arwr(ȳ) for its underesti-
mation. This can be done by adding the following term to V̂arwr(ȳ), which is an
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unbiased estimator of ∆st:

∆̂st = −
L∑

h=1

Kh(K − Kh)
K2(K − 1)

1
kh

s2
h +

1
K − 1

[ L∑
h=1

Kh

K
ȳ2

h − ȳ2
]
.

The unbiased estimator of the variance of ȳ as an estimator of µSP is then given
by

V̂arSP (ȳ) =
L∑

h=1

Kh(Kh − 1)
K(K − 1)

1
kh

s2
h +

1
K − 1

[ L∑
h=1

Kh

K
ȳ2

h − ȳ2
]
.

The question arises as to whether there is a constraint that the strata used
for the sampling must be the same as the strata defined in the superpopulation.
The answer is no. The strata being used for the sampling are always determined
by some unit level characteristics. Whatever these characteristics are, we can
typically imagine them being incorporated into the variable η defined in the
superpopulation. However, it is possible that some information about the realized
finite population is also used in defining the strata. For example, the units in the
finite population may be divided into strata of exactly size 1000 by counting off
groups of 1000 units based on an ordering of a continuous variable observed on
the finite-population units. The η notation used above does not strictly cover this
case, but can be generalized to handle it by allowing η to be continuous and the
stratum of unit i to be determined as a function of ηi and the finite-population
values (η1, . . . , ηK). The unbiasedness of V̂arSP (ȳ) holds generally; the proof is
given in Appendix A. For the later cases considered in this paper, we will use the
simpler notation in which ηi is the stratum variable, although the results apply
to the more general situation.

An alternative approach to using V̂arSP (ȳ) would be to use an unstratified
with-replacement variance estimator. For example, a referee suggests considera-
tion of the following variance estimator, which treats the sample as if it had been
a with-replacement probability-proportional-to-size sample: v̂(ȳ) = ΣΣ(zhi −
z̄)2/k(k − 1), where k = Σkh, zhi = Khkyhi/(Kkh), and z̄ = ΣΣzhi/k(= ȳ).
However, note that v̂(ȳ) > 0 even if Y ≡ 1 ( so that yhi ≡ 1 and Var(ȳ) = 0),
showing that v̂(ȳ) is a biased estimator.

3. Clustered Finite-Population/Superpopulation Model

The finite population consists of K primary clusters. The ith primary clus-
ter contains Ni secondary clusters. For the jth secondary cluster of the ith
primary cluster, we assume that there are Mij population values (Y ’s) and totals
Tij = Yij1 + · · · + YijMij . The ith primary cluster also has a stratum variable ηi

and a “size” variable Zi which will be useful for probability-proportional-to-size
(pps) sampling. We assume that the (Mij , Tij) are i.i.d. from a distribution with
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mean (Mi,Ji) and covariance matrix ϕi , and that (Mi,Ji, ϕi, Ni, Zi, ηi) are
i.i.d. random variables with distribution function G. The superpopulation mean
is defined by µSP = EG(NJ )/EG(NM).

To avoid notational meltdown, we have not explicitly modeled measurement
error for the Y ’s as we did in section 2; all the results of this section go through
with measurement error added. Additionally, for pedagogical reasons, it will
be useful in cases 3.1 − 3.4 to use a special case of the above model in which
the secondary clusters are the final units. In this case we will use the following
notation: within a primary cluster, Yij are i.i.d. with mean mi and variance
t2i , j = 1, . . . , Ni; across the primary clusters, (mi, t

2
i , Ni, Zi, ηi) are i.i.d random

variables, each with the same distribution as the random vector (M, σ2, N,Z, η)
which has distribution function G. For this reduced model, the superpopulation
mean is µSP = EG(Nµ)/EG(N).

Case 3.1. Two-stage sampling using simple random sampling without
replacement

At the first stage of sampling, a simple random sample without replacement
of k primary clusters is selected. At the second stage of sampling, a simple
random sample without replacement of size ni = g(Ni) is selected. For example,
ni ≡ n represents equal cluster sample sizes, and ni = ζNi represents a self-
weighting design.

As an estimator of µSP , we consider the weighted mean ȳ = (N1ȳ1 + · · · +
Nkȳk)/(N1 + · · · + Nk) where ȳi is the mean of the ni sampled observations
in the ith sampled cluster. As this is a ratio estimator, we utilize the Taylor
series linearization estimator of its repeated-sampling variance given by (Cochran
(1977), p.305):

V̂arwor(ȳ) =
(1 − f1)s2

1 + f1

k

∑k
i=1(1 − f2i)N2

i s2
2i/ni

k( 1
k

∑k
i=1 Ni)2

,

where s2
1 = (k − 1)−1 ∑

N2
i (ȳi − ȳ)2, s2

2i = (ni − 1)−1 ∑
(yij − ȳi)2, and the

finite-population correction factors are (1 − f1) = (K − k)/K and (1 − f2i) =
(Ni − ni)/Ni. This estimator requires g(·) ≥ 2.

The variance estimator setting the correction factor 1 − f1 equal to one
corresponds to the estimator that would have been used if the sampling had
actually been simple random sampling with replacement:

V̂arwr(ȳ) =
s2
1

k( 1
k

∑k
i=1 Ni)2

.

Since none of these estimators are unbiased, we consider the asymptotic case as
k,K → ∞ and the sampling fraction k/K → γ (see Appendix B). Under the
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superpopulation model, we have

lim
k→∞

kVar(ȳ) = lim
k→∞

kE[V̂arwr(ȳ)]

=
1

EG(N)2
{
EG[

N2σ2

g(N)
]+EG(N2µ2)+

EG(Nµ)2EG(N2)
EG(N)2

−2
EG(Nµ)EG(N2µ)

EG(N)

}
,

but,

lim
k→∞

kE(V̂ar wor(ȳ)) =
1

EG(N)2
{
EG[

N2σ2

g(N)
] + (1 − γ)EG(N2µ2)

+(1 − γ)
EG(Nµ)2EG(N2)

EG(N)2
− 2(1 − γ)

EG(Nµ)EG(N2µ)
EG(N)

− γEG(Nσ2)
}
.

Therefore, we see that ignoring the finite-population correction factors yields an
asymptotically unbiased variance estimator. The asymptotic bias of V̂arwor(ȳ)
can be nonnegligible. For example, suppose the cluster sizes and cluster means
are (Ni,mi) = (10, 1) or (20, 2) with probability 1/2, and t2i ≡ 1 and ni ≡ 5.
Then its relative asymptotic bias is 59.44γ/94.44 equaling 1%, 6%, or 16% for
sampling fractions 1%, 10%, or 25% respectively.

We note in passing that the Horvitz-Thompson estimator of the mean,
ȳ = [(N1ȳ1 + · · · + Nkȳk)/k]/[(N1 + · · · + NK)/K], is a possible estimator of
the superpopulation mean when the Ni are known for all the clusters in the
population. The results described above do not apply to this estimator and its
usual (repeated-sampling) variance estimators. In particular, both the variance
estimators that have and do not have the finite-population correction factors are
asymptotically biased, with the sign of the bias depending upon the distribution
G.

Case 3.2. Simple random sampling without replacement of k final units

For this case the sampling ignores the clusters in the finite population. To
explain the main ideas for this case it is convenient to assume that the pri-
mary clusters in the finite population are of constant size (Ni ≡ No). Then the
Var(ȳ) = (1/k)EG(σ2) + {[No(K − 1) + k(No − 1)]/[k(NoK − 1)]}Var G(µ) and
the E[V̂arwr(ȳ)] = Var(ȳ)− [(No − 1)/(NoK − 1)]Var G(µ), where ȳ is the simple
mean of the sampled units and V̂arwr(ȳ) is the with-replacement simple-random-
sampling variance estimator (2.2). We see that in general this variance estimator
is an underestimate of the variability of ȳ; the without-replacement variance es-
timator (2.1) is even more biased. Of course, if No = 1, then we are back to case
2.1 and the with-replacement estimator is unbiased. To examine the bias in the
general case, consider the relative bias:

E{V̂arwr(ȳ)} − Var(ȳ)
Var(ȳ)

=
−(k/K)(No − 1)ρ

(No − 1/K) + ρ(No − 1)(k − 1)/K
,
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where ρ = VarG(µ)/[VarG(µ) + EG(σ2)] is the intraclass correlation coefficient.
In our experience, when population cluster sizes are large (like geographic re-
gions), ρ tends to be small. When cluster sizes are small (like families), the
expected number of sampled units per population cluster (k/K) tends to be
small; equivalently, the sampling fraction is small. In either case, the bias in
ignoring the clusters when doing the sampling and estimation may not be too
large. Additionally, the with-replacement variance estimator rather than the
without-replacement estimator should be used.

Case 3.3. Stratified two-stage cluster sampling using simple random
sampling without replacement

Let Kh be the number of primary clusters in stratum h in the finite pop-
ulation. At the first stage of sampling, kh = ch(Kh) clusters are sampled from
stratum h as a simple random sample without replacement, where ch(1) = 1 and
ch(t) ≥ 2 for t ≥ 2. At the second stage of sampling, nhi = gh(Nhi) observations
are sampled as a simple random sample without replacement from the (hi)th
sampled cluster, where Nhi is the number of population units in this cluster. Let
ȳhi be the mean of these sampled observations. The weighted mean estimator of
µSP is

ȳ =
L∑

h=1

Kh

kh

kh∑
i=1

Nhiȳhi/
L∑

h=1

Kh

kh

kh∑
i=1

Nhi.

Ignoring the finite-population correction factors, the repeated-sampling variance
estimator of ȳ is (Kish (1965), p. 192):

V̂arwr(ȳ) =

∑L
h=1

K2
h

kh(kh−1)

∑kh
i=1

[
Nhi(ȳhi − ȳ) − 1

kh

∑kh
j=1 Nhj(ȳhj − ȳ)

]2

( ∑L
h=1

Kh
kh

∑kh
i=1 Nhi

)2 .

Considering asymptotics as K → ∞ and kh → ∞ (see Appendix B) with L fixed,
one can show that

lim
K→∞

KVar(ȳ) = lim
K→∞

KE(V̂arwr(ȳ)) + ∆st−c,

where ∆st−c =
∑L

h=1
πh[EG[Nµ|η=h]−µSP EG[N |η=h]]2

[
∑L

h=1
πhEG[N |η=h]]2

and πh = PG(η = h). As

expected (from case 2.2), the with-replacement variance estimator asymptotically
underestimates the variance; the without-replacement variance estimator is even
more biased. We can asymptotically correct for the underestimation of V̂arwr(ȳ)
by using V̂arSP (ȳ) = V̂arwr(ȳ) + ∆̂st−c/K, where

∆̂st−c =

∑L
h=1

Kh
K

(
1
kh

∑kh
i=1 Nhiȳhi − ȳ 1

kh

∑kh
i=1 Nhi

)2

( ∑L
h=1

Kh
K

1
kh

∑kh
i=1 Nhi

)2 .
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Case 3.4. Stratified probability-proportional-to-size (pps) sampling
without replacement of clusters

This is similar to case 3.3, only now we have a “size” cluster-level variable
Z that can be used for differential selection probabilities. At the first stage
of sampling, kh clusters are sampled from stratum h as a pps sample without
replacement. That is, the ratio of inclusion probabilities for any two clusters in
stratum h is the ratio of their Z values. Cochran (1977), pp.258-270 discusses
some possible ways of taking a pps without-replacement sample. We assume that
the strata are formed in such a manner that it is possible to perform the stratified
pps sampling. For example, if kh ≡ 2, then we cannot have Kh = 1.

At the second stage of sampling, nhi = gh(Nhi) ≥ 2 observations are sampled
as a simple random sample without replacement from the ith sampled cluster
from the hth stratum. Let ȳhi be the mean of these sampled observations. The
weighted mean estimator of µSP is

ȳ =
∑L

h=1

∑kh
i=1 Nhiȳhi/λhi(Zh)

∑L
h=1

∑kh
i=1 Nhi/λhi(Zh)

,

where Zh = (Zh1, . . . , ZhKh
) and λhi(Zh) = khZhi/(Zh1 + · · · + ZhKh

) is the in-
clusion probability for the ith sampled cluster of stratum h. A with-replacement
repeated-sampling pps estimator of the variance of ȳ is given by

V̂arwr(ȳ)=

∑L
h=1

kh
(kh−1)

∑kh
i=1

[
( Nhiȳhi

λhi(Zh)−ȳ Nhi
λhi(Zh))− 1

kh

∑kh
j=1(

Nhj ȳhj

λhj(Zh)−ȳ
Nhj

λhj(Zh))
]2

( ∑L
h=1

∑kh
i=1

Nhi
λhi(Zh)

)2 .

(Shah et al. (1993), pp.5-7, 25-26), and requires kh ≥ 2.
We first address the question of whether V̂arwr(ȳ) can be used to estimate

asymptotically the variance of ȳ. Typically, only a small number of clusters are
sampled with pps sampling from each strata. To be realistic, therefore, we con-
sider different asymptotics than considered in case 3.3 and let the number of
strata grow with a fixed number of clusters sampled from each stratum. We can
think of the stratum variable, η, determining L strata, with the asymptotics as
L → ∞ (Appendix B). From case 2.2, we know that the between-strata differ-
ences in the superpopulation means will not get reflected in the with-replacement
variance estimator. However, we now show that even with no between-strata dif-
ferences the with-replacement estimator is asymptotically biased. In particular,
let mi ≡ 0, Ni ≡ 1, and kh ≡ 2. It can be shown that :

lim
L→∞

LE[V̂arwr(ȳ)]= lim
L→∞

E
{ L

K2

L∑
h=1

[ Kh∑
i=1

Y 2
hi

λhi(Zh)
−

Kh∑
i=1

Kh∑
j �=i

λhij(Zh)
λhi(Zh)λhj(Zh)

YhiYhj

]}
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and

lim
L→∞

LVar(ȳ)= lim
L→∞

E
{ L

K2

L∑
h=1

[ Kh∑
i=1

Y 2
hi

λhi(Zh)
+

Kh∑
i=1

Kh∑
j �=i

λhij(Zh)
λhi(Zh)λhj(Zh)

YhiYhj

]}
,

where Yhi is the single unit in the ith cluster of the hth stratum, and λhij(Zh) is
the joint (second order) inclusion probability of sampling clusters i and j from
stratum h (in this case Yhi and Yhj). The difference in sign of the terms for the
cross summations of limL→∞ LE[V̂arwr(ȳ)] and limL→∞ LVar(ȳ) ensures that
they will not in general be asymptotically equal.

Since the with-replacement variance estimator is not consistent for the
variance of ȳ (even with no strata effects), we pursue a different ap-
proach. Consider the decomposition: Var(ȳ) = E[Var(ȳ|finite population)] +
Var [E(ȳ|finite population)], where the conditioning is on the Y values in the
finite population. An estimator of the first term is provided by any usual finite-
population variance estimator. For example, an analog of the Yates-Grundy
estimator (Shah et al. (1993), pp.10-11) in the case of two-stage sampling, is
given by

V̂arwor(ȳ) =
1

K2N̄2

( L∑
h=1

kh∑
i=1

kh∑
i>j

ωhij(Zh)
{[Nhiȳhi − ȳNhi

λhi(Zh)

]

−
[Nhj ȳhj−ȳNhj

λhj(Zh)

]}2
+ Ks2

W

)
,

where s2
W = 1

K

∑L
h=1

∑kh
i=1

N2
hi(1−nhi/Nhi)s

2
hi

nhiλhi(Zh) , ωhij(Zh)=[λhi(Zh)λhj(Zh)/λhij(Zh)]

−1, s2
hi =

∑nhi
j=1(yhij − ȳhi)2/(nhi − 1), and N̄ = 1

K

∑L
h=1

∑kh
i=1 Nhi/λhi(Zh). It

can be shown that

lim
L→∞

L(E[V̂arwor(ȳ)] − E[Var(ȳ|finite population)]) = 0.

If the sampling at the second stage had been a simple random sample with re-
placement, then the (1 − nhi/Nhi) term would be absent in the definition of s2

W .
To estimate Var[E(ȳ|finite pop.)] requires slightly more work. The approach

taken approximates E(ȳ|finite pop.)] by Ȳ and therefore Var[E(ȳ|finite pop.)] by
Var(Ȳ ), where Ȳ is the finite-population mean. We then obtain an estimate of
Var(Ȳ ) from the sampled data. The steps in obtaining an estimate of Var(Ȳ )
are described in the next paragraph.

It is convenient to change notation temporarily and let Yij be the jth observa-
tion in the ith cluster in the finite population (regardless of stratum designation),
j = 1, . . . , Ni, i = 1, . . . ,K. In this notation,

Ȳ =
K∑

i=1

Ni∑
j=1

Yij/
K∑

i=1

Ni
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can be thought of as a ratio estimator. Its variance can be approximated with a
Taylor series,

Var(Ȳ ) .=
1

[KEG(N)]2
(
Var

[ K∑
i=1

NiȲi

]
+ µ2

SP Var
[ K∑

i=1

Ni

]

−2µSP Cov
[ K∑

i=1

NiȲi,
K∑

i=1

Ni

])
,

where Ȳi = (Yi1 + · · · + YiNi)/Ni. If we observed the data on all the individuals
in the finite population, we could estimate Var(Ȳ ) by

Ṽar (Ȳ ) =
K

K − 1

K∑
i=1

(NiȲi − NiȲ )2/
( K∑

i=1

Ni

)2
.

Since we only observe the Y values on sampled individuals, Ṽar (Ȳ ) is estimated
from the stratified pps sample by replacing the finite population quantities with
(design-based) estimators and subtracting a within-cluster variance component:

V̂ar (Ȳ )
1

KN̄2

{ 1
K − 1

[ L∑
h=1

kh∑
i=1

1
λhi(Zh)

(Nhiȳhi − Nhiȳ)2
]
− s2

W

}
,

where s2
W is defined as before. The V̂ar(Ȳ ) is the proposed estimator of

Var[E(ȳ| finite pop.)]. It can be shown that

lim
L→∞

L{Var [E(ȳ|finite pop.)] − E[V̂ar (Ȳ )]} = 0.

The proposed estimator of Var(ȳ) is V̂arSP (ȳ) = V̂arwor(ȳ) + V̂ar (Ȳ ).
A potential disadvantage of the estimator V̂arSP (ȳ) is that since it involves

V̂arwor(ȳ), it requires knowledge of the joint inclusion probabilities. These may
not be available to the analyst. In this situation, we offer the following ad hoc
estimator based on V̂arwr(ȳ) : V̂arSP−a(ȳ) = V̂arwr(ȳ)+∆̂st−pps where ∆̂st−pps =
V̂arb − V̂arw,

V̂arb =

∑L
h=1 Kh

[
1

Kh

∑kh
i=1

Nhi(ȳhi−ȳ)
λhi(Zh)

]2

[ ∑L
h=1

∑kh
i=1

Nhi
λhi(Zh)

]2 ,

and

V̂arw =

∑L
h=1

kh
Kh(kh−1)

∑kh
i=1

(
Nhi(ȳhi−ȳ)

λhi(Zh) − 1
kh

∑kh
j=1

Nhj(ȳhj−ȳ)
λhj(Zh)

)2

[ ∑L
h=1

∑kh
i=1

Nhi
λhi(Zh)

]2 .
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The heuristic argument justifying the estimator V̂arSP−a(ȳ) is given as follows.
The variance of ȳ can written as Var(ȳ) = E[Var (ȳ|obs. strat.)] + Var [E(ȳ|obs.
strat.)], where “obs. strat.” refers to the observed strata in the finite popula-
tion that are used for the sampling. This conditioning includes the values of
the Kh, but not the finite population Y values. We estimate the first term of
this decomposition by V̂arwr(ȳ) because this estimator does not account for the
between-strata component of Var(ȳ), which is eliminated by the conditioning on
the observed strata. An approximation to the second term can be derived as
follows:

Var[E(ȳ|obs.strat.)]

.= Var
(∑L

h=1 E
( ∑kh

i=1
Nhiȳhi
λhi(Zh) | obs.strat.

)

∑L
h=1 E

( ∑kh
i=1

Nhi
λhi(Zh) |obs.strat.

)
)

= Var
(∑L

h=1 KhEG[Nµ|η = h]∑L
h=1 KhEG(N |η = h)

)

.= [KEG(N)]−2Var
{ L∑

h=1

Kh{EG[Nµ|η = h] − µSP EG[N |η = h]}
}

= [KEG(N)]−2
( L∑

h=1

{Kπh(1 − πh){EG[Nµ|η = h] − µSP EG[N |η = h]}2}

−
∑ ∑

h �=j

Kπhπj{EG[Nµ|η = h] − µSP EG[N |η = h]}{EG[Nµ|η = j]

−µSP EG[N |η = j)]}
)

= [KEG(N)]−2
(
−

{ L∑
h=1

Kπh{EG[Nµ|η = h] − µSP EG[N |η = h]}
}2

+
L∑

h=1

Kπh{EG[Nµ|η = h] − µSP EG[N |η = h]}2
)
,

= [KEG(N)]−2
L∑

h=1

Kπh{EG[Nµ|η = h] − µSP EG[N |η = h]}2,

where πh = PG[η = h]. The terms on the right side of the last equality above can
be estimated by ∆̂st−pps. More refined estimators of Var (ȳ) may be possible.

We end the discussion of this case with the presentation of a simulation to
demonstrate the properties of the estimators. The superpopulation consists of
L′ pre-strata, L′ = 50, 100 and 200. The proportions of clusters in each pre-
stratum are equal. The distribution of (N,µ, σ2, Z) in a stratum are (N = 5, µ =
−1 + stratum effect, σ2 = 1, Z = 1) or (N = 15, µ = 1 + stratum effect, σ2 =
1, Z = 2), each with probability 1/2. The observations Y within a stratum
and cluster are distributed as normal with mean µ and variance σ2 = 1. The
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finite population is derived as a simple random sample of 5L′ clusters from the
superpopulation. For the sampling of the finite population, the pre-strata are first
numbered from 1 to L′ . Then, pre-strata are pooled with their neighbor(s) to
form the finite-population strata so that 2 clusters can be sampled pps from each
finite-population stratum using Brewer’s method (Cochran (1977), pp. 261-263):
pre-strata of size 4 or more are not pooled, pre-strata of size 2 or less are always
pooled, and pre-strata of size 3 are pooled depending upon the (three) values of Z.

From each sampled cluster a simple random sample of 2 observations was selected.
The results of the simulation are presented in Table 2 for the stratum effects being
identically zero and for the hth stratum effect being Φ−1[{1+[[50(h−1)/L′]]}/51]
where Φ is the normal cumulative distribution function and [[x]] is the greatest
integer less than x.

Table 2. Simulated variance of ȳ and expectation of variance estimators using
a two-stage stratified pps sample with 2 sampled primary sampling units
(clusters) per pooled strata, two observations per sampled primary sampling
unit and with average unpooled stratum population size of 5 (simulation size
= 400, 000) ; see text for details

Strata Effect ≡ 0
Number of unpooled strata

L′ = 50 L′ = 100 L′ = 200
L′Variance(ȳ) .763 .758 .759
L′E[V̂arwor(ȳ)] .630 .628 .628
L′E[V̂arwr(ȳ)] .771 .769 .768
L′E[V̂arSP (ȳ)] .762 .761 .760
L′E[V̂arSP−a(ȳ)] .767 .767 .767

Strata Effect for stratum h ≡ Φ−1[{1 + [[50(h− 1)/L]]}/51]
Number of unpooled strata

L′ = 50 L′ = 100 L′ = 200
L′Variance(ȳ) .992 .993 .989
L′E[V̂arwor(ȳ)] .644 .642 .641
L′E[V̂arwr(ȳ)] .790 .788 .786
L′E[V̂arSP (ȳ)] .993 .991 .991
L′E[V̂arSP−a(ȳ)] .965 .965 .965

For the simulations with no strata effects, the without-replacement vari-
ance estimator is biased very low and the with-replacement variance estima-
tor V̂arwr(ȳ) is biased slightly high. The superpopulation variance estimator
V̂arSP (ȳ) appears unbiased with the approximate estimator V̂arSP−a(ȳ) biased
slightly high. For the simulations with strata effects, even V̂arwr(ȳ) is biased
substantially low because of its lack of incorporation of the strata effects. The
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superpopulation variance estimator V̂arSP (ȳ) appears unbiased with increasing
L′ whereas the approximate estimator V̂arSP−a(ȳ) is biased low. We recommend
using V̂arSP (ȳ) when the joint inclusion probabilities are known, and V̂arSP−a(ȳ)
when they are not known.

Case 3.5. Multistage stratified sampling

At the first stage of sampling, kh = ch(Kh) primary clusters are sampled
from stratum h as a pps sample without replacement where the measure of size
is Z. That is, the ratio of the inclusion probabilities for any two clusters in
stratum h is the ratio of their Z values; (see case 3.4.)

At the second stage of sampling, nhi = gh(Zhi, Nhi) ≥ 2 secondary clusters
(SC’s) are sampled as a pps sample with replacement (with respect to some SC-
level size variable) from the ith sampled primary cluster from the hth stratum. In
particular, the sample of SC’s may be a simple random sample with replacement.
If the same SC is sampled more than once, a completely independent sample of
observations is taken from the sampled SC each time it is selected. The sampling
schemes for the third to final stage of sampling can be any probability sampling
scheme as long as there exists unbiased estimators (conditional on having sampled
SC hij from the population) thij and dhij of Thij/γhij and Mhij/γhij , where
γhij is the conditional inclusion probability for SC hij given the selection of
the ith sampled primary cluster from the hth stratum. We will assume that
mhij = bhi(Zh, Nhi,Mhij) observations are sampled from SC hij. Typically

thij = λhi(Zh)
mhij∑
l=1

whijlyhijl

and

dhij = λhi(Zh)
mhij∑
l=1

whijl,

where whijl is the final sample weight, and Zh and λhi(Zh) are as defined in Case
3.4. The weighted mean estimator of µSP is

ȳ =

∑L
h=1

∑kh
i=1

∑nhi
j=1

thij

λhi(Zh)∑L
h=1

∑kh
i=1

∑nhi
j=1

dhij

λhi(Zh)

.

We define the following estimators thi = thi1 + · · ·+ thinhi
and dhi = dhi1 + · · ·+

dhinhi
. An estimator for the repeated-sampling variance of ȳ under the assumption

that the primary clusters are sampled with replacement is

V̂arwr(ȳ)

=

∑L
h=1

kh
(kh−1)

∑kh
i=1

[(
thi

λhi(Zh) − ȳ dhi
λhi(Zh)

)
− 1

kh

( ∑kh
j=1

thj

λhj(Zh) − ȳ
dhj

λhj(Zh)

)]2

( ∑L
h=1

∑kh
i=1

dhi
λhi(Zh)

)2
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and this estimator requires that kh ≥ 2.
The following estimator for the variance of ȳ under the actual without-

replacement sampling design can be derived using a first-order Taylor approxi-
mation for ȳ and Theorem 11.2 from Cochran (1977), pp.301-302

V̂arwor(ȳ) =

∑L
h=1

∑kh
i=1

∑kh
i>j ωhij(Zh)

(
thi−ȳdhi
λhi(Zh) − thj−ȳdhj

λhj(Zh)

)2
+ Ks2

W( ∑L
h=1

∑kh
i=1

dhi
λhi(Zh)

)2 ,

where s2
W = 1

K

∑L
h=1

∑kh
i=1

nhis
2
hi

λhi(Zh) , ωhij(Zh) is as given in case 3.4 and involves
the second-order inclusion probabilities of the PSU’s, and

s2
hi =

1
(nhi − 1)

nhi∑
j=1

[(thij − ȳdhij) − (thi − ȳdhi)/nhi]2.

Let

V̂ar (Ȳ ) =
K

K−1

[ ∑L
h=1

∑kh
i=1

1
λhi(Zh)(thi − ȳdhi)2

]
− Ks2

W( ∑L
h=1

∑kh
i=1

dhi
λhi(Zh)

)2 .

The proposed estimator of Var (ȳ) is V̂arSP (ȳ) = V̂arwor(ȳ) + V̂ar (Ȳ ).
An ad hoc estimator of the population variance for ȳ that is based on

V̂arwr(ȳ) is V̂arSP−a(ȳ) = V̂arwr(ȳ) + ∆̂st−mpps (mpps refers to multistage pps
sampling) where ∆̂st−mpps = V̂arb − V̂arw,

V̂arb =

∑L
h=1

1
K ′

h

[ ∑kh
i=1

(thi−ȳdhi)
λhi(Zh)

]2

( ∑L
h=1

∑kh
i=1

dhi
λhi(Zh)

)2 and

V̂arw =

∑L
h=1

kh
Kh(kh−1)

∑kh
i=1

[
( thi

λhi(Zh)−ȳ dhi
λhi(Zh))− 1

kh
(
∑kh

j=1
thj

λhj(Zh)−ȳ
dhj

λhj(Zh))
]2

( ∑L
h=1

∑kh
i=1

dhi
λhi(Zh)

)2 .

4. An Application Using the 1987 National Health Interview Survey
(NHIS)

The NHIS is a primary source of health information on the United States
civilian noninstitutionalized population. Although it has been in continuous op-
eration since 1957, the sampling design was modified in 1985 as follows (Massey
et al. (1989):) The country is divided into approximately 1900 geographically de-
fined primary sampling units (PSU’s), each consisting of a county, a small group
of counties, or a metropolitan statistical area. Fifty-two of the largest PSU’s
are sampled with certainty; these are referred to as self-representing PSU’s. The



1146 EDWARD L. KORN AND BARRY I. GRAUBARD

remaining PSU’s are grouped into 73 strata, from each of which two PSU’s are
sampled without-replacement with probability-proportional-to-size. Within each
sampled PSU, secondary sampling units consist of census enumeration districts,
which are further subsampled leading eventually to all eligible individuals in a
sampled housing unit being interviewed. We consider estimating standard errors
for weighted mean estimators of family income (INCOME) and individual height
in inches (HEIGHT), and the weighted proportion of females (SEX) using the
data from the 1987 NHIS Cancer Control Supplement (Schoenborn and Marano
(1988)).

The first line of Table 3 contains the estimated standard errors for the means
of three variables using classical repeated-sampling variance estimators, which are
recommended by the National Center for Health Statistics (Massey et al. (1989)).
We utilize the superpopulation model of section 3 to estimate the standard errors
of the superpopulation means (case 3.5) that are presented in the second line of
Table 3. By doing so, we assume interest focuses on the standard errors associated
with the superpopulation model rather than the repeated samping (see section
5 for further discussion). The classical variance estimators and superpopulation
variance estimators differ enormously for INCOME, greatly for HEIGHT, and
slightly for SEX. The large differences observed are at first surprising since the
sampling fraction of PSU’s is relatively small, 10% = 198/1894. However, the
fifty-two self-representing PSU’s (with a sampling fraction of 1.0) represent over
80% of the population, explaining the large differences. The underestimation
of the design-based variances is smaller for SEX than INCOME because the
variability of the PSU-level means (compared to the within-PSU variability) is
greater for INCOME than SEX (data not shown).

As described previously, in the situation in which the joint inclusion probabil-
ities of the PSU’s are not available to the analyst (unlike in this survey), a with-
replacement variance formula is typically used. Application of with-replacement
variance formulas requires at least two sampled PSU’s per stratum. To apply
them to surveys in which some of the strata have only one sampled PSU (as in
the present case with the self-representing PSU’s), there are two techniques that
are commonly used. One technique is to pair strata and their sampled PSU’s so
that there will be two sampled PSU’s in each pseudo-stratum. The other tech-
nique is to divide the single sampled PSU into two or more pseudo-PSU’s so that
there will be at least two pseudo-PSU’s in each stratum. In line 3 of Table 3 we
present the with-replacement variance estimator with certainty PSU’s paired; in
line 5 we present the estimator with certainty PSU’s divided into pseudo-PSU’s
defined by census enumeration districts. As might be expected, pairing strata
(which incorporates between PSU variability) leads to estimators that are closer
to the superpopulation estimators than dividing the PSU’s. Line 4 contains our
approximation to the superpopulation variance when the strata are paired; this
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approximate variance formula does not work well when the PSU’s are divided into
pseudo-PSU’s. For this example, the approximate formula is almost exactly the
same as the formula that requires knowledge of the joint inclusion probabilities.

Table 3. Standard errors for weighted means of three variables calculated
using different variance estimators (data from the 1987 National Health In-
terview Survey)

INCOME HEIGHT (in.) SEX (proportion female)
(ȳ = 28064) (ȳ = 66.9) (ȳ = .53)

Estimator

original data:√
V̂arwor(ȳ) 193 .0328 .00402√
V̂arSP (ȳ) 515 .0496 .00437

certainty PSU’s paired:√
V̂arwr(ȳ) 385 .0461 .00417√

V̂arSP−a(ȳ) 515 .0497 .00440

certainty PSU’s divided:√
V̂arwr(ȳ) 197 .0335 .00404

5. Discussion

The variance estimators for the mean presented in the paper may be extended
to other parameters of interest that can be expressed as explicit or implicit func-
tions of means. For example, a linear regression coefficient can be expressed as
a function of means of Yi,XiYi,X

2
i , etc. Substitution of appropriately weighted

means calculated from the sampled data can yield an estimator of the parame-
ter. Taylor series linearization can then be used to estimate the variance of the
parameter estimator by expressing the variance in terms of estimated variances
of means (Binder (1983)). If interest focuses on the superpopulation parameter,
then superpopulation variances for the means should be used in the Taylor series
linearization. The variance estimators of this paper then apply directly. For
example, suppose one is interested in a superpopulation regression coefficient in
the context of the model of section 3:

βSP =
[EG(NJXY )/EG(NM)] − [EG(NJX)/EG(N)][EG(NJY )/EG(NM)]

[EG(NJXX)/EG(NM)] − [EG(NJX)/EG(NM)]2
.

Here, the random vector (N,M,JXY ,JX ,JY ,JXX) is at the primary cluster
level and has distribution G, where recall that N is the number of secondary
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clusters in a primary cluster, and M is the mean of the number of population
values in the secondary clusters in a primary cluster. The terms in brackets in
the definition of βSP are superpopulation means as previously defined in section
3. Variances of their estimators will need to be estimated when estimating the
variance of the estimator of βSP using Taylor series linearization. If it is appro-
priate to consider a regression model with the sampling strata included as fixed
effects, then the bias of the standard with-replacement variance estimator of a
within-stratum regression coefficient may be expected to be less than the bias of
the standard with-replacement variance estimator of an estimator of βSP . Other
possible definitions of superpopulation parameters are possible if one is willing
to make stronger modeling assumptions (Pfeffermann and Holmes (1985)), and
these may be more useful in some applications.

Three questions might be raised with regards to using the superpopulation
variance estimators described in this paper:
(1) Why should one be interested in superpopulation inference, which is based on

hypothetical constructs, when repeated-sampling inference is well-defined?
(2) Since with small sampling fractions the differences between the repeated-

sampling variance estimators and superpopulation variance estimators are
minor, why bother with the latter when sampling from large populations?

(3) What are the properties of the variance estimators if the superpopulation
models are misspecified?

We would answer the first question with another question: Supposing you sam-
pled the whole population of interest, would you present standard errors with
your parameter estimators? If you would, then you are utilizing some type of
superpopulation model, or equivalently, some distributional assumptions. We
see no reason why a source of variability that is accounted for when the whole
population is sampled, should be ignored when only part of the population is
sampled. We believe that in most scientific applications, superpopulation infer-
ence is appropriate.

For the second question, we would agree that with a small sampling fraction
of the units being used for the variance estimation, there is little benefit in the
added complexity of the the superpopulation variance estimators. However, as
demonstrated by the application in section 4, a small sampling fraction of final
units does not imply a small sampling fraction of the PSU’s which are being
used for the variance estimation. Frequently, large populations are sampled with
stratified multistage designs that have large sampling fractions of PSU’s for at
least some of the strata. In these cases, the differences between the repeated-
sampling variance estimators and superpopulation variance estimators may not
be small.



VARIANCE ESTIMATION FOR SUPERPOPULATION PARAMETERS 1149

The third question is potentially the most troublesome. Although we believe
that the superpopulation model suggested in section 3 is not very restrictive,
the effects of model misspecification must always be a concern. For stratifica-
tion, the discussion at the end of section 2 also applies to the model of section
3: Whatever characteristics are being used to define the sampling strata, can
also be assumed to exist on the units in the superpopulation. Therefore, there
are essentially no strata superpopulation-model constraints. The situation con-
cerning clusters is different. As shown in case 3.2, not using clusters that exist
in the superpopulation when sampling and estimating variances can lead to un-
derestimation of superpopulation variances. Although the discussion of case 3.2
suggests that the underestimation may be small, let us assume for a moment that
it is not small. Would this lead us to abandon superpopulation inference and use
repeated-sampling inference? No, for why should one ignore the superpopulation
variability due to stratification and known sampling clusters just because one is
missing additional variability due to unknown superpopulation clustering? We
believe that the superpopulation variance estimators described in this paper, al-
though based on model assumptions, will yield more appropriate inferences than
classical repeated-sampling variance estimators.
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Appendix A. Proof of Unbiasedness of V̂arSP (ȳ) for Case 2.2

Var(ȳ) = E[Var(ȳ|f.p.)] + Var[E(ȳ|f.p.)]

= E
( L∑

h=1

K2
h

K2

[Kh − ch(Kh)]
Kh

S2
h

ch(Kh)

)
+ Var(Ȳ ),

where f.p. stands for finite population, and S2
h is the population variance for

stratum h.

E[V̂arSP (ȳ)|f.p.]

=
L∑

h=1

Kh(Kh−1)
K(K − 1)

1
ch(Kh)

E(s2
h|f.p.)+

1
K−1

L∑
h=1

Kh

K
E(ȳ2

h|f.p.)− 1
K − 1

E(ȳ2|f.p.)

=
L∑

h=1

Kh(Kh − 1)
K(K − 1)

1
ch(Kh)

S2
h +

1
K − 1

L∑
h=1

Kh

K

(
Ȳ 2

h +
[Kh − ch(Kh)]

Kh

S2
h

ch(Kh)

)

− 1
K − 1

(
Ȳ 2 +

L∑
h=1

K2
h

K2

[Kh − ch(Kh)]
Kh

S2
h

ch(Kh)

)
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=
L∑

h=1

K2
h

K2

[Kh − ch(Kh)]
Kh

S2
h

ch(Kh)
+

S2

K
,

where S2 is the population variance. Therefore,

E[V̂arSP (ȳ)] = E{E[V̂arSP (ȳ)|f.p.]}

= E
( L∑

h=1

K2
h

K2

[Kh − ch(Kh)]
Kh

S2
h

ch(Kh)
+

S2

K

)
= Var(ȳ)

since E(S2/K) = Var(Ȳ ).

Appendix B. Sufficient Conditions for Asymptotic Results

In all cases we assume there is a sequence of finite populations Πα(α =
1, 2, . . .) that are generated by the superpopulation model described for that
case. The subscript α, which indexes the finite population, is now explicitly
stated. A, B and C are positive finite constants.

Case 3.1. (1) limα→∞ Kα = ∞
(2)limα→∞ kα/Kα = γ, where 0 < γ ≤ 1
(3) 2 ≤ Nαi < B and |Yαij | < B

Case 3.3. (1) limα→∞ Kα = ∞
(2) limt→∞ ch(t)/t = γh, where γh > 0 for h = 1, . . . , L
(3) 2 ≤ Nαhi < B and |Yαhij | < B

Case 3.4. (1) limα→∞ Kα = ∞, limα→∞ Lα = ∞, limα→∞ Kα/Lα = A

(2)B > cαh(t) ≥ min(2, t) and gαh(·) ≥ 2
(3) 2 ≤ Nαhi < B , |Yαhij | < B and C < Zαhi < B

(4)limα→∞ maxh E(Kαh/Kα) = 0
Case 3.5. (1) limα→∞ Kα = ∞, limα→∞ Lα = ∞, limα→∞ Kα/Lα = A

(2)B > cαh(t) ≥ min(2, t), B > gαh(·, ·) ≥ 2, and B > bαhi(·, ·, ·)
(3)

∑Nαhi
j=1 Mαhij < B, |Yαhij | < B, |tαhij | < B, |dαhij | < B, |γ−1

αhij | < B,

and C < Zαhi < B

(4)limα→∞ maxh E(Kαh/Kα) = 0.
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