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WITH WEIGHT FUNCTION x/(1 + x)
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Abstract: For polynomial regression with weight function x/(1 + x) for x ∈ [0, a],

a polynomial is presented whose zeros are the support points of the D-optimal

approximate design.
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1. Introduction

If in the ordinary polynomial regression set-up a constant weight function
or a Jacobi weight function is used, then the Stieltjes-Schur approach to maxi-
mizing a discriminant via an appropriate differential equation leads directly to a
solution of the D-optimal design problem (e.g. Szegö (1975), p. 140). For other
weight functions the design problem appears to be less tractable. For instance,
Huang, Chang and Wong (1995) and Chang and Lin (1997) investigated some
non-classical weight functions and, making use of the Stieltjes-Schur approach,
arrived at appropriate differential equations and a corresponding eigenvalue prob-
lem. In this note we consider the weight function x/(1 + x), and solve the as-
sociated eigenvalue problem explicitly. A polynomial whose zeros describe the
optimal design is specified. For varying degree d these polynomials do not form
an orthogonal set. Properties of oscillatory matrices are the main tool to identify
the solution.

It should be mentioned that we came to this special weight function from
working on the still unsolved problem of characterizing A-optimal designs. In
this context it can easily be shown that the support of an A-optimal design
for the vector (1, x, . . . , x2d+1)T of regression functions on [−1, 1] can simply be
calculated from that of an A-optimal design for w1/2(x)(1, x, . . . , xd)T on [0,1]
where w(x) = x/(1 + x).

2. Problem and Result

Consider the dth degree polynomial regression model where one has random
variables Y (x), x ∈ [0, a], with common variance σ2 not depending on x and
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E(Y (x)) = βT f(x). Here f(x) = w1/2(x)(1, x . . . , xd)T with w(x) = x/(1+x), and
β is a (d+1)-dimensional vector of unknown parameters. An approximate design
ξ, i.e. a probability measure on [0,a], is said to be D-optimal for this model (based
on uncorrelated observations of Y (x)) if it maximizes det

∫
f(x)fT (x)dξ(x).

Theorem. The D-optimal design measure on [0, a] puts probability (d + 1)−1 at
the point a and at each of the d zeros of the polynomial gd(x) = c0 + · · · + cdx

d,

where

ci = (−a)d−i

(
d + i

i

)(
d

i

)
[2i(a + 1) + 1 + ρ] (1)

and ρ = (4d(d + 1)(a + 1) + 1)1/2.

Proof. Let ξ∗ be any D-optimal design measure, existence being ensured by
Lemma X.2.1 of Karlin and Studden (1966). It is readily verified that {1, w(x),
xw(x), . . . , x2dw(x)} is a Chebyshev system on [0, a]. By Theorem X.3.6 of Karlin
and Studden (1966), ξ∗ must have exactly d + 1 support points, say x∗

1 < · · · <

x∗
d+1. Therefore, ξ∗ puts probability (d+ 1)−1 at each of them (e.g. Lemma 5.1.3

in Silvey (1980)). Now if ξ is any design measure which puts probability (d+1)−1

at d + 1 points x1, . . . , xd+1 ∈ [0, a], then det
∫

f(x)fT (x)dξ(x) is proportional to

D(x1, . . . , xd+1) :=
( d+1∏

k=1

w(xk)
)(∏

i<j

(xi − xj)2
)
.

Thus D is maximal at (x∗
1, . . . , x

∗
d+1), and this implies that x∗

1 > 0 and x∗
d+1 =

a. Moreover, the partial derivatives ∂log D/(∂xi), i = 1, . . . , d, must vanish at
(x∗

1, . . . , x
∗
d+1); that is,

1
x∗

i (1 + x∗
i )

+ 2
d+1∑
j=1
j �=i

1
x∗

i − x∗
j

= 0, i = 1, . . . , d.

Setting F (x) = (x − x∗
1) . . . (x − x∗

d+1), one has F
′′
(x∗

i )/F
′
(x∗

i ) = 2
∑

j �=i(x
∗
i −

x∗
j)

−1. It follows that H(x) := x(1 + x)F
′′
(x) + F

′
(x) vanishes at x = x∗

1, . . . , x
∗
d.

Being a polynomial of degree d+1,H must have yet another zero, say y∗, and so
H(x) = c(x− y∗)G(x), where G(x) = (x− x∗

1) . . . (x− x∗
d) and c = d2 + d. Hence

x(1 + x)F
′′
(x) + F

′
(x) − c(x − y∗)G(x) = 0.

Now F (x) = (x−a)G(x), so that F
′
(x) = G(x)+(x−a)G

′
(x), F

′′
(x) = 2G

′
(x)+

(x − a)G
′′
(x). It follows that G must satisfy the Heun-type differential equation

x(1 + x)(x − a)G
′′
(x) + (2x2 + 3x − a)G

′
(x) − cxG(x) = −(1 + cy∗)G(x). (2)
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Writing G(x) =
∑d

i=0 aix
i and equating the coefficients of equal powers of x on

both sides of (2), one observes that the coefficient vector a = (a0, . . . , ad)T is a
characteristic vector associated with the characteristic value −(1 + cy∗) of the
Jacobi matrix

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 γ0 0 · · · 0 0
α1 β1 γ1 · · · 0 0
0 α2 β2 · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · αd βd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, where

αi = −(d + i)(d + 1 − i),
βi = i(2 + a + i − ai),
γi = −a(i + 1)2.

A straightforward if somewhat lengthy calculation shows that the coefficient vec-
tor c = (c0, . . . , cd)T from (1) is a characteristic vector of A associated with the
characteristic root c + (ρ − 1)/2.

Now consider the Jacobi matrix B := δI − A, where I is the unit matrix of
order d+1 and δ ∈ IR is chosen so large that every principal minor of B is positive.
The sub- and super-diagonal entries of B are obviously positive. It follows that
B is an oscillatory matrix, see Gantmacher (1959), pp. 103f. As a and c are
characteristic vectors of A, they are also characteristic vectors of B. Besides, as
all the roots of G are positive, the sequence a0, . . . , ad has, according to Descartes’
rule of signs, exactly d sign changes, and the sequence c0, . . . , cd evidently has
d sign changes too. It now follows from Theorem XIII.13 of Gantmacher (1959)
that a and c are proportional, so that G and gd have the same zeros. That is,
the zeros of gd and the point a are the support points of the unique D-optimal
design measure.

Remarks. (a) From the recurrence formula for orthogonal polynomials (cf.
Szegö (1975), Theorem 3.2.1) we see that the polynomials gd, d ∈ IN, are not
orthogonal.
(b) In a private communication Holger Dette provided a representation of gd in
terms of the Jacobi polynomials P

(α,β)
d (x) on [-1,1]. Setting

bd = d[2d(a + 1) + 1 − ρ]/[2(a + 1)d],

it holds that

bdgd(x) = [2d(a + 1) + 1](d + 1)xP
(1,1)
d−1 (2xa−1 − 1)

− d(2d + 1)P (0,0)
d (2xa−1 − 1) − dρP

(1,0)
d−1 (2xa−1 − 1).

(c) Following a suggestion of a referee, we give a table of the optimal support
points for the interval [0, a] = [0, 2] and degrees d ∈ {1, . . . , 7}. For comparison
the corresponding points for the model with weight function w(x) ≡ 1 are given
in brackets.
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Table 1. Support points for [0, a] = [0, 2], 1 ≤ d ≤ 7. In brackets the Legendre-
points.

d

1 0.5 2
[0 2]

2 0.2469 1.1961 2
[0 1.0 2]

3 0.1479 0.7429 1.5293 2
[0 0.5528 1.4472 2]

4 0.0985 0.5017 1.1118 1.6957 2
[0 0.3453 1.0 1.6547 2]

5 0.0703 0.3608 0.8274 1.3533 1.7883 2
[0 0.2349 0.7148 1.2852 1.7651 2]

6 0.0527 0.2717 0.6348 1.0783 1.5126 1.8446 2
[0 0.1698 0.5312 1.0 1.4688 1.8302 2]

7 0.0409 0.2119 0.5008 0.8701 1.2646 1.6213 1.8812 2
[0 0.1283 0.4083 0.7907 1.2093 1.5917 1.8717 2]
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