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Abstract: Although most survey texts are concerned primarily with problems of

estimating finite population parameters, survey data are often used to develop and

fit stochastic models describing the underlying structure of the population. In this

paper we develop analogues of the score test for use with survey data where the use

of multi-stage sampling and variable selection probabilities cause special problems.
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1. Introduction

In most conventional statistics courses, a clear distinction is made between
sample survey methods on the one hand and the rest of applied statistics on
the other. Traditional survey methods are concerned with estimating population
means, totals and proportions, along with related quantities like ratios, while
the rest of applied statistics concentrates on model-building for explanation, pre-
diction and so on. In reality, many surveys (especially in the health and social
sciences) are aimed at exploring relationships and building predictive models,
just as in the rest of statistics. Surveys are conducted to find out what effect
education has on unemployment or income, what factors affect crib deaths in
infants or strokes in older people and so on. For example, the data shown in
Table 1 comes from a stratified case control sample drawn from records of people
under the age of 35 in northern Malawi as given in Clayton and Hills (1993).
Here “cases” are new cases of leprosy and Scar is a binary variable taking the
value one if a person has a BCG vaccination scar and zero otherwise. The aim in
this study is to gain some insight into whether or not a BCG vaccination affects
the chance of contracting leprosy rather than estimating population totals and
proportions.

What makes the analysis of survey data different? One obvious problem is
that, by their very nature, analytical surveys are observational studies and we
are always faced with the difficulty of making causal inferences in situation where
we have no control over the assignment of experimental treatments. There are
two other major features that distinguish the analysis of survey data. The first
is the correlation induced by the hierarchical structure of multi-stage sampling.
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Because of the cost, most large scale surveys are carried out in two or more
stages. The lack of independence within primary sampling units (census blocks,
doctors’ practices, schools, households) means that standard errors, confidence
intervals and P -values produced by standard computer packages are invalid. This
is by no means unique to surveys, however. Many experimenters have to cope
with correlation between repeated measurements on the same subject, siblings
from the same litter, and so on. As an aside it is interesting to note that a
number of techniques developed to handle survey data are starting to find uses
in other areas that have to deal with correlated data (see Rao and Scott (1991)
for a simple example). Perhaps more important is the use of variable selection
probabilities. If some parts of the population are sampled more intensively than
others, then the resulting sample can look very different from the population
from which it is drawn and about which we want to make inferences. The data
in Table 1, from a survey in which cases of leprosy are heavily oversampled, gives
an illustration of this phenomenon, although it is difficult to see the impact with
a binary response variable. A more graphic illustration is shown in Figure 1 of
Scott and Wild (1986) which plots blood alcohol readings against readings from
a blood test for a sample of respondents. The sample was a stratified one, with
strata defined by values of the response variable and with very different sampling
fractions between strata. When the data were weighted to allow for these varying
selection probabilities, the fitted straight line gave a perfectly adequate fit.

Table 1. A stratified case-control sample

Scar = 0 Scar = 1 Total Popn
Agea Case Control Case Control Case Control Control
7.5 11 10 14 15 25 25 17327

12.5 28 19 22 31 50 50 13172
17.5 16 6 28 38 44 44 10325
22.5 20 13 19 26 39 39 8026
27.5 36 35 11 12 47 47 4981
32.5 47 49 6 4 53 53 6479
Total 258 258 61310

a Age is age-group midpoint

In this paper, we attempt to show how standard survey methods can be
adapted to produce valid methods for fitting models to survey data, and to test
hypotheses about model parameters.

2. Quasi-Score Tests

Suppose that, attached to all units of a finite population of size N , we have
measurements (xi, yi) made on a vector of explanatory variables, x, and a re-
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sponse variable, Y . We assume that for a given value of x, Y is generated by
some random process with mean

E(Yi) = µi = µ(xi, β) (2.1)

and we suppose that we have in mind some working model for the variance, say

Var(Yi) = V0i = V0(µi) (2.2)

for i = 1, . . . , N . The model (2.1) for the mean is assumed to be valid, but the
working variance (2.2) may only be a rough approximation at best.

We do not observe values for all the population units but only for those
in a sample drawn from the finite population according to some well-defined
sampling scheme. We are interested in estimating the parameters β and, more
particularly, in testing the hypothesis H0 : β2 = β20 using the sample data, where
β is partitioned as β = (β′

1, β
′
2)

′ with β2 a q × 1 vector, and β1 a r × 1 vector.
Suppose that, if we had values for the whole finite population, we could

obtain a consistent estimator of β by solving the estimating equations

S(β) =
N∑
1

ui(β) = 0, (2.3)

where ui(β) has kth component uik = (∂µi/∂βk)(yi − µi)/V0i. Thus we are work-
ing in the general estimating equations framework considered by Godambe and
Thomson (1986) and Godambe (1991), although there is no requirement that the
estimating equations be optimal or that the units be sampled independently from
the superpopulation. Note that the resulting estimator is the quasi-likelihood
estimator if the finite population is regarded as a random sample from the super-
population, but the estimator is consistent under much more general conditions.
Essentially, all we need to assume is that the finite population can be regarded as
a self-weighting sample from the superpopulation. Note that the equations (2.3)
are similar to the generalized estimating equations of Liang and Zeger (1986).

In reality, we do not know the values for the whole finite population but
only for those units in a sample drawn from the population. We suppose only
that the sample design provides consistent, asymptotically normal estimators of
population totals, and associated standard errors. Then, since S(β) is a vector
of population totals for fixed β, we can produce an estimator of S(β) as

Ŝ(β) =
∑
i∈s

wisui(β), (2.4)

where the survey weights, wis, may depend on the sample s (e.g., post-stratified
weights). Our sample estimator, β̂, is obtained by solving Ŝ(β̂) = 0. This
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approach was suggested by Fuller (1975) for linear regression with two-stage
sampling, and by Binder (1983) for generalized linear models and any survey
design.

Under suitable conditions (see Binder (1983) for details), β̂ is asymptotically
normal with mean β, and we can estimate Cov (β̂) consistently by

V̂(β̂) = [J(β̂)]−1V̂S(β̂)[J(β̂)]−1, (2.5)

where

J(β) = − ∂Ŝ
∂β′ = −

∑
i∈s

wis
∂ui(β)

∂β′ (2.6)

and V̂S(β̂) is the estimated covariance matrix of Ŝ(β) under the specified survey
design evaluated at β = β̂. Note that V̂S(β̂) is obtained from the standard survey
variance estimator for a total since Ŝ(β), given by (2.4), is the estimator of the
total S(β) given by (2.3).

Now consider the problem of testing the null hypothesis that β2 = β20. One
approach is to base the test on the corresponding Wald statistic

X2
W = (β̂2 − β20)

′V̂(β̂2)
−1(β̂2 − β20) (2.7)

which is asymptotically a χ2
q variable under H0. This has the usual problems

associated with the Wald test. For example, it is not invariant to nonlinear
transformations of the parameters β and often has poor small sample behaviour.
In addition, with survey data the effective degrees of freedom for estimating
Cov (β̂) is often rather small, resulting in instability of V̂(β̂2)−1 when the dimen-
sion of β2 is large (see Rao and Thomas (1987)). Ideally we would prefer to use
a likelihood ratio test, which is invariant and usually has better small sample
properties, but we have no likelihood from which to construct such a test here.
However, the score test shares many of the desirable properties of the likelihood
ratio test, and it is relatively straightforward to construct a simple analogue of
the score test in our framework. Our development of the test and its properties
parallels the development of Boos (1992) for the case of random sampling from
an infinite population.

Let β̃ = (β̃′
1, β

′
20)

′ be the solution of Ŝ1(β̃) = 0 where Ŝ = (Ŝ′
1, Ŝ

′
2)

′ is
partitioned in the same way as β. The analogue of the score test, which we shall
call the quasi-score test, is based on the statistic

X2
S = S̃′

2Ṽ
−1
2S S̃2, (2.8)

where S̃2 = Ŝ2(β̃) and Ṽ2S is a consistent estimator of Cov (S̃2). The asymptotic
distribution of S̃2 under H0 can be obtained as in Boos (1992), who treated the
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case of random sampling from an infinite population, by expanding Ŝ1(β̃) and
Ŝ2(β̃) as a function of β̃ about the true value, β∗ = (β∗′

1 , β′
20)

′. We give a brief
sketch of the development here but omit technical details for simplicity.

Expanding Ŝ1(β̃) and Ŝ2(β̃) gives

0 = Ŝ1(β̃) ≈ Ŝ1(β∗) − J∗
11(β̃1 − β∗

1) (2.9)

and
Ŝ2(β̃) ≈ Ŝ2(β∗) − J∗

21(β̃1 − β∗
1), (2.10)

where

J∗ = J(β∗) =


J∗

11 J∗
12

J∗
21 J∗

22


 .

Then, replacing J∗ by its expected value, I∗ say, and substituting for (β̃1 − β∗
1)

from (2.9) into (2.10) yields

S̃2 = Ŝ2(β̃) ≈ Ŝ2(β∗) − I∗21I
∗−1
11 Ŝ1(β∗) =

∑
i∈s

wiszi, (2.11)

where zi = u2i(β∗) − Au1i(β∗) with A = I∗21I
∗−1
11 and ui = (u′

1i,u
′
2i)

′. It then
follows from our assumptions about the survey estimator of a total that S̃2 is
asymptotically normal with mean 0 and covariance matrix Cov (S̃2) under H0.
Thus, X2

S is asymptotically a χ2
q variable under H0.

The quasi-score test based on X2
S shares most of the advantages of its infinite

population counterpart. With an appropriate choice for the variance estimator
Ṽ2S (we discuss this point further in Section 3), the test is invariant to nonlinear
transformation of the parameters β (Boos (1992)). Moreover, we need only ever
fit the simple null model, which is a considerable advantage if the full model
contains a large number of terms as will be the case, for example, with a factorial
structure of explanatory variables containing a large number of interactions. The
few studies that have been carried out so far indicate that the small sample
behaviour tends to be better than that of the corresponding Wald test, but much
more work needs to be done.

If the effective degrees of freedom is small, Ṽ−1
2S can become unstable when

the dimension of β2 (or S̃2) is large. Thus both the Wald test (2.7) and the
quasi-score test (2.8) suffer from instability. We discuss some alternative tests in
Section 4 in an attempt to overcome the problem.

3. Estimation of Cov(S̃2)

Calculation of the quasi-score statistic X2
S requires an estimator of Cov(S̃2).

A resampling method, such as the jackknife or balanced repeated replication
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(BRR), is particularly attractive in the case of stratified multistage sampling
because post-stratification and unit nonresponse adjustment are automatically
taken into account. For example, a jackknife estimator of Cov(S̃2) under stratified
multistage sampling with ng sampled clusters from the gth stratum is given by

V̂J(S̃2) =
L∑

g=1

ng − 1
ng

ng∑
j=1

(S̃2(gj) − S̃2)(S̃2(gj) − S̃2)′. (3.1)

Here S̃2(gj) is obtained in the same manner as S̃2 when the data from the (gj)-
th sample cluster is deleted, but using jackknife weights (see the Appendix)
and recalculating β̃, say β̃(gj). Computation of β̃(gj) = (β̃′

1(gj), β
′
20)

′ can be
simplified by performing only a single Newton-Raphson iteration for the solution
of Ŝ1(gj)(β1, β20) = 0, using β̃ as the starting value, where Ŝ1(gj) (β1, β20) uses
the jackknife weights instead of the original weights. We refer the reader to Shao
and Tu (1995), Chapter 6 and Rao (1996) for details on the jackknife method and
other resampling methods under stratified multistage sampling. A proof of the
asymptotic consistency of the jackknife variance estimator (3.1) as

∑
nh → ∞ is

sketched in the Appendix.
The jackknife quasi-score test resulting from V̂J(S̃2) is invariant to a one-

to-one reparametrization of β with non-singular Jacobian, unlike the Wald test
X2

W . Alternatively, we can use a Taylor linearization variance estimator V̂L(S̃2).
This amounts to applying the survey variance estimator for a total to the repre-
sentation in (2.11), replacing zi by

z̃i = u2i(β̃) − Ãu1i(β̃), (3.2)

where Ã is an estimator of A∗ = I∗21I
∗−1
11 . Note that the survey variance estimator

used should account for post-stratification and unit nonresponse.
There are several possible choices for Ã. It might seem natural to use J(β̃)

in place of I∗, where J(β) is defined by (2.6) and, in fact, this form of the quasi-
score statistic (2.8) (with q = 1) is used by Binder and Patak (1994) to construct
confidence intervals for β2, although their derivation is quite different from that
given here. However, this choice does not have the desired invariance property
in general. We can get an invariant test by taking the expectation of J(β) under
the mean specification defined by (2.1), giving

I(β̃) =
∑
i∈s

wisDi(β̃)Di(β̃)′/V0i(µ̃i), (3.3)

where Di(β) = ∂µi(β)/∂β, µ̃i = µ(xi, β̃). We suspect that I(β̃) is also more
stable than J(β̃) and it is the one we recommend as the choice for Ã, although
again, much more work is needed here. Note that I(β̃) and J(β̃) are identical for
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models with canonical link functions (e.g., logistic regression). We could replace
β̃ by β̂ in either of the above choices, but this would require fitting the full model
and thus would negate one of the principal attractions of the quasi-score test.

4. Alternative Tests

We now consider some alternative tests in an attempt to overcome the degrees
of freedom problem in the context of stratified multistage sampling. The degrees
of freedom for estimating Cov(β̂2) or Cov(S̃2) is usually taken as f = n − L,
where n =

∑
nh is the total number of sample clusters and L is the number

of design strata. In the case of subgroups (or domains), the degrees of freedom
can be much less if the subgroup population is not uniformly distributed across
strata. For a subgroup, the degrees of freedom is taken as f = n′ − L′, where
L′ is the number of strata that contain at least one sample member from the
subgroup and n′ is the total number of sample clusters that contain at least one
sample member from the subgroup. We refer the reader to Rust and Rao (1996)
for further discussion on degrees of freedom for variance estimation.

If the degrees of freedom, f , is not large, an F -version of the Wald test is
often used. This test treats

FW = [(f − q + 1)/(fq)]X2
W (4.1)

as an F -variable with q and f −q+1 degrees of freedom under H0 (see e.g., Korn
and Graubard (1990)). Empirical results suggest that FW might perform better
than X2

W in controlling the size of the test when f is not large (see e.g., Thomas
and Rao (1987)). An F -version of the score test treats

FS = [(f − q + 1)/(fq)X2
S (4.2)

as an F -variable with q and f − q + 1 degree of freedom.
Rao and Scott (1984) proposed corrections to naive tests that ignore the

survey data features. A naive test, using normalized survey weights w̃is = wis/w̄s,
is given by X2

NS = S̃′
2N Ṽ−1

2NSS̃2N , where w̄s is the mean of the weights wis, i ∈ s,
Ṽ2NS = Ĩ22 − Ĩ21Ĩ−1

11 Ĩ12, S̃2N is obtained by changing wis to w̃is in S̃2, and Ĩ is
given by I(β̃) with wis changed to w̃is. In terms of the original weights wis, we
can express X2

NS as X2
NS = w̄−1

s S̃′
2V

−1
2NSS̃2, where V2NS = I22 − I21I−1

11 I12 and
I = I(β̃) is given by (3.3). If wis = w, i.e., equal weights, then X2

NS reduces to
the classical score statistic.

Following Rao and Scott (1984), a first-order correction to X2
NS is given by

X2
S(1) = X2

NS/δ·, (4.3)

where δ· =
∑

δi/q and δ1, . . . , δq are the nonzero eigenvalues of w̄−1
s [V−1

2NSṼ2S ].
Under H0, X2

S(1) is treated as a χ2
q variable. Note that X2

S(1) avoids the inversion
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of Ṽ2S , unlike X2
S ; Ṽ−1

2NS remains stable even if f is small. It follows from (4.3)
that normalization of weights is not necessary in using X2

S(1) because it reduces
to

X2
S(1) = [S̃′

2V
−1
2NSS̃2]/δ̃·, (4.4)

where δ̃· =
∑

δ̃i/q and δ̃1, . . . , δ̃q are the nonzero eigenvalues of V−1
2NSṼ2S . A

more accurate, second-order correction to X2
NS is given by

X2
S(2) = X2

S(1)/(1 + ã2), (4.5)

where ã2 =
∑

(δ̃i − δ̃·)2/[(q − 1)δ̃2· ] is the square of the coefficient of variation of
the δ̃i’s. Under H0, X2

S(2) is treated as a χ2 variable with degrees of freedom
q/(1 + ã2). The first-order correction X2

S(1) is adequate if the coefficient of
variation of the δ̃i’s is small. Rotnitzky and Jewell (1990) proposed corrections
to score tests, similar to (4.4) and (4.5), in the context of longitudinal data on a
simple random sample of individuals.

Korn and Graubard (1990) proposed Bonferroni t statistics in the context of
a Wald test. The Bonferroni procedure for nominal level α rejects H0 when

max
1≤i≤q

(|β̂r+i − β0,r+i|/s(β̂i)) ≥ tf (α/2q), (4.6)

where s(β̂i) is the standard error of β̂i, tf (α/2q) is the upper α/(2q)-point
of a t variable with f degrees of freedom, β̂2 = (β̂r+1, . . . , β̂r+q)′ and β20 =
(β0,r+1, . . . , β0,r+q)′. One could use either the Taylor linearization variance esti-
mator (2.5) or a resampling variance estimator, such as the jackknife, to calculate
s(β̂i). The asymptotic size of the Bonferroni test (4.6) is less than or equal to
α. Korn and Graubard (1990) demonstrated the benefits of the Bonferroni pro-
cedure (4.6) in terms of both size and power of the test. Thomas, Singh and
Roberts (1996) found similar benefits in the context of tests of independence in
a two-way table under cluster sampling. However, (4.6) is not invariant to linear
transformations.

A Bonferroni procedure in the context of the quasi-score test (2.8) can also
be constructed. This procedure for nominal level α rejects H0 when

max
1≤i≤q

[|S̃r+i|/s(S̃r+i)] ≥ tf (α/2q), (4.7)

where s(S̃r+i) is the standard error of S̃r+i and S̃2 = (S̃r+1, . . . , S̃r+q)′. One could
use either the Taylor linearization variance estimator V̂L(S̃2) or a resampling
variance estimator such as V̂J(S̃2) to calculate s.e.(S̃i). An advantage of (4.7)
over (4.6) is that only the simpler null model need be fitted to calculate β̃1. The
Bonferroni t-test (4.7) may be preferred to the quasi-score test (2.8) when f is
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not large relative to q. However it is not invariant even to linear transformations,
unlike the quasi-score test which is invariant under re-parametrization.

5. Simple Logistic Regression

We illustrate the preceding theory in the simple special case in which the
response variable, Y , is binary and we are fitting a simple linear logistic regression
model. Thus E(Yi) = µi = exp(β1 + β2xi)/[1 + exp(β1 + β2xi)]. As a working
model for the variance, we take the standard binomial form with V0i = µi(1−µi)
so that ui = xi(yi −µ(xi, β)) where xi = (1, xi)′ and β = (β1, β2)′. Suppose that
we want to test the null hypothesis that β2 = 0. Then Ŝ1(β) =

∑
i∈s wis(yi −

µ(xi, β)) and Ŝ2(β) =
∑

i∈s wisxi(yi − µ(xi, β)). Setting Ŝ1(β̃) = 0 gives β̃1 =
log[p̃/(1−p̃)] with p̃ =

∑
s wisyi/

∑
s wis. Thus, the quasi-score test is particularly

simple in this case since we can write down S̃2 explicitly, viz., S̃2 =
∑

s wisxi(yi−
p̃). Note that since this is a canonical model, I(β) and J(β) are identical:

I(β) = J(β) =
∑
i∈s

wisµi(1 − µi)
(

1 xi

xi x2
i

)
.

Substituting p̃ for µ̃i = µi(β̃) gives Ã = Ĩ21Ĩ
−1
11 =

∑
i∈s wisxi/

∑
i∈s wis = X̂

say, and z̃i = u2i(β̃) − Ãu1i(β̃) = (yi − p̃)(xi − X̂). The linearization estimator,
V̂L(S̃2), is then the standard variance estimator for the total of the “synthetic”
variable z̃i under the specified design, denoted by V̂ (

∑
s wisz̃i).

The quasi-score test statistic X2
S based on the linearization variance estima-

tor reduces to X2
S = [

∑
i∈s wisxi(yi− p̃)]2/V̂ (

∑
i∈s wisz̃i), which is asymptotically

a χ2
1 variable under the null hypothesis. If the jackknife method is used un-

der stratified multistage sampling, then we replace V̂ (
∑

s wisz̃i) by V̂J(S̃2) =∑
g[(ng − 1)/ng]

∑
j(S̃2(gj) − S̃2)2.

6. Example

Consider the data shown in Table 1. Here the response variable, is binary and
takes the value 1 if the person has leprosy (case) and 0 otherwise (control); the
explanatory variables are Age and Scar, where Scar takes value 1 if a person has
a BCG vaccination scar and 0 otherwise. The sample design is stratified random
sampling with seven strata. All cases are sampled and the sampling fractions for
the six age strata can be found from Table 1. For reasons outside the scope of
this illustration, we consider a logistic regression model with log[µi/(1 − µi)] =
β0+β1x1i+β2x2i, where x = (Age+7.5)−2 and x2 = Scar. We take the Bernoulli
variance, V0i = µi(1 − µi), as our working model variance. Interest centers on
whether the BCG vaccination has any impact on the incidence of leprosy, i.e., in



1068 J. N. K. RAO, A. J. SCOTT AND C. J. SKINNER

testing the hypothesis that β2 = 0. Thus we set β1 = (β0, β1)′ and β2 = β2. We
obtain β̃1 by solving

Ŝ1(β̃) =
∑
i∈s

wis

[
yi − µ̃i

x1i(yi − µ̃i)

]
= 0,

where log[µ̃i/(1− µ̃i)] = β̃0 + β̃1xi. This gives β̃0 = −4.6 and β̃1 = −427.0. Then
S̃2 =

∑
i∈s wisx2i(yi − µ̃i) = −32.61 and the linearization variance estimate is

V̂L(S̃2) = 99.10, leading to a value of 10.73 for the quasi-score statistic X2
S . Thus

there does seem to be a strong association (P -value = Pr(χ2
1 < 10.73) < 0.001)

although, as with any observational study, great care needs to be taken with any
interpretation of this result.

7. Concluding Remarks

We have developed quasi-score tests on regression parameters, assuming only
a general mean specification. These tests take proper account of the survey design
features such as clustering and unequal selection probabilities, and hence can be
used with complex survey data. An advantage of the proposed quasi-score tests
is that we need only fit the simple null model, which is a considerable advantage
if the full model contains a large number of parameters. Also, the tests are
invariant under re-parametrization.

Alternative tests to handle small degrees of freedom associated with the
variance estimators are also considered. We hope to conduct a detailed simulation
study on the finite sample performance of the proposed tests in terms of size and
power.
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Appendix: Asymptotic Consistency of V̂J(S̃2)

Shao (1992) established the asymptotic consistency of the jackknife variance
estimator of β̂ in the case of independent responses, yi. A rigorous proof of
the consistency of V̂J(S̃2) for stratified multistage sampling would involve an
extension of the method used in Shao (1992), using the asymptotic set-up for
stratified multistage sampling as outlined, for example, in Shao and Tu (1995),
Chapter 6. Here we provide a sketch of the proof of consistency of V̂J(S̃2) when
only the basic survey weights are used in the estimating equations Ŝ(β) given by
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(2.4). Extension to post-stratified weights would involve the asymptotic theory
for post-stratified estimators of totals (Yung (1996)).

The estimator Ŝ(β) for stratified multi-stage sampling may be written as

Ŝ(β) =
∑

hik∈s

whikuhik(β),

where whik is the basic survey weight attached to the kth element of the ith
cluster in the hth stratum (i = 1, . . . , nh; h = 1, . . . , L). Using the variance
estimator for a total (Rao (1996), Section 3.1), it follows from (2.11) and (3.2)
that a Taylor linearization variance estimator of S̃2 = Ŝ2(β̃) is given by

V̂L(S̃2) =
L∑

h=1

1
nh(nh − 1)

nh∑
i=1

(z̃hi − z̃h·)(z̃hi − z̃h·)′, (A.1)

where z̃hi =
∑

k(nhwhik)z̃hik with z̃hik =u2hik(β̃)−Ãu1hik(β̃) and z̃h·=n−1
h

∑
i z̃hi.

Note that z̃hik is simply given by (3.2) with the subscript i replaced by hik.
The asymptotic consistency of V̂L(S̃2) follows along the lines of Binder (1983).
The jackknife weights when the (gj)-th sample cluster is deleted are given by
whik(gj) = whikbgj , where bgj is 0 if (hi) = (gj); is ng/(ng − 1) if h = g and
i �= j; is 1 if h �= g. Replacing whij by whik(gj) we get Ŝ(gj)(β), β̃(gj) and
S̃2(gj) = Ŝ2(gj)(β̃(gj)).

Now expand S̃2(gj) around β̃ to get

S̃2(gj) ≈ Ŝ2(gj)(β̃) − I21(β̃)(β̃1(gj) − β̃1). (A.2)

Similarly,
0 = Ŝ1(gj)(β̃(gj)) ≈ Ŝ1(gj)(β̃) − I11(β̃)(β̃1(gj) − β̃1). (A.3)

Also,

Ŝ(gj)(β̃) = Ŝ(β̃) +
1

ng − 1
(ũg· − ũgj), (A.4)

where ũg· = n−1
g

∑
j ũgj and ũgj =

∑
k(ngwgjk)ũgjk. Now substituting for β̃1(gj)−

β̃1 from (A.3) into (A.2) and using (A.4), we get

S̃2(gj) − S̃2 ≈ − 1
ng − 1

(z̃gj − z̃g·), (A.5)

noting that Ŝ1(β̃) = 0.
Finally, substituting (A.5) into (3.1) we get V̂J(S̃2) ≈ V̂L(S̃2), and hence

V̂J(S̃2) is asymptotically consistent.
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