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INTELLIGENT SEARCH FOR 213−6 AND 214−7

MINIMUM ABERRATION DESIGNS
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Abstract: Among all 2n−k regular fractional factorial designs, minimum aberration

designs are often preferred. When 2n−k (the run-size) is no more than 64, most

(possibly all) minimum aberration designs have been found. When 2n−k = 128,

the search for minimum aberration designs becomes very hard. The results in

Chen and Wu (1991) and Chen (1992) include all 128-run minimum aberration

designs with k ≤ 5. When n is close to 2n−k, Tang and Wu (1996) also obtain

some minimum aberration designs. In this paper, we search for 128-run minimum

aberration designs with k = 6 and k = 7. By combining theoretical understanding

with intelligent computer search, both cases are solved.
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1. Introduction

We consider the problem of finding the minimum aberration 213−6 and 214−7

fractional factorial designs. In general, a 2n−k design enables us to study n 2-
level factors with 2n−k runs. Since experimental runs are not conducted at all
possible level combinations, some effects are aliased. A good design should avoid
the aliasing of important effects. Usually, lower order interactions are considered
to be more important than higher order interactions. The minimum aberration
criterion is based on this belief (Fries and Hunter (1980)). There have been
extensive discussions on minimum aberration designs in the literature. We refer
to Chen and Wu (1991) for more details.

Searching for minimum aberration designs is not a trivial task. Fortunately,
for many applications, both the number of factors n and the fractions k are not
large. In these cases, designs with minimum aberration are easy to obtain and
have been well documented. See Box, Hunter and Hunter (1978) and Franklin
(1984).

When either n or k becomes large, as is common in applications, the corre-
sponding minimum aberration designs are not so easy to obtain. Combinatorial
techniques become demanding. Chen and Wu (1991) and Chen (1992) have ob-
tained minimum aberration designs for k ≤ 5 and all n. Combinatorial theory
and the computer have been used to produce a complete catalog of designs with
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run-size up to 32 in Chen, Sun and Wu (1993). In addition, all resolution IV or
higher 64-run designs are given in the same paper. There are other results in the
literature. For example, by studying complementary designs, minimum aberra-
tion designs when n is close to 2n−k were obtained by Tang and Wu (1996). Chen
and Hedayat (1996) defined the notion of weak minimum aberration and catego-
rized many designs by using projective geometry techniques. However, the task
of finding many 128-run minimum aberration designs still awaits. In this paper,
we specifically work on finding minimum aberration 213−6 and 214−7 designs.

2. Some Preparations and Useful Existing Results

To fix ideas, view an 8-run 25−2 fractional factorial design as a submatrix of
the regular 8 × 8 Hadamard matrix with 0 and 1 entries. The 8 columns can be
named I, A, B, C, AB, AC, BC and ABC such that, for example, column AB is
the sum of columns A and B module 2, and column I is a column of 0’s. We can
use any 5 columns, except column I, to form a 25−2 fractional factorial design.
If the first 5 non-zero columns are selected and their corresponding factors are
named 1, 2, 3, 4, 5, then

I = 124 = 135 = 2345. (1)

This means, for example, that the columns for factors 1, 2, and 4 have sum 0
(mod 2). The statistical implication is the aliasing of the main effect of factor
1 and the two-factor interaction between factors 2 and 4. We say 1 and 24 are
aliased. Similarly, 2 and 14, 23 and 45, etc. are aliased.

We call (1) the defining contrast subgroup of the 25−2 design. The set { I, 124,
135, 2345} forms an Abelian group with multiplication being the corresponding
column summation mod 2. Each element in this group is called a word, the
symbols for factors 1, 2 and so on are called letters, and the wordlength of a
word equals the number of letters in the word.

It is not hard to see that a defining contrast subgroup uniquely determines
a fractional factorial design. Thus, searching for an optimal design is equivalent
to searching for an optimal defining contrast subgroup.

Let xn be the number of length-n words in a defining contrast subgroup.
We call X = (x1, x2, . . .) the wordlength pattern. The corresponding design
has resolution R if xR is the first non-zero component of X. Assume that the
two 2n−k designs D1 and D2 have the wordlength patterns X and Y , and m =
min{k : xk �= yk}. Then D1 has less aberration if xm < ym. A design with the
smallest aberration, among all 2n−k designs with a fixed n and k, is a minimum
aberration design. Informally, a minimum aberration design has fewer pairs of
low order interactions aliased.

A straightforward way to find an MA 25−2 design is to exhaust all the possible
choices of 5 out of the 7 columns. For this particular example, we find all of them
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have the same wordlength pattern. In fact, they are all equivalent. To find an
MA 213−6 design, the same method does not work as there are ‘127 choose 13’
possible choices. At the same time, most of these choices create poor designs
and many are equivalent. Thus, even if we search through only a relatively small
fraction of them, we may have obtained an MA design already. The problem is:
how do we know when to stop the search?

A simple fact is that not all vectors can be wordlength patterns. If X is the
wordlength pattern of the current least aberration design, and we can show that
any vector Y with less aberration cannot possibly be a wordlength pattern, then
we have found an MA design.

For this purpose, namely to rule out the possibility of wordlength patterns
with less aberration, knowing many necessary conditions is desirable. For con-
venience, we list some of them here. For a 2n−k design with wordlength pattern
X, we have

∑n
m=1 xm = 2k − 1;

∑n
m=1 mxm = n2k−1. By the way, we assume

that the words in the defining contrast subgroup contain all the letters from 1
to n. Otherwise, the design cannot be a minimum aberration design (Chen and
Wu (1991)).

Let w1 and w2 be two words in a defining contrast subgroup. Then w1 ∗ w2

will be another word with all the letters either in w1 or w2, but not both. For
example, 1234∗3456 = 1256. Because of this, each letter appears in exactly 2k−1

words in the defining contrast subgroup of a 2n−k design if it appears at all. The
words, which do not contain a specific letter, form the defining contrast subgroup
of a 2(n−1)−(k−1) design.

Another resource is the resolution bound given by Verhoeff (1987) in coding
theory. It is known that a defining contrast subgroup is also a linear code. The
resolution of a design is the minimum distance of its corresponding linear code.
Hence, a bound on the minimum distance of certain linear codes is also a bound
on the resolution of corresponding fractional factorial designs. By referring to
Verhoeff (1987), we can rule out many possibilities.

The wordlength pattern of the MA 212−5 design will be useful (Chen (1992)).
It is given by (0, 0, 0, 1, 8, 12, 8, 1, 0, 0, 0, 1). If a hypothetical wordlength pat-
tern implies a 212−5 design with less aberration than this design, it cannot be a
wordlength pattern of any fractional factorial design.

3. Minimum Aberration 213−6 and 214−7 Designs

3.1. An MA 213−6 design

After searching through some plausible designs, we found a 213−6 design
with the wordlength pattern (0, 0, 0, 2, 16, 18, 10, 9, 4, 2, 0, 0). Its defining contrast
subgroup is generated by

8 = 12345; 9 = 1236; t10 = 124567; t11 = 134567; t12 = 2347; t13 = 567, (2)
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where t10, t11 are factors 10, 11 and so on.
From Verhoeff (1987), the maximum resolution of a 213−6 design is 4. Thus,

we must have x4 ≥ 1. Our conclusions are as follows.

Conclusion 1. The wordlength pattern of a 213−6 fractional factorial design
must have x4 > 1 if x1 = x2 = x3 = 0.

Proof. The previous discussion indicates that the smallest possible value of x4

is 1. If x4 = 1, we can find a subgroup of size 25 − 1 which does not contain this
length 4 word. Such a subgroup would define a 212−5 design with resolution V
which is impossible in view of the resolution IV MA 212−5 design given earlier.

Consequently a 213−6 design with less aberration, if it exists, must have a
smaller x5, or equal x5 but smaller x6, etc. We show no such possibilities exist.

Conclusion 2. The 213−6 fractional factorial design given by (2) has minimum
aberration.

Proof. We have seen that an MA 213−6 design must have x4 = 2 and x1 = x2 =
x3 = 0. If the two length-4 words share a letter, say 1, we can pick all the words
which do not contain letter 1 to form a group. This group then defines a 212−5

design with resolution V. This is impossible.
When two length-4 words do not share letters, we can write them as 1238,

4569. That is, we have selected 7 independent and two additional columns from
the regular 128 × 128 Hadamard matrix to form a design. Four more columns
should be selected from the remaining 127 − 9 non-identity columns. It is easy
to see that to keep x3 = 0 and x4 = 2, we cannot select columns corresponding
to 2 or 3-factor interactions between factors 1, 2, . . . , 7. Further, we cannot
select columns corresponding to 4-factor interactions containing 123 or 456. With
many similar considerations, it leaves only 42 choices for the remaining 4 columns.
Hence, the task becomes well suited for the computer. A complete search confirms
that the design given by (2) has minimum aberration.

3.2. An MA 214−7 design

After searching through some plausible designs, we found a 214−7 design
with the wordlength pattern (0, 0, 0, 3, 24, 36, 16, 11, 24, 12, 0, 1, 0, 0). The defining
contrasts are:

8 = 123; 9 = 456; t10 = 1245; t11 = 1346; t12 = 12467; t13 = 13567; t14 = 23457.
(3)

We proceed to show that this is in fact an MA 214−7 design. As before, we
divide the proof into two steps.

Conclusion 3. An MA 214−7 design must have x4 = 3.
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Proof. It is impossible to have x4 ≤ 2, or we can easily derive a 213−6 design
with less aberration than the MA 213−6 design we have just obtained.

Conclusion 4. The 214−7 design given by (3) is an MA design.
Assume that an MA 214−7 design has x4 = 3. Then any two of the 3 length-

4 words cannot share a letter. Otherwise, we can pick a subgroup consisting of
words which do not contain this letter. This will again result in a 213−6 design
with less aberration than the MA 213−6 design we have just obtained.

Since the length-4 words do not share letters, two of them can be written as
8 = 123, 9 = 456 without loss of generality. That is, from the regular 128 × 128
Hadamard matrix, we have selected 7 independent and two additional columns
to form the design. We need only to look for another 5 columns. With the
restrictions of x3 = 0 and x4 = 3, a large number of the 127 non-zero columns
are not feasible. For example, any column of two-factor interactions or three-
factor interactions containing 12, 13, 23, 45, 46, 56 is ruled out. We end up
choosing 5 out of only 42 columns. This makes a complete computer search
possible. A program written for this purpose verified that what we have now is
the MA.

Remark. In fact, we first obtained a design with a slightly larger aberration
than the current one. In the process of eliminating the possibility of finding
better designs, we found the design given in (3). In addition, we were able to
simplify the proof of (2) based on what we have learned.

Remark. It is known that the wordlength pattern does not uniquely determine
a fractional factorial design (Chen and Lin (1991)). Thus, there could exist
other non-equivalent 213−6 and 214−7 minimum aberration designs. The problem
of uniqueness can be solved by investigating all minimum aberration designs
obtained during the computer search. This, however, is beyond the scope of this
paper. At the same time, our proofs indicate that other 213−6 or 214−7 minimum
aberration designs, if any, have to share the structure of length-four words. This
implies that the number of clearly estimable two-factor interactions cannot be
improved for either design.
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