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Abstract: The bootstrap method works for both smooth and nonsmooth statistics,

and replaces theoretical derivations by routine computations. With survey data

sampled using a stratified multistage sampling design, the consistency of the boot-

strap variance estimators and bootstrap confidence intervals was established for

smooth statistics such as functions of sample means (Rao and Wu (1988)). How-

ever, similar results are not available for nonsmooth statistics such as the sample

quantiles and the sample low income proportion. We consider a more complicated

situation where the data set contains nonrespondents imputed using a random hot

deck method. We establish the consistency of the bootstrap procedures for the

sample quantiles and the sample low income proportion. Some empirical results

are also presented.
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1. Introduction

Variance estimation and confidence intervals are the main research focuses
in survey problems. Popular methods include the linearization-substitution, the
jackknife, the balanced repeated replication, and the bootstrap, which can be
applied to problems in which the parameter of interest is a smooth function
of population totals. When the parameter of interest is a population quantile
or other nonsmooth parameters such as the low income proportion (to be de-
scribed later), the jackknife is not applicable; a counterpart of the linearization-
substitution method is Woodruff’s method (Woodruff (1952)), but Kovar, Rao
and Wu (1988) and Sitter (1992) found that Woodruff’s method had poor empir-
ical performance when the population was stratified using a concomitant variable
highly correlated with the variable of interest. The balanced repeated replication
method works well for quantiles (e.g., Shao and Wu (1992), Shao and Rao (1994),
Shao (1996)), but it requires the construction of balanced subsamples, which can
be very difficult if we have a stratified sample with many strata and very differ-
ent stratum sizes. The bootstrap method works for both smooth and nonsmooth
statistics so that one can use a single method for estimating variances and setting



1072 JUN SHAO AND YINZHONG CHEN

confidence intervals based on various statistics. The bootstrap requires a large
amount of routine computation, which is usually not a serious problem with the
fast computers we have nowadays.

Asymptotic validity of the bootstrap was shown by Rao and Wu (1988)
for the case of smooth functions of population totals. Similar results for quantile
problems are expected, but have not been rigorously established. While studying
properties of the bootstrap for quantile problems, we go a step further; that is,
we consider the situation where the data set contains missing values imputed
by using a random hot deck method. Most surveys involve nonrespondents and
random hot deck imputation is commonly used to compensate for missing data.
If we apply the bootstrap by treating the imputed values as if they are true
values, then the bootstrap variance estimator has a serious negative bias when
the proportion of nonrespondents is appreciable. A correct bootstrap is obtained
by imputing the bootstrap samples in the same way as imputing the original data
set (Efron (1994), Shao and Sitter (1996)).

After describing (in Section 2) the sampling design, the imputation pro-
cedure, the survey estimators, and the bootstrap procedure, we establish the
asymptotic validity of the bootstrap estimators in Section 3. Some empirical
results are presented in Section 4.

2. Sampling Design, Imputation, and the Bootstrap

The following commonly used stratified multistage sampling design is con-
sidered. The population P under consideration has been stratified into L strata
with Nh clusters in the hth stratum. From the hth stratum, nh ≥ 2 clusters
are selected with replacement (or so treated) using some probability sampling
plan, independently across the strata. Within the (h, i)th selected cluster, nhi

ultimate units are sampled according to some sampling methods, i = 1, . . . , nh,
h = 1, . . . , L. We do not need to specify the number of stages and the sampling
methods used after the first-stage sampling. Associated with the kth ultimate
unit in the ith sampled cluster of stratum h is a characteristic yhik and a survey
weight whik, k = 1, . . . , nhi, i = 1, . . . , nh, h = 1, . . . , L. The survey weights are
constructed so that

G(x) =
1
M

∑
S

whikI{y
hik

}(x) (1)

is unbiased for the population distribution

F (x) =
1
M

∑
yhik∈P

I{y
hik

}(x), (2)

where M is the total number of ultimate units in population P,
∑

S is the sum-
mation over S, the set of indices (h, i, k) in the sample, and IC(x) is the indicator
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function of the set C. Note that M may be unknown in many survey problems
and G in (1) is not necessarily a distribution function. Hence, in the case of no
missing data, a customary estimate of F in (2) is the empirical distribution

F̂ = G/G(∞) =
∑
S

whijI{y
hik

}/
∑
S

whik.

Suppose that some values yhik in the sample are missing and that there are
V disjoint subsets Sv of S such that S = S1 ∪ · · · ∪ SV and units in Sv respond
independently with the same probability, v = 1, . . . , V . That is, within Sv, we
have a uniform response mechanism. The Sv are called imputation classes and
are constructed using auxiliary variables observed for every sampled unit; e.g.,
a variable xhik taking the same value when (h, i, k) ∈ Sv (Schenker and Welsh
(1988), Section 4). Imputation is carried out within the imputation classes; that
is, a missing value with (h, i, k) ∈ Sv is imputed based on the respondents with
indices in Sv. For a concise presentation we assume V = 1 throughout the paper.
The extensions of the results to the case of any fixed V ≥ 2 are straightforward.

There are two types of commonly used imputation methods: deterministic
imputation (e.g., the mean imputation, the ratio imputation, and the regres-
sion imputation) and random (hot deck) imputation (e.g., Schenker and Welsh
(1988), Rao and Shao (1992)). Deterministic imputation, however, does not di-
rectly produce valid estimates of population quantiles, since it does not preserve
the distribution of item values. We shall, therefore, concentrate on the following
random hot deck imputation. Let SR and SM be subsets of S containing the
indices of respondents and nonrespondents, respectively. The random hot deck
method imputes missing values by a random sample selecting (with replacement)
yhik with probability whik/

∑
SR

whik for each (h, i, k) ∈ SR. Based on the im-
puted data set, the empirical distribution is

F̂ I =
( ∑

SR

whikI{y
hik

} +
∑
SM

whikI{yI
hik

}
)
/

∑
S

whik, (3)

where yI
hik denotes the imputed value for yhik, (h, i, k) ∈ SM .

In studies of income shares or wealth distributions, an important class of
population characteristics is θ = F−1(p) = inf{x : F (x) ≥ p}, the pth quantile
of F , p ∈ (0, 1). Another important parameter is the proportion of low income
economic families. Let µ = F−1(1

2) be the population median family income.
Then, the population low income proportion can be defined as ρ = F (1

2µ), (1
2µ

is called the poverty line; see Wolfson and Evans (1990)).
Customary survey estimates of θ (with a fixed p) and ρ are the sample pth

quantile and the sample low income proportion defined by

θ̂I = (F̂ I)−1(p) and ρ̂I = F̂ I(1
2 µ̂I), (4)
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respectively, where µ̂I = θ̂I with p = 1
2 , the sample median. Under some condi-

tions, θ̂I and ρ̂I are shown to be asymptotically normal (Chen and Shao (1996)).
We now consider the bootstrap with no missing data. Since some of the nh

may not be large, the original bootstrap (Efron (1979)) has to be modified. We
focus on McCarthy and Snowden’s (1985) “with replacement bootstrap” method,
which is a special case of Rao and Wu’s (1988) rescaling bootstrap. Let {y∗

hi :
i = 1, . . . , nh − 1} be a simple random sample with replacement from {yhi : i =
1, . . . , nh}, h = 1, . . . , L, independently across the strata, where yhi = {yhik :
k = 1, . . . , nhi}. Define F̂ ∗ =

∑
S∗ w∗

hikI{y∗
hik

}/
∑

S∗ w∗
hik, where y∗hik is the kth

component of y∗
hi, w∗

hik is nh/(nh − 1) times the survey weight associated with
y∗hik, and S∗ is the index set for the bootstrap sample. The bootstrap variance
estimator for θ̂ = F̂−1(p) is Var∗(θ̂∗), where θ̂∗ = (F̂ ∗)−1(p) and Var∗ is the
variance taken under the bootstrap distribution conditional on yhik, (h, i, k) ∈ S.
A level 1−2α bootstrap confidence interval for θ is C∗ = [θ̂+d∗1−α, θ̂+d∗α], where
d∗a is the (1−a)th quantile of the bootstrap distribution of θ̂∗− θ̂, conditional on
yhik, (h, i, k) ∈ S. Monte Carlo approximations are used if Var∗(θ̂∗) or C∗ has
no closed form.

When there are imputed data, however, treating yI
hik as if they are true

values and applying the previously described bootstrap do not lead to consistent
bootstrap variance estimators and correct bootstrap confidence intervals. The
bootstrap procedure has to be modified to take into account the effect of missing
data and imputation. Shao and Sitter (1996) proposed a bootstrap method which
can be described as follows. Assume that the data set carries identification flags
ahik indicating whether a unit is a respondent; that is, ahik = 1 if (h, i, k) ∈ SR

and ahik = 0 if (h, i, k) ∈ SM .
1. Draw a simple random sample {y∗

hi : i = 1, . . . , nh−1} with replacement from
{yhi : i = 1, . . . , nh}, h = 1, . . . , L, independently across the strata, where
missing values in yhi are imputed by yI

hik.
2. Let a∗hik be the response indicator associated with y∗hik, S∗

M = {(h, i, k) : a∗hik =
0}, and S∗

R = {(h, i, k) : a∗hik = 1}. Then impute the “missing” value y∗hik,
(h, i, k) ∈ S∗

M , by y∗Ihik selected with replacement from {y∗hik : (h, i, k) ∈ S∗
R}

with probability w∗
hik/

∑
S∗

R
w∗

hik, independently for (h, i, k) ∈ S∗
M .

3. Define
F̂ ∗I =

( ∑
S∗

R

w∗
hikI{y∗

hik
} +

∑
S∗

M

w∗
hikI{y∗I

hik
}
)/ ∑

S∗
w∗

hik, (5)

θ̂∗I = (F̂ ∗I)−1(p), and ρ̂∗I = F̂ ∗I(1
2 µ̂∗I),

which are bootstrap analogues of F̂ I , θ̂I , and ρ̂I , respectively. The bootstrap
variance estimators for θ̂I and ρ̂I are Var∗(θ̂∗I) and Var∗(ρ̂∗I), respectively,
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and bootstrap percentile confidence intervals for θ and ρ are

C∗I = [θ̂I + d∗I1−α, θ̂I + d∗Iα ] and C̃∗I = [ρ̂I + d̃∗I1−α, ρ̂I + d̃∗Iα ],

respectively, where d∗Ia and d̃∗Ia are (1− a)th quantiles of the bootstrap distri-
butions of θ̂∗I − θ̂I and ρ̂∗I − ρ̂I , respectively.
The key feature in this bootstrap method is step 2; that is, the bootstrap

data y∗hik are imputed in the same way as the original data set. If there is no
missing data, then step 2 can be omitted and this bootstrap reduces to that in
McCarthy and Snowden (1985).

3. Consistency of the Bootstrap

We now show the consistency of the bootstrap estimators. For this purpose,
assume that the finite population P is a member of a sequence of finite popula-
tions {Pν : ν = 1, 2, . . .}. Therefore, the values L, M , Nh, nh, nhi, whik, yhik, and
yI

hik depend on ν, but, for simplicity of notation, the population index ν for these
values will be suppressed. Also, F , θ, µ, ρ, G, F̂ , F̂ I , θ̂I , µ̂I , and ρ̂I depend on
ν and will be denoted by Fν , θν , µν , ρν , Gν , F̂ν , F̂ I

ν , θ̂I
ν, µ̂I

ν , and ρ̂I
ν , respectively.

All limiting processes will be understood to be as ν → ∞. We always assume
that the sequence {θν : ν = 1, 2, . . .} is bounded and that the total number of
selected first-stage clusters n =

∑L
h=1 nh is large; that is, n → ∞ as ν → ∞.

We first state a lemma whose proof is given in the Appendix.

Lemma 1. Assume that
(A1) maxh,i,k nhiwhik/M = O(n−1);
(A2) There is a sequence of functions {fν : ν = 1, 2, . . .} such that 0 < infν fν(θν)

≤ supν fν(θν) < ∞ and for any δν = O(n−1/2),

lim
ν→∞

[Fν(θν + δν) − Fν(θν)
δν

− fν(θν)
]

= 0.

Then
sup

|x−θν |≤cn−1/2

|H∗
ν (x)| = op(n−1/2)

for any constant c > 0, where

H∗
ν (x) = F̂ ∗I

ν (x) − F̂ ∗I
ν (θν) − F̂ I

ν (x) + F̂ I
ν (θν). (6)

The following result provides a Bahadur representation for the bootstrap
sample quantiles.

Theorem 1. Assume (A1) and (A2). Then

θ̂∗Iν = θ̂I
ν +

F̂ I
ν (θν) − F̂ ∗I

ν (θν)
fν(θν)

+ op(n−1/2) (7)
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and
sup

x
|K∗

ν (x) − Kν(x)| = op(1), (8)

where Kν is the distribution of
√

n(θ̂I
ν − θν) and K∗

ν is the bootstrap distribution
of

√
n(θ̂∗Iν − θ̂I

ν), conditional on SR and yhik, (h, i, k) ∈ SR.

Proof. Define ζ∗ν (t) =
√

n[Fν(θν +tn−1/2)−F̂ ∗I
ν (θν +tn−1/2)]/fν(θν) and η∗ν(t) =√

n[Fν(θν + tn−1/2)− F̂ ∗I
ν (θ̂∗Iν )]/fν(θν). By Lemma 1 and Lemma 1 in Chen and

Shao (1996),

ζ∗ν (0) − ζ∗ν (t) =
√

n[Hν(θν + tn−1/2) + H∗
ν (θν + tn−1/2)]/fν(θν) = op(1),

where Hν(x) = F̂ I
ν (x) − F̂ I

ν (θν) − Fν(x) + Fν(θν). From (A2),

√
n

Fν(θν + tn−1/2) − Fν(θν)
fν(θν)

→ t.

Also,

∣∣∣√n
Fν(θν) − F̂ ∗I

ν (θ̂∗Iν )
fν(θν)

∣∣∣ ≤
√

n

fν(θν)

[ 1
M

+
1

G∗
ν(∞)

max
h,i,k

w∗
hik

M

]
= Op(n−1/2).

Hence η∗ν(t) − t = op(1) and

√
n
[
θ̂∗Iν − θν − Fν(θν) − F̂ ∗I

ν (θν)
fν(θν)

]
=

√
n(θ̂∗Iν − θν) − ζ∗ν (0) = op(1). (9)

Then result (7) follows from (9) and the Bahadur representation for θ̂I
ν (Theorem

2 in Chen and Shao (1996)). Result (8) can be shown using result (7) and the
bootstrap central limit theorem (Bickel and Freedman (1984)).

The next result is for bootstrapping the sample low income proportion.

Theorem 2. Assume that (A1) holds and that (A2) holds when θν = µν and
θν = 1

2µν. Then

ρ̂∗Iν − ρ̂I
ν = F̂ ∗I

ν (1
2µν) − F̂ I

ν (1
2µν) + fν( 1

2
µν)

2fν(µν ) [F̂ I
ν (µν) − F̂ ∗I

ν (µν)] + op(n−1/2) (10)

and
sup

x
|K̃∗

ν (x) − K̃ν(x)| = op(1), (11)

where K̃ν is the distribution of
√

n(ρ̂I
ν − ρν) and K̃∗

ν is the bootstrap distribution
of

√
n(ρ̂∗Iν − ρ̂I

ν).

Proof. Result (11) can be obtained from result (10). Hence we only need to
show (10). From Lemma 1,

U∗I
ν = F̂ ∗I

ν (1
2 µ̂∗I

ν ) − F̂ ∗I
ν (1

2µν) − F̂ I
ν (1

2 µ̂∗I
ν ) + F̂ I

ν (1
2µν) = op(n−1/2).
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Using (A2), Lemma 1, Theorem 1, and Theorem 3 in Chen and Shao (1996), we
have

ρ̂∗Iν − ρ̂I
ν = F̂ ∗I

ν (1
2 µ̂∗I

ν ) − F̂ I
ν (1

2 µ̂I
ν)

= F̂ ∗I
ν (1

2µν) − F̂ I
ν (1

2µν) + F̂ I
ν (1

2 µ̂∗I
ν ) − F̂ I

ν (1
2 µ̂I

ν) + U∗I
ν

= F̂ ∗I
ν (1

2µν) − F̂ I
ν (1

2µν) + Fν(1
2 µ̂∗I

ν ) − Fν(1
2 µ̂I

ν) + op(n−1/2)

= F̂ ∗I
ν (1

2µν) − F̂ I
ν (1

2µν) + fν( 1
2
µν)

2fν(µν) [F̂ I
ν (µν) − F̂ ∗I

ν (µν)] + op(n−1/2).

From Theorems 1 and 2, the bootstrap confidence intervals C∗I and C̃∗I are
asymptotically correct, i.e., P{θν ∈ C∗I} → 1 − 2α and P{ρν ∈ C̃∗I} → 1 − 2α.

The consistency of the bootstrap variance estimators is established in the
next two theorems. Their proofs are given in the Appendix.

Theorem 3. Assume (A1) and (A2′) (A2) holds with any δν = O(n−1/2
√

log n).
Assume further that

1
n1+ε

L∑
h=1

nh∑
i=1

E
(

max
k=1,...,nhi

|yhik|ε
)
→ 0 (12)

for some ε > 0 and that lim infν nσ2
ν(θν) > 0, where σ2

ν(x) is the asymptotic
variance of F̂ I

ν (x). Then

n[Var∗(θ̂∗Iν ) − σ2
ν(θν)/f2

ν (θν)] = op(1). (13)

Remark. (1) Condition (A2′) is slightly stronger than (A2). Using (A2′) and
the same arguments in the proof of Lemma 1 as in Chen and Shao (1996), we
can show that

sup
|x−θν |≤cn−1/2

√
log n

|F̂R
ν (x) − F̂R

ν (θν) − Fν(x) + Fν(θν)| = op(n−1/2) (14)

for any c > 0.
(2) Condition (12) is a very weak moment condition since ε can be any positive
number. Without this condition, the bootstrap variance estimator for θ̂I

ν may be
inconsistent (Ghosh, Parr, Singh and Babu (1984)).

Theorem 4. Assume that (A1) holds and that (A2′) holds with θν = 1
2µν and

θν = µν. Then
n[Var∗(ρ̂∗Iν ) − γ2

ν ] = op(1), (15)

where γ2
ν is the asymptotic variance of ρ̂I

ν given by

γ2
ν = σ2

ν(
1
2µν) + σ2

ν(µν)
[

fν( 1
2
µν)

2fν(µν )

]2 − σν(1
2µν , µν)

fν( 1
2
µν)

fν(µν) , (16)
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and σν(x, y) is the asymptotic covariance between F̂ I
ν (x) and F̂ I

ν (y).

4. A Simulation Study

We present the results from a simulation study examining the performance of
the bootstrap percentile confidence interval and the bootstrap variance estimator
in a problem where θ̂I = (F̂ I)−1(1

2 ), the sample median. For comparison, we also
included Woodruff’s method in the simulation study.

We considered a population with L = 32 strata. In the hth stratum, the
y-values of the population were generated according to yhi

i.i.d.∼ N(Ȳh, σ2
h), i =

1, . . . , Nh, where the population parameters Nh, Ȳh, and σh are listed in Table 1.

Table 1. Population parameters and nh

h Nh Ȳh σh nh h Nh Ȳh σh nh

1 38 13.7 6.7 3 17 34 9.2 4.5 2
2 38 13.0 6.5 3 18 34 9.0 4.6 2
3 38 12.5 6.4 3 19 34 9.8 4.4 2
4 38 12.0 6.6 3 20 34 8.6 4.1 2
5 38 12.3 6.1 3 21 34 8.3 4.9 2
6 38 11.7 6.8 3 22 22 8.2 4.6 2
7 38 11.4 6.3 3 23 22 8.0 4.3 2
8 38 11.2 6.4 3 24 22 7.9 4.7 2
9 38 11.0 5.5 3 25 22 7.8 3.1 2

10 38 10.8 5.6 3 26 22 7.5 3.9 2
11 38 10.6 5.9 3 27 22 7.2 3.7 2
12 34 10.3 5.3 2 28 22 7.0 3.6 2
13 34 10.1 5.4 2 29 22 6.7 3.4 2
14 34 9.7 5.8 2 30 22 6.4 3.2 2
15 34 9.5 4.8 2 31 22 6.1 3.5 2
16 34 9.4 4.7 2 32 22 6.0 3.7 2

After the population was generated, a simple random sample of size nh was
drawn from stratum h, independently across the 32 strata. Thus, the sampling
design is a stratified one stage simple random sampling. The sample sizes nh are
also listed in Table 1.

The respondents {yhi, (h, i) ∈ SR} were obtained by assuming that the sam-
pled units responded with equal probability p. The missing values {yhi, (h, i) ∈
SM} were imputed by taking an i.i.d. sample from {yhi, (h, i) ∈ SR}, with se-
lection probability whi/

∑
Ar

whi for yhi, (h, i) ∈ SR, where the survey weight
whi = wh = Nh/nh in this special case.

The bootstrap percentile confidence interval (for the population median)
and the bootstrap variance estimator (for the sample median θ̂I) were computed
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according to the procedure described in Section 2. Monte Carlo approximations
of size 1,000 were used in computing quantities such as d∗Ia and Var∗(θ̂∗I). The
Woodruff’s confidence interval is

[(F̂ I)−1(1
2 − 1.96σ̂(θ̂I)), (F̂ I)−1(1

2 + 1.96σ̂(θ̂I))],

where, for any fixed x, σ̂2(x) is the adjusted jackknife variance estimator (Rao
and Shao (1992)) for the “statistic” F̂ I(x). Woodruff’s variance estimator is
given by [(F̂ I)−1(1

2 + 1.96σ̂∗
ν(θ̂I)) − (F̂ I)−1(1

2 − 1.96σ̂∗
ν(θ̂I))

2 × 1.96

]2
.

The simulation size was 10,000. All the computations were done in UNIX
at the Department of Statistics, University of Wisconsin-Madison, using IMSL
subroutines GENNOR, IGNUIN and GENUNF for random number generations.

Table 2. Results for the sample median

RB (%) MSE Prob (%) Length
p (%) True Var BM WM BM WM BM WM BM WM

100 0.69 1.4 6.3 0.32 0.37 92.6 93.6 3.19 3.10
90 0.86 0.4 12.1 0.41 0.48 92.9 96.0 3.54 3.57
80 1.03 2.3 19.2 0.53 0.63 93.1 96.8 3.91 4.03
70 1.20 5.9 25.9 0.67 0.80 93.3 97.4 4.28 4.47
60 1.47 4.7 25.9 0.84 0.98 93.1 97.9 4.70 4.94
50 1.77 8.0 28.8 1.10 1.27 93.8 97.7 5.21 5.45
40 2.19 11.4 32.0 1.44 1.67 94.6 97.7 5.88 6.10

BM: the bootstrap method
WM: Woodruff’s method

Table 2 lists, for some values of the response probability p, the true variance
of θ̂I (approximated by the sample variance of the 10,000 simulated values of
θ̂I), the empirical relative bias (RB) of the bootstrap or Woodruff’s variance
estimator, which is defined as (the average of simulated variance estimates − the
true variance)/ the true variance, the mean square error (MSE) of the bootstrap
or Woodruff’s variance estimator, and the coverage probability and length of 95%
bootstrap or Woodruff’s confidence interval.

The following is a summary of the simulation results.
1. Variance estimation. The bootstrap variance estimator performs well, but

Woodruff’s variance estimator has a large relative bias (except in the case
of no missing data) which results in a large MSE. In the case of no missing
data, the poor performance of Woodruff’s variance estimator was noticed and
explained by Kovar, Rao and Wu (1988) and Sitter (1992). In our simulation
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study, Woodruff’s variance estimator behaves well when there is no missing
data, but performs poorly when there are imputed data; the relative bias of
Woodruff’s variance estimator increases as the response rate decreases.

2. Confidence interval. In the case of no missing data, both confidence intervals
have coverage probability about 93%; Woodruff’s interval is slightly better
and has slightly shorter length. When there are imputed data, Woodruff’s
interval is slightly longer than the bootstrap percentile confidence interval
(which is related to the large positive bias of Woodruff’s variance estima-
tor); the coverage probability of the bootstrap percentile confidence interval
is around 93-94%, whereas the coverage probability of Woodruff’s interval is
around 96-98%. The coverage error of Woodruff’s interval is not serious in
this simulation study, but the problem could be much worse if the coverage
probability of Woodruff’s interval were 95% in the case of no missing data or
if the bias of Woodruff’s variance estimator were negative instead of positive.
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Appendix

Proof of Lemma 1. The proof is very similar to that of Lemma 1 in Chen and
Shao (1996). Let E∗I be the expectation under the bootstrap imputation. Then

E∗I(F̂ ∗I
ν ) = G∗R

ν /q∗Rν = F̂ ∗R
ν ,

where

G∗R
ν =

1
M

∑
S∗

R

w∗
hikI{y∗

hik
},

q∗Rν = G∗R
ν (∞), and F̂ ∗R

ν = G∗R
ν /q∗Rν . Define

H∗I
ν (x) = F̂ ∗I

ν (x) − F̂ ∗I
ν (θν) − F̂ ∗R

ν (x) + F̂ ∗R
ν (θν)

and
H∗R

ν (x) = G∗R
ν (x) − G∗R

ν (θν) − q∗Rν [F̂R
ν (x) − F̂R

ν (θν)].

Then E∗[H∗R
ν (x)] = 0. Following the proof of Lemma 1 in Chen and Shao (1996),

we can show that

sup
|x−θν |≤cn−1/2

|H∗I
ν (x) + H∗R

ν (x)/q∗Rν | = op(n−1/2)
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and
sup

|x−θν |≤cn−1/2

|HI
ν (x)| = op(n−1/2).

Hence, the result follows from H∗
ν (x) = H∗I

ν (x) + H∗R
ν (x)/q∗Rν − HI

ν (x).

Proof of Theorem 3. The proof parallels that of Theorem 1 in Ghosh et al.
(1984), but some modifications are needed to take into account the stratified
multistage sampling and the imputation. From (8) and θ̂I

ν − θν = Op(n−1/2), it
suffices to show that

E∗|
√

n(θ̂∗Iν − θν)|2+δ = (2 + δ)
∫ ∞

0
t1+δP∗{

√
n|θ̂∗Iν − θν | > t}dt = Op(1) (17)

for a δ > 0, where E∗ and P∗ are the expectation and probability with respect
to bootstrap sampling. Note that

|θ̂∗Iν |ε
n1+ε

≤ 1
n1+ε

max
h,i,k

|yhik|ε ≤ 1
n1+ε

L∑
h=1

nh∑
i=1

max
k=1,...,nhi

|yhik|ε = op(1)

under condition (12). Hence P{P∗{
√

n|θ̂∗Iν − θν | ≤ bn} = 1} → 1, where bn =
n1/2+(1+ε)/ε. Therefore, (17) follows from

∫ bn

1
t1+δP∗{

√
n|θ̂∗Iν − θν| > t}dt = Op(1). (18)

From (A1), there is a constant c1 > 0 such that

P
{
n sup

x
Var∗[G∗R

ν (x) − q∗Rν F̂R
ν (x)] ≤ c1

}
→ 1.

Also, (A1) implies the existence of a constant c2 >0 such that supν maxh,i,k whik/M

≤ c2
2. Let cε = 1

2 [12 + (1 + ε)/ε](2 + δ)max{c1, c2} and an = c0
√

cε log n, where c0

is a constant satisfying infν fν(θν) > 4p−1
R c−1

0 . By (14),

a−1
n n1/2[F̂R

ν (θν + ann−1/2) − F̂R
ν (θν) − Fν(θν + ann−1/2) + Fν(θν)] = op(1);

by (A2′), lim infν a−1
n n1/2[Fν(θν +ann−1/2)−Fν(θν)] > 4p−1

R c−1
0 and a−1

n n1/2[F̂R
ν

(θν)−p] = op(1). Hence P{F̂R
ν (θν +ann−1/2)−p ≥ 4p−1

R c−1
0 ann−1/2} → 1. Thus,

in the rest of the proof we may assume

n sup
x

Var∗[G∗R
ν (x) − q∗Rν F̂R

ν (x)] ≤ c1 (19)

and
F̂R

ν (θν + ann−1/2) − p ≥ 4p−1
R c−1

0 ann−1/2. (20)
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Define

B∗
ν = {q∗Rν |(F̂ ∗R

ν − F̂R
ν )(θν + ann−1/2)| ≥ c−1

0 ann−1/2} ∪ {q∗ν ≤ pR/2}.

Using Bernstein’s and Hoeffding’s inequalities, together with (19), (A1), (A2′)
and the choice of cε,

P∗(B∗
ν) = Op(b−(2+δ)

n ).

By (20), on the complement of the set B∗
ν , q∗Rν [F̂ ∗I

ν (θν+ann−1/2)−p]≥c−1
0 ann−1/2.

Hence, by Hoeffding’s inequality again,

P∗I{
√

n(θ̂∗Iν − θν) ≥ an} = P∗I{p ≥ F̂ ∗I
ν (θν + ann−1/2)}

≤ exp{−2n[q∗Rν (F̂ ∗R
ν (θν + ann−1/2) − p)]2/c2} + IB∗

ν

≤ exp{−2cε log n/c2} + IB∗
ν
,

where P∗I is the probability with respect to the bootstrap imputation. Therefore,
∫ bn

an

t1+δP∗{
√

n(θ̂∗Iν − θν) > t}dt = E∗
∫ bn

an

t1+δP∗I{
√

n(θ̂∗Iν − θν) > t}dt

≤ E∗[b2+δ
n P∗I{

√
n(θ̂∗Iν − θν) > an}]

≤ b2+δ
n [exp{−2cε log n/c2} + P∗(B∗

ν)]

= Op(1). (21)

Similarly, it can be shown that
∫ bn

an

t1+δP∗{
√

n(θ̂∗Iν − θν) < −t}dt = Op(1). (22)

Let tν = θν + tn−1/2. Then
∫ an

1
t1+δP∗{

√
n(θ̂∗Iν −θν) > t}dt =

∫ an

1
t1+δP∗{p ≥ F̂ ∗I

ν (tν)}dt

≤
∫ an

1
t1+δP∗{|Fν(tν)−F̂ ∗I

ν (tν)| ≥ Fν(tν)−p}dt

≤
∫ an

1

t1+δ

[Fν(tν) − p]4
E∗|Fν(tν) − F̂ ∗I

ν (tν)|4dt

≤ Op(n−2)
∫ an

1

t1+δ

t4n−2
dt,

where the last inequality follows from (A2′) and the fact that (A1) and (A2′)
imply

sup
1≤t≤an

E∗|Fν(tν) − F̂ ∗I
ν (tν)|4 = Op(n−2). (23)
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By choosing δ ∈ (0, 1), we obtain
∫ an

1
t1+δP∗{

√
n(θ̂∗Iν − θν) > t}dt = Op(1). (24)

Similarly, ∫ an

1
t1+δP∗{

√
n(θ̂∗Iν − θν) < −t}dt = Op(1). (25)

Hence (18) follows from (21)-(25). This completes the proof.

Proof of Theorem 4. From (11) and ρ̂I
ν − ρν = Op(n−1/2), we only need to

show
E∗|

√
n(ρ̂∗Iν − ρν)|2+δ = Op(1) (26)

for a δ > 0. From (A2′), there is a constant c > 0 such that
√

n|Fν(1
2 µ̂∗I

ν )−ρν | ≥ t

implies
√

n|µ̂∗I
ν − µν | ≥ ct for all ν and 0 < t ≤ √

log n. Noting that 0 ≤ Fν ≤ 1,
we obtain

E∗|
√

n[Fν(1
2 µ̂∗I

ν ) − ρν ]|2+δ = (2 + δ)
∫ √

2n

0
t1+δP∗{

√
n|Fν(1

2 µ̂∗I
ν ) − ρν)| ≥ t}dt

≤ (2n)1+δ/2P∗{
√

n|Fν(1
2 µ̂∗I

ν ) − ρν)| ≥
√

log n}

+ (2 + δ)
∫ √

log n

0
P∗{

√
n|Fν(1

2 µ̂∗I
ν ) − ρν)| ≥ t}dt

≤ (2n)1+δ/2P∗{
√

n|µ̂∗I
ν − µν | ≥ c

√
log n}

+(2 + δ)
∫ √

log n

0
P∗{

√
n|µ̂∗I

ν − µν | ≥ ct}dt

= Op(1) (27)

by the proof of Theorem 3. Similarly,

E∗|
√

n[ρ̂∗Iν − Fν(1
2 µ̂∗I

ν )]|2+δ ≤ n1+δ/2P∗{
√

n|µ̂∗I
ν − µν | ≥

√
log n}

+ E∗|
√

n[ρ̂∗Iν − Fν(1
2 µ̂∗I

ν )]|2+δI{√n|µ̂∗I
ν −µν |≥

√
log n}

= Op(1) + E∗ sup
x∈Dν

|√n[F̂ ∗I
ν (x) − Fν(x)]|2+δ , (28)

where Dν = {x : |x − 1
2µν | ≤ n−1/2

√
log n}. Hence (26) follows from (27), (28)

and
E∗ sup

x∈Dν

|√n[F̂ ∗I
ν (x) − Fν(x)]|2+δ = Op(1). (29)

Since E∗|
√

n[F̂ ∗I
ν (1

2µν) − ρν ]|2+δ = Op(1), (29) follows from (14) and

E∗ sup
x∈Dν

|√n[H∗
ν (x)]|2+δ = Op(1), (30)
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where H∗
ν (x) is defined by (6) with θν = 1

2µν . From the proof of Lemma 1 in the
Appendix, (30) follows from

E∗ max
−n≤�≤n

|√nH∗R
ν (ην�)|2+δ = Op(1) (31)

and
E∗ max

−n≤�≤n
|√nH∗I

ν (ην�)|2+δ = Op(1), (32)

where ην� = 1
2µν + n−3/2

√
log n�, � = −n, . . . , n, H∗R

ν (x) and H∗I
ν (x) are defined

in the proof of Lemma 1. Using Bernstein’s inequality, we obtain that

E∗ max
−n≤�≤n

|√nH∗R
ν (ην�)|2+δ

= (2 + δ)
∫ ∞

0
t1+δP∗

{
max

−n≤�≤n
|√nH∗R

ν (ην�)| ≥ t
}
dt

≤ 4(2 + δ)n
∫ ∞

0
t1+δ exp

{
− t2

Op(n−1/2)(
√

log n + t)

}
dt

= op(1).

Therefore, (31) holds. (32) can be similarly shown. The proof is completed.
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