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Abstract: In the problem of discriminant analysis using Fisher’s sample discriminant

function W , Anderson (1973) obtained an asymptotic expansion of the distribution

of W in the case of simple random samples. The approximation to the rate of

misclassification resulting from this asymptotic expansion is very good. This pa-

per examines the situation where the sample selection can depend on the values

of auxiliary variables of the population under study, for example stratified ran-

dom sampling. We show that Anderson’s asymptotic expansion has an error of

order O(1) under disproportionate stratified random sampling and we provide a

reasonable correction which takes into account such sampling design effect.
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1. Introduction

Statistical procedures in multivariate analysis are usually based on a sam-
ple consisting of independently and identically distributed (i.i.d.) observations
from some hypothetical superpopulation. When the samples are collected via a
complex survey design employing stratification, multistage selection or unequal
probability selection using auxiliary information, procedures need to be modi-
fied to take into account the sampling design if one is to draw valid inferences.
Nathan and Holt (1980) show how procedures in regression analysis can be ad-
justed for the situation where sample selection depends on an auxiliary variable;
Rao, Sutradhar and Yue (1993) study regression analysis with two-stage cluster
samples; Skinner, Holmes and Smith (1986) consider the effects of a certain sam-
pling design in principal component analysis; Skinner, Holmes and Smith (1989)
and Lehtonen and Pahkinen (1995) cover many of the important advances in
multivariate analysis under both aggregated and disaggregated approaches.

Discriminant analysis is a procedure for classifying units into mutually ex-
clusive and exhaustive groups on the basis of x, a vector of characteristics, called
the discriminator. The usual procedure in the two-group problem is to classify
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a new unit with a discriminator x0 according to Fisher’s sample discriminant
function, W , defined by

W (x0) = (x0 − (x̄1 + x̄2)/2)TS−1
11 (x̄1 − x̄2). (1.1)

Here x̄i is the sample mean of the discriminators of the training sample from
group i, i = 1, 2, and S11 is the usual pooled-sample covariance matrix of the dis-
criminator (see Section 2 for a more detailed description). Recently Leu and Tsui
(1997) examined the performance of several discriminant functions when param-
eters are estimated by conventional estimators, maximum likelihood estimators
(MLE), probability-weighted estimators and conditionally unbiased estimators,
under a superpopulation model and a sample design similar to that of Nathan
and Holt (1980) and Skinner, Holmes and Smith (1986). They discussed the
rates of misclassification of four discriminant functions and the effect of the sam-
ple design on their rates via a simulation study. The discriminant function using
MLE performed the best and Fisher’s discriminant function the worst under a
stratified sampling design with increasing allocation. In this article we provide a
theoretical result concerning the effect of the sample design on Fisher’s sample
discriminant function.

Okamoto (1963) (with correction, Okamoto (1968)) and Anderson (1973)
obtained asymptotic expansions of the distribution of W (x0) under simple ran-
dom samples (SRS). An approximation of the rate of misclassification can be
obtained by replacing the unknown parameters in an asymptotic expansion with
corresponding sample estimates. These approximations are generally more accu-
rate than others in the literature. Here we use the same set-up as in Leu and
Tsui (1997) to consider the situation where the sample selection can depend on
the value of an auxiliary variable. We obtain an asymptotic expansion of the
distribution of W analogous to that of Anderson (1973) in this general situation.

Our result shows that Anderson’s asymptotic expansion has an error of order
O(1) under disproportionate stratified random sampling. We propose a reason-
able correction to take into account such sampling effect.

We describe the superpopulation model for the discriminant analysis problem
and then the sampling design in Section 2. Section 3 contains our main results.

2. The Superpopulation Model

Consider the problem of classifying a unit into one of two groups (finite
populations) G1 or G2, where G1 and G2 consist of N1 and N2 identifiable units,
labeled i = 1, . . . , N1, and j = 1, . . . , N2, respectively. Let N = N1+N2. Suppose
that associated with each unit i in Gα is a discriminator xαi = (xαi,1, . . . , xαi,p)T ,
a p × 1 vector to be measured in the survey, and zαi = (zαi,1, . . . , zαi,q)T , a
q × 1 vector of known values to be used in sample selection. We assume that
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xαi and zαi are realizations of the random vectors Xαi and Zαi respectively,
i = 1, . . . , Nα, and α = 1, 2. Furthermore we assume that the random vectors
(XT

αi, Z
T
αi)

T , i = 1, . . . , Nα, and α = 1, 2, are independent and that each vector
has a multivariate normal distribution(

Xαi

Zαi

)
∼ Np,q

[(µα

µz

)
,

(
Ω11 Ω12

Ω21 Ω22

)]
, (2.1)

where Ω22 is assumed to be positive definite. Note that we assume a common
covariance matrix (Ω) for the two groups and that the means of random vectors
Z1i, Z2i are equal to µz. Hence only the random vectors Xαi, i = 1, . . . , Nα, and
α = 1, 2, appear to be useful for discriminating the two groups.

Let xα = (xα1, . . . , xαNα), zα = (zα1, . . . , zαNα), Xα = (Xα1, . . . ,XαNα)
and Zα = (Zα1, . . . , ZαNα), α = 1, 2. The auxiliary information z = (z1, z2)
and the population sizes N1 and N2 are known at the beginning of the survey.
The assumption of common means for the auxiliary variables Z1i and Z2i can be
tested by using the usual T 2-statistic test (See for example Johnson and Wichern
(1992), Chapter 6). If the test rejects it, the problem of examining the sampling
design effect on misclassification rates becomes more complicated and is beyond
the scope of this paper. For the rest of the paper we assume common means of
the auxiliary variables Z1i and Z2i.

Two samples s1 = (i1, . . . , in1) of n1 distinct units from group G1 and
s2 = (j1, . . . , jn2) of n2 distinct units from group G2 are selected independently
by prechosen randomized sampling designs p(s1|z1) and p(s2|z2), respectively.
We assume the sampling designs p(sα|zα), α = 1, 2, depend on the auxiliary in-
formation z = (z1, z2), but not on the xαi. The auxiliary information z can serve
as a size variable for probability-proportional-to-size sampling, or as a grouping
variable for stratified or cluster sampling. We assume that the sample sizes
n1 and n2 of s1 and s2, respectively, are fixed. Denote the sample data by
(xs1,xs2, z1, z2, s1, s2) and let xsα and Xsα be the subvectors of xα and Xα with
indices in sα, respectively.

Let
∑

s denote the summation over the units in the sample and
∑

Nα
denote

the summation over group Gα, with

x̄1 = n−1
1

∑
s1

x1i, X̄1 = N−1
1

∑
N1

x1i, (2.2a)

x̄2 = n−1
2

∑
s2

x2j , X̄2 = N−1
2

∑
N2

x2j , (2.2b)

z̄1 = n−1
1

∑
s1

z1i, z̄2 = n−1
2

∑
s2

z2j , Z̄ = N−1
( ∑

N1

z1i +
∑
N2

z2j

)
, (2.2c)

m1s1 = (n1−1)−1
∑
s1

(x1i−x̄1)(x1i−x̄1)T ,m2s1 = (n1−1)−1
∑
s1

(z1i−z̄1)(z1i−z̄1)T ,
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m1s2 = (n2−1)−1
∑
s2

(x2j−x̄2)(x2j−x̄2)T ,m2s2 = (n2−1)−1
∑
s2

(z2j−z̄2)(z2j−z̄2)T .

Let
S =

(
S11 S12

S21 S22

)
, (2.2d)

where S is the usual pooled estimator of Ω, and note that S is unbiased under
the independent simple random sampling design.

Using the usual Fisher’s sample discriminant function in (1.1), we can classify
the unit with discriminator x0 to G1 if W (x0) > c and to G2 otherwise, where
c is a given constant which depends on the prior probabilities and the costs of
misclassification. For simplicity, we assume equal prior probabilities and equal
cost of misclassification, i.e., c is zero.

The statistic W is important since it is the usual discriminant rule under
the i.i.d. model in standard discriminant analysis. Under the i.i.d. model, the
limiting distribution of W as n1 → ∞ and n2 → ∞ is normal with variance ∆2

and mean ∆2/2 if the new unit belongs to G1 and mean −∆2/2 if it belongs to
G2, where

∆2 = (µ1 − µ2)T Ω−1
11 (µ1 − µ2) (2.3)

is the Mahalanobis distance, estimated by

D2 = (x̄1 − x̄2)TS−1
11 (x̄1 − x̄2). (2.4)

The asymptotic expansion of the distribution of the studentizedW , (W±1
2D

2)/D,
gives approximate evaluations of the pair of misclassification rates. Note that the
limiting distribution of both (W − 1

2D
2)/D and (W + 1

2D
2)/D are N(0, 1) when

the new unit belongs to G1 and G2, respectively, under the i.i.d. model. The
usual approximation of the corresponding misclassification rates are, respectively,
Φ(D/2) and Φ(−D/2), where Φ(·) is the cumulative distribution function of the
standard normal variate, under the i.i.d. model. We investigate the sampling
design effect on the asymptotic expansion of the distribution of W under our
sample design.

3. Main Results

Let n = n1 + n2 − 2. Okamoto (1963) obtained the asymptotic expansion
of the distribution of W up to terms of order n−2 by using the properties of
the characteristic function of the standard normal distribution. Anderson (1973)
proposed another asymptotic expansion of the distribution for the studentized W
by using Taylor’s expansion of the cumulative distribution function of the stan-
dard normal distribution. Both asymptotic expansions provide more accurate
approximations of the rates of misclassification than the usual ones, with an er-
ror of order n−2. Note that both procedures are based on the i.i.d. model. In this
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paper, we only consider the sampling design effect on Anderson’s approximation
because his expansion formula is simpler than that of Okamoto (1963). Following
Anderson (1973) closely, we derive an asymptotic expansion of the distribution
for the studentized W with an error of order O(n−3/2) under the superpopulation
model given in (2.1) and the proposed sampling scheme in Section 2. This con-
trasts with Anderson’s (1973) asymptotic expansion that has an error of order
O(1) under disproportionate stratified random sampling.

Assume that n2/n1 → k, a finite positive constant. We write

W −D2/2 = (x0 − x̄1)TS−1
11 (x̄1 − x̄2).

Then,

P
[W−D2/2

D
≤u

]
=Es,zP

[W−D2/2
D

≤u|s, z
]
=Es,zP [(x̄1−x̄2)TS−1

11 (x0−µ)

≤ u((x̄1 − x̄2)TS−1
11 (x̄1 − x̄2))1/2 + (x̄1 − x̄2)TS−1

11 (x̄1 − µ)|s, z]. (3.1)

Note that x0 has a multivariate normal distribution, N(µ,Ω11), independent of
x̄1, x̄2, S11, s and z. The conditional distribution of (x̄1 − x̄2)TS−1

11 (x0 − µ) given
x̄1, x̄2, S11, s and z is N [0, Ω̃11], where Ω̃11 = (x̄1 − x̄2)TS−1

11 Ω11S
−1
11 (x̄1 − x̄2), and

γ =
(x̄1 − x̄2)TS−1

11 (x0 − µ)

Ω̃1/2
11

has a standard normal distribution. Then

P
[W −D2/2

D
≤ u

]
= Ex̄1,x̄2,S11,s,zP

[W −D2/2
D

≤ u|x̄1, x̄2, S11, s, z
]

= Es,zEx̄1,x̄2,S11|s,zP
[
γ ≤ uD + (x̄1 − x̄2)TS−1

11 (x̄1 − µ)

Ω̃1/2
11

]

= Es,zEx̄1,x̄2,S11|s,zΦ
[uD + (x̄1 − x̄2)TS−1

11 (x̄1 − µ)

Ω̃1/2
11

]
. (3.2)

The distributions of W and D2 are invariant under any non-singular linear trans-
formation of the following type:

(
x

z

)
→

(
A11 0
0 I

) (
x

z

)
+

(
Q1

Q2

)
.

We can choose A11, Q1 andQ2 to transform Ω11 to I, µ1−µ2 to δ = (∆, 0, . . . , 0)T ,
and µz to 0, where ∆2 = (µ1 − µ2)T Ω−1

11 (µ1 − µ2) is the Mahalanobis distance.

Let
β = A11Ω12Ω−1

22 , ψ = βS22β
T η = βΩ22β

T . (3.3)
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Denote the i, jth element of matrix [ ] by [ ]ij , and denote the ith coordinate
of a vector [ ] by [ ]i. We have the following theorem (the proof appears in the
Appendix).

Theorem 1. The conditional distribution of the studentized classification statis-
tic W given s and z, when E[x0] = µ1, is

P
[W −D2/2

D
≤ u|s, z

]

= Φ(u) + φ(u)[
u

2
(ψ11 − η11) + [βz̄1]1] +

1
n
φ(u)

{ 1
∆

[ n
n1

(p − 1)

− n

n1

p∑
i=2

ηii + n
p∑

i=2

[β(z̄1 − z̄2)]i[βz̄1]i + nu
p∑

i=2

(ψ1i − η1i)[β(z̄1 − z̄2)]i
]

+u
[
(
3
4
− p) + (

1
2
− p)(ψ11 − η11) − (ψ11 − η11)

p∑
i=2

(ψii − ηii)

−(n+ 1)
p∑

i=1

(ψ1i − η1i)2 −
p∑

i=2

(ψii − ηii) +
p∑

i=2

ψ2
1i + ψ11

p∑
i=1

ψii

]

−u
3

8
[2 + 4(ψ11 − η11) − 2ψ2

11 + (n+ 2)(ψ11 − η11)2]

−u
2

2
n[βz̄1]1(ψ11 − η11) − u

2
(
n

n1
− n

n1
η11 + n[βz̄1]21)

}
+O(n−3/2), (3.4)

where φ( ) is the p.d.f. of the standard normal distribution. We have

P
[W −D2/2

D
≤ u

]
= Es,zP

[W −D2/2
D

≤ u|s, z
]
. (3.5)

3.1. I.I.D. sampling results

Under the i.i.d. model, nS22 has central Wishart distribution. The means
and covariances of elements of S22 are given by E(S22ij |s, z) = Ω22ij and

Cov (S22ij , S22kl|s, z) = (Ω22ikΩ22jl + Ω22ilΩ22jk)/n (3.6)

(see e.g. Anderson (1957), p.161.). Since z̄1, z̄2 and S22 are mutually independent
under the i.i.d. model design, we have

Es,z([βz̄1]2i ) = Var s,z([βz̄1]i) + (Es,z[βz̄1]i)2 = µ2
z +

1
n1
ηii. (3.7)

By (3.6),

Es,z[ψ2
1i] = Var s,z(ψ1i)+[Es,z(ψ1i)]2 = (η2

1i +η11ηii)/n+η2
1i i = 1, . . . , p. (3.8)
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Hence, the right hand side of (3.5) (excluding the remainder term) is

Φ(u) − φ(u)
{ 1
n1

[u
2
− p− 1

∆

]
+

1
n

[u3

4
+

[
p− 3

4

]
u
]}
. (3.9)

This is Anderson’s (1973) asymptotic expansion (excluding the remainder term).
However if the sampling design depends on some auxiliary information, as dis-
cussed in Section 2, we claim that Anderson’s asymptotic expansion may have
error O(1).

3.2. Stratified sampling results

Suppose that the auxiliary variable zαi is one-dimensional. Suppose further
that L equal-sized strata are formed according to increasing values of zαi i =
1, . . . , Nα, α = 1, 2, for groups G1 and G2. Then a stratified simple random
sample with τhnα units from the hth stratum of group Gα is drawn, where
α = 1, 2, τh > 0 and

∑
τh = 1. Let m = n1 + n2. Following Skinner, Holmes

and Smith (1986), for each h = 1, . . . , L, we may treat the z′his from the hth
stratum as a simple random sample from a normal distribution truncated at
the 100(h − 1)/L and 100h/L percentage points. Suppose that τh′s are fixed as
n1 → ∞ and n2 → ∞. Then analogous to Skinner, Holmes and Smith (1986) for
the one population case, it can be proved that Es,z(S22) = plim(S22) +O(m−1)
and

plim(S22) = Ω22

[ ∑
τh((µh − µ̃)2 + σ2

h)
]
, (3.10)

where
µ̃ =

∑
h

τhµh. (3.11)

Here µh is the mean and σh is the standard deviation of the standard normal
distribution truncated at its 100(h − 1)/L and 100h/L percentage points. Since∑

h µh = 0 and
∑

h(µ2
h + σ2

h)/L = 1, (3.10) shows that under proportionate
stratified random sampling µ̃ = 0, and hence the estimator S22 is consistent. If
the allocation is disproportionate, however, S22 has a bias of O(1). Hence, ψij is
not a consistent estimator of ηij and has a bias O(1) under the same sampling
scheme, i.e., we have Es,z(ψ11) = plim(ψ11)+O(n−1) and plim(ψ11−η11) = O(1).
This implies φ(u)[u2E(ψ11 − η11)] = O(1). By comparing the expectation of (3.4)
(with respect to s, z) with (3.9), it appears that Anderson’s asymptotic expansion
has a remainder term with order O(1) and hence is not good for estimating the
distribution of the studentized W under disproportionate allocation.

The situation can be modified as follows. Following the arguments above, we
have Var s,z(z̄1) =

∑
h τhσ

2
h/n1 and Var s,z(ψ11) = O(n−1). Hence the asymptotic
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expansion of the distribution of the studentizedW under stratified simple random
sampling is

P
[W −D2/2

D
≤ u|x0 ∈ G1

]

= Φ(u) + φ(u)
{ 1
n1

[p− 1
∆

− u

2

]
+
u

2
ζ11 + [βµ̃Ω1/2

22 ]11

+
1

∆n1

p∑
i=2

[β(
∑
h

τhσ
2
h − 1)Ω22β

T ]ii − u3

8
ζ2
11 −

u2

2
[βµ̃Ω1/2

22 ]11ζ11

−u
2

[ 1
n1

+
1
n1

[β(
∑
h

τhσ
2
h − 1)Ω22β

T ]11 + [βµ̃Ω1/2
22 ]211

]}
+O(n−1)

= Φ(u) + φ(u)
{u

2
ζ11 + [βµ̃Ω1/2

22 ]11 − u

2

[u
2
ζ11 + [βµ̃Ω1/2

22 ]11
]2}

+O(n−1). (3.12)

In (3.12), ζ11 is the 1, 1th element of ζ = βΩ∗
22β

T = βΩ22[(
∑
τh[(µh − µ̃)2 +

σ2
h]) − 1]βT , since 1/n1 = O(n−1). The expression in (3.12) depends on the

unknown parameters. Replacing these unknown parameters by sample estimates,
we obtain the approximate rates of misclassification.

If xo ∈ G2, interchanging n1 and n2 gives

P
[
− W +D2/2

D
≤ u|s, z, x0 ∈ G2

]

= Φ(u) + φ(u)[
u

2
(ψ11 − η11) + [βz̄2]1] +

1
n
φ(u)

{ 1
∆

[ n
n2

(p − 1)

− n

n2

p∑
i=2

ηii + n
p∑

i=2

[β(z̄2 − z̄1)]i[βz̄2]i + nu
p∑

i=2

(ψ1i − η1i)[β(z̄2 − z̄1)]i
]

+u
[
(
3
4
− p) + (

1
2
− p)(ψ11 − η11) − (ψ11 − η11)

p∑
i=2

(ψii − ηii)

−(n+ 1)
p∑

i=1

(ψ1i − η1i)2 −
p∑

i=2

(ψii − ηii) +
p∑

i=2

ψ2
1i + ψ11

p∑
i=1

ψii

]

−u
3

8
[2 + 4(ψ11 − η11) − 2ψ2

11 + (n+ 2)(ψ11 − η11)2]

−u
2

2
n[βz̄2]1(ψ11 − η11) − u

2
(
n

n2
− n

n2
η11 + n[βz̄2]21)

}
+O(n−3/2). (3.13)

Hence,

P
[
− W +D2/2

D
≤ u|x0 ∈ G2

]

= Φ(u) + φ(u)
{u

2
ζ11 + [βµ̃Ω1/2

22 ]11 − u

2

[u
2
ζ11 + [βµ̃Ω1/2

22 ]11
]2}

+O(n−1), (3.14)
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since 1/n2 = O(n−1).

3.3. A numerical example

An example will show how the rates of misclassification of Fisher’s sample
discriminant function are affected by various allocations of stratum sample sizes
in stratified random sampling. Our example also shows the accuracy of the
corrected expansion formula (3.14) under several stratified sampling designs, and
shows that the error of Anderson’s expansion (3.9) can be very large if a highly
disproportionate sampling design is treated as a simple random sample design.

The numerical example is partly based on some of the results of the simula-
tion study described in Leu and Tsui (1997). Two finite populations, each having
5000 units, were created using the following superpopulation model. The asso-
ciated vector for each unit, (x, z), was generated from (2.1) with µ1 = (1, 2)T ,
µ2 = (5, 4)T , µz = 3 and a common covariance matrix equal to


 8 2 5

2 10 5
5 5 10


 .

The Mahalanobis distance, ∆2, is 2.105. Each finite population was stratified into
five equal strata of same size according to the increasing values of zαi, i = 1, 2(see
Section 2). The notation (m1, . . . ,m5)denotes a stratified random sampling de-
sign with units selected from the hth stratum, h = 1, ..., 5. Seven sampling
designs were considered: design D1(100) using independent simple random sam-
pling (SRS) of size 100; design D2(20,20,20,20,20) using proportional alloca-
tion; designs with increasing allocation: D3(5,15,20,25,35), D4(5,5,10,30,50), and
D5(1,2,5,16,75); U-shaped allocation designs D6(30,15,10,15,30) and D7(44,5,2,
5,44). The same sampling design was applied to each of the two populations with
sample sizes of 100 for each population.

When n1 and n2, are equal and the costs of misclassification for the two
populations are the same, the optimal choice of k in the sample discriminant rule,
W (x0) ≤ (>)k, is k = 0. Since ∆2 = 2.105, the usual rates of misclassification,
p(1|2) and p(2|1), of Fisher’s sample discriminant function are equal to

p(2|1) = p(1|2) = Φ(−∆/2) = Φ(−0.7254) = 0.234.

The transformation matrix A11 and β given in Theorem 1 are

A11 =
(

0.15684 0.25377
0.32708 −0.20215

)

and β = (0.2053, 0.0625)T . Since the true Mahalanobis distance ∆2 is not known
in practice, we replace it by many possible sample estimates of the Mahalanobis
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distance, D2, around the true value ∆2 = 2.105, in the expansions (3.9), (3.12)
and (3.14). The estimated rates of misclassification under different sampling
designs are displayed in Table 1. We use Anderson’s asymptotic expansion (3.9)
for design D1 and our correction (3.12) or (3.14) for other designs. Anderson’s
result for design D1 can also be regarded as the “naive” estimator for the other
designs.

Table 1. Achieved rates of misclassification (in %) based on asymptotic
expansion (3.9) for design D1 and asymptotic expansion (3.14) for designs
D2, . . ., D7. Here D2 is the estimate of the Mahalanobis distance.

-D/2 D1(100) D2(20,20, D3(5,15, D4(5,5, D5(1,3, D6(30,15 D7(44,5
Anderson 20,20,20) 20,25,35) 10,30,50) 5,16,75) 10,15,30) 2,5,44)

-1.725 4.523 4.226 8.901 12.331 18.658 3.075 2.044
-1.575 6.105 5.763 11.488 15.645 23.101 4.384 3.031
-1.425 8.093 7.708 14.563 19.483 28.051 6.112 4.427
-1.325 9.670 9.259 16.891 22.325 31.595 7.534 5.638
-1.225 11.463 11.029 19.441 25.381 35.298 9.196 7.108
-1.125 13.483 13.030 22.209 28.633 39.123 11.117 8.868
-1.025 15.736 15.268 25.184 32.059 43.031 13.309 10.943
-0.925 18.226 17.748 28.353 35.633 46.978 15.782 13.351
-0.825 20.949 20.469 31.696 39.325 50.922 18.540 16.107
-0.775 22.397 21.917 33.426 41.205 52.879 20.025 17.616
-0.725 23.900 23.423 35.190 43.101 54.819 21.579 19.212
-0.675 25.458 24.984 36.986 45.010 56.737 23.201 20.894
-0.625 27.067 26.599 38.809 46.926 58.629 24.888 22.660
-0.525 30.432 29.979 42.522 50.764 62.316 28.450 26.433
-0.425 33.972 33.542 46.298 54.578 65.847 32.238 30.502
-0.325 37.661 37.259 50.103 58.334 69.195 36.221 34.827
-0.225 41.467 41.099 53.902 61.998 72.342 40.358 39.359
-0.125 45.355 45.026 57.661 65.541 75.272 44.607 44.039
-0.025 49.289 49.003 61.348 68.936 77.979 48.918 48.804
0.025 51.261 50.997 63.154 70.572 79.248 51.082 51.197
0.125 55.191 54.974 66.675 73.705 81.618 55.393 55.961
0.225 59.070 58.901 70.052 76.644 83.770 59.642 60.641
0.375 64.713 64.617 74.797 80.668 86.609 65.792 67.365
0.525 70.048 70.021 79.109 84.213 89.021 71.550 73.567

Using the substitution principle (see Arnold (1981), p.402) in their simula-
tion study, Leu and Tsui (1997) find that the rates of misclassification of sampling
designs D1, D2, D3, D4, D5, D6 and D7 are 23.8 %, 23.8 %, 33.2 %, 40.3 %, 49.3
%, 23.8 % and 23.7 %, respectively. These rates are regarded as the true rates of
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misclassification for the above designs. Comparing the rates of misclassification
in Table 1 and the simulation results in Leu and Tsui (1997), we observe that
the absolute error of the estimated rate of misclassification using our corrected
expansion is 0.1% for design D1, 0.4% for design D2 and 2% to 5.5% for designs
D3 to D7 when −D/2 = −.725 is close to the true −∆/2 value. However, under
designs with increasing allocation (D3, D4, and D5), it appears that the higher
the increasing rate the higher the design effect on the rates of misclassification.
The absolute error of Anderson’s asymptotic expansion is seen to be as high as
49.3% - 23.9% = 25.4% under design D5 when −D/2 = −.725. Under propor-
tional allocation design (D2) and U-shaped allocation designs (D6 and D7), it
appears that the design effect is not as serious, and Anderson’s approximation
for the rates of misclassification may be appropriate in these situations.

We conclude that the complex survey design can affect the distribution of the
discriminant function and also the rates of misclassification. We have shown that,
under a given model, Anderson’s (1973) asymptotic expansion of the distribution
of W has an error of order O(1), not of order O(n−2), in a disproportional
stratified random sampling design. The expansion formulas in (3.12) and (3.14)
take into account auxiliary information and provide a reasonable correction of
Anderson’s expansion. The design effect on discriminant analysis is an interesting
subject for further research.

Appendix: The Proof of Theorem 1

We first consider the asymptotic expansion of the conditional expectation,
Ex̄1,x̄2,S11|s,z of Φ(·), in (3.2). Recall that we can choose A11, Q1 and Q2 so
as to transform Ω11 to I, µ1 − µ2 to δ = (∆, 0, . . . , 0)T and µz to 0, where
∆2 = (µ1 − µ2)T Ω−1

11 (µ1 − µ2) is the Mahalanobis distance.
Let A,B, V be defined by

x̄1 − x̄2 = δ +
1

(n)1/2
A, x̄1 =

1
(n)1/2

B, (A.1)

S11 = Ω11.2 +
1

(n)1/2
V, (A.2)

where Ω11.2 = A11(Ω11−Ω12Ω−1
22 Ω21)AT

11 = I−A11Ω12Ω−1
22 Ω21A

T
11 = I−βΩ22β

T =
I − η, and β, ψ, η are as given in (3.3). The (joint) conditional distribution of
(AT , BT )T given s and z is

N
[ (

(n)1/2β(z̄1 − z̄2)
(n)1/2βz̄1

)
,

(
n( 1

n1
+ 1

n2
)Ω11.2,

n
n1

Ω11.2
n
n1

Ω11.2
n
n1

Ω11.2

) ]
. (A.3)
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Then (3.2) becomes

P
[W −D2/2

D
≤ u

]

= Es,zEx̄1,x̄2,S11|s,zΦ
{[
u[(δ +

A

(n)1/2
)T (I +

V

(n)1/2
)−1(δ +

A

(n)1/2
)]1/2

+(δ +
A

(n)1/2
)T (I +

V

(n)1/2
)−1 B

(n)1/2

]

÷[(δ +
A

(n)1/2
)T (I +

V

(n)1/2
)−2(δ +

A

(n)1/2
)]1/2

}
. (A.4)

We can write

(I +
V

(n)1/2
)−1 = I − 1

(n)1/2
V +

1
n
V 2 − 1

n(n)1/2
V 3 +

1
n2
V 4

− 1
n5/2

V 5(I +
V

(n)1/2
)−1, (A.5)

(I +
V

(n)1/2
)−2 = I − 2

(n)1/2
V +

3
n
V 2 − 4

n(n)1/2
V 3 +

5
n2
V 4

− 1
n5/2

(6V 5 +
5

(n)1/2
V 6)(I +

V

(n)1/2
)−2. (A.6)

Plugging (A.5) and (A.6) into (A.4), some simple algebra as in Anderson (1973)
reduces the argument of Φ(·) in (A.4) to

u +
1

(n)1/2

[ u

2∆2
δTV δ +

1
∆
δTB

]
+

1
n

[ u

∆2
(δTV A− δTV 2δ)

+
u

∆4
(−δTAδTV δ +

7
8
(δTV δ)2) +

1
∆

(ATB − δTV B)

+
1

∆3
(−δTABT δ + δTBδTV δ)

]
+R1n(A,B, V ).

(A.7)

Here R1n(A,B, V ) is a remainder term consisting of 1
n(n)1/2 times a homogeneous

polynomial (not depending on n) of degree 3 in the elements of A,B and V , plus
1
n2 times a homogeneous polynomial of degree 4 plus a remainder term which is
O(n−5/2) for fixed A,B and V .

Let
C(B,V ) =

u

2∆2
δTV δ +

1
∆
δTB (A.8)

D(A,B, V ) =
u

∆2
(δTV A− δTV 2δ) +

u

∆4
(−δTAδTV δ +

7
8
(δTV δ)2)

+
1
∆

(ATB − δTV B) +
1

∆3
(−δTABT δ + δTBδTV δ). (A.9)
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A Taylor’s expansion of Φ( ) in (A.4) gives

Φ
[
u+

1
(n)1/2

C(B,V ) +
1
n
D(A,B, V ) +R1n(A,B, V )

]

= Φ(u) + φ(u)
[ 1
(n)1/2

C(B,V ) +
1
n

[D(A,B, V ) − u

2
C2(B,V )]

]

+
1

n(n)1/2
R2(A,B, V ) +

1
n2
R3(A,B, V ) +R4n(A,B, V ), (A.10)

where R2(A,B, V ) is a homogeneous polynomial (not depending on n but de-
pending on u) of degree 3 and R3(A,B, V ) is a polynomial of degree greater than
or equal to 4 in the elements of A,B and V . R4n(A,B, V ) is a remainder term
which is O(n−5/2) for fixed A,B and V .

Since the third-order and fourth-order absolute moments of A,B and V exist
and are bounded, the contribution of 1

n(n)1/2R2(A,B, V ) is O(n−3/2). Similarly,

the contribution of n−2R3(A,B, V ) is O(n−2). Thus, the conditional expectation,
Ex̄1,x̄2,S11|s,z of Φ(·), can be expressed as

Φ(u) + φ(u)
[ 1
(n)1/2

E[C(B,V )] +
1
n
E[D(A,B, V ) − u

2
C2(B,V )]

]
+O(n−3/2).

(A.11)
Note that nS11 given s and z has a non-central Wishart distribution with co-
variance matrix Ω11.2 and non-centrality parameter nβS22β

T . (The proof of this
property follows from Skinner (1982).) The conditional mean of S11 is therefore

E[S11|s, z] = Ω11.2 + β(S22 − Ω22)βT . (A.12)

The covariance of the elements of S11 is given by the following lemma in Skinner
(1982).

Lemma. (Skinner (1982))

Cov (S11ij , S11kl|s, z)=(Ω11.2ikΩ11.2jl + Ω11.2ilΩ11.2jk + Ω11.2jlψik + Ω11.2jkψik

+Ω11.2ilψjk + Ω11.2ikψjl)/n. (A.13)

Alternatively,

Cov (S11ij , S11kl|s, z) = (Ω∗
11ikΩ

∗
11jl + Ω∗

11ilΩ
∗
11jk − ψikψjl − ψilψjk)/n, (A.14)

where Ω∗
11 = Ω11 + β(S22 − Ω22)βT .

Since (A,B) and V are independent and Ω11 has been transformed to I,
using the Lemma and (A.12), we have (A.15)-(A.25).

E[δTV δ|s, z] = ∆2(n)1/2[β(S22 − Ω22)βT ]11 = ∆2(n)1/2(ψ11 − η11), (A.15)
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E[δTB|s, z] = ∆(n)1/2[βz̄1]1, (A.16)

E[δTV A|s, z] = ∆n
p∑

i=1

[β(S22 − Ω22)βT ]1i[β(z̄1 − z̄2)]i,

= ∆n
p∑

i=1

(ψ1i − η1i)[β(z̄1 − z̄2)]i, (A.17)

E[δTV 2δ|s, z] = ∆2
p∑

i=1

E[v2
1i|s, z] = ∆2

p∑
i=1

[Var (v1i|s, z) + (E(v1i|s, z))2]

= ∆2
p∑

i=1

(Ω∗
111iΩ

∗
11i1 + Ω∗

1111Ω
∗
11ii − ψ1iψi1 − ψ11ψii

+n[β(S22 − Ω22)βT ]1i[β(S22 − Ω22)βT ]1i)

= ∆2
[
1 + p+ (p+ 2)(ψ11 − η11) +

p∑
i=1

(ψii − ηii) + (ψ11 − η11)
p∑

i=1

(ψii − ηii)

−
p∑

i=1

ψ2
1i − ψ11

p∑
i=1

ψii + (n+ 1)
p∑

i=1

(ψ1i − η1i)2
]
, (A.18)

E[δTAδTV δ|s, z] = E[δTA|s, z]E[δT V δ|s, z]=n∆3[β(z̄1−z̄2)]1[β(S22−Ω22)βT ]11

= n∆3(ψ11 − η11)[β(z̄1 − z̄2)]1, (A.19)

E[(δTV δ)2|s, z] = ∆4[Var (v11) + (Ev11)2]

= ∆4(2Ω∗2
1111 − 2ψ2

11 + n[β(S22 − Ω22)βT ]211)

= ∆4[2 + 4(ψ11 − η11) − 2ψ2
11 + (n+ 2)(ψ11 − η11)2], (A.20)

E[ATB|s, z] = tr[Cov (A,B|s, z) + E(B|s, z)E(AT |s, z)]
= tr[

n

n1
Ω11.2 + nβz̄1(z̄1 − z̄2)TβT ]

=
n

n1
p− n

n1

p∑
i=1

ηii + n
p∑

i=1

[β(z̄1 − z̄2)]i[βz̄1]i, (A.21)

E[δTV B|s, z] = ∆n
p∑

i=1

[β(S22−Ω22)βT ]1i[βz̄1]i = ∆n
p∑

i=1

(ψ1i−η1i)[βz̄1]i, (A.22)

E[δTABT δ|s, z] = ∆2(
n

n1
− n

n1
η11 + n[β(z̄1 − z̄2)]1[βz̄1]1), (A.23)



THE EFFECT OF SAMPLING DESIGN ON ANDERSON’S EXPANSION 1129

E[δTBδTV δ)|s, z] = ∆3n[βz̄1]1[β(S22 − Ω22)βT ]11

= ∆3n[βz̄1]1(ψ11 − η11), (A.24)

and
E[δTBBT δ|s, z] = ∆2(

n

n1
− n

n1
η11 + n[βz̄1]21). (A.25)

Taking the expectation of (A.8) and using (A.15) and (A.16), we have

E[C(B,V )|s, z] = (n)1/2u

2
(ψ11 − η11) + (n)1/2[βz̄1]1. (A.26)

Also, taking the expectation of (A.9) and using results of (A.17)-(A.24), we have

E[D(A,B, V )|s, z]

=
un

∆

p∑
i=1

(ψ1i − η1i)[β(z̄1 − z̄2)]i − u[1 + p+ (p+ 2)(ψ11 − η11)

+
p∑

i=1

(ψii − ηii) + (ψ11 − η11)
p∑

i=1

(ψii − ηii) −
p∑

i=1

ψ2
1i − ψ11

p∑
i=1

ψii

+(n+ 1)
p∑

i=1

(ψ1i − η1i)2] − n
u

∆
(ψ11 − η11)[β(z̄1 − z̄2)]1

+
7u
8

[2 + 4(ψ11 − η11) − 2ψ2
11 + (n+ 2)(ψ11 − η11)2]

+
1
∆

(
n

n1
p− n

n1

p∑
i=1

ηii + n
p∑

i=1

[β(z̄1 − z̄2)]i[βz̄1]i) − n
p∑

i=1

(ψ1i − η1i)[βz̄1]i

− 1
∆

(
n

n1
− n

n1
η11 + n[β(z̄1 − z̄2)]1[βz̄1]1) + n[βz̄1]1(ψ11 − η11)

=
1
∆

[n
n1

(p−1)− n

n1

p∑
i=2

ηii+n
p∑

i=2

[β(z̄1−z̄2)]i[βz̄1]i+nu
p∑

i=2

(ψ1i−η1i)[β(z̄1−z̄2)]i
]

+u
[
(
3
4
− p) + (

1
2
− p)(ψ11 − η11) − (ψ11 − η11)

p∑
i=2

(ψii − ηii)

−(n+ 1)
p∑

i=1

(ψ1i − η1i)2−
p∑

i=2

(ψii−ηii)+
p∑

i=2

ψ2
1i+ψ11

p∑
i=1

ψii

]
. (A.27)

Applying (A.20), (A.24) and (A.25) to the expectation of the square of (A.8), we
get

E[C2(B,V )|s, z] =
u2

4
[2 + 4(ψ11 − η11) − 2ψ2

11 + (n+ 2)(ψ11 − η11)2]

+un[βz̄1]1(ψ11 − η11) + (
n

n1
− n

n1
η11 + n[βz̄1]21). (A.28)

Substituting (A.26), (A.27) and (A.28) into (A.11), yields Theorem 1.
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