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Abstract: We consider the maximum variance optimality criterion of Elfving (1959)

in the context of (nonlinear) response models. Some practical guidelines for the

construction of minimax optimal designs are given. In some cases this criterion

yields one point designs as a consequence of different scales of the elements in the

Fisher information matrix. As an alternative a “standardized” maximum variance

criterion is introduced and applied to the calculation of efficient designs. The results

are illustrated for binary response models and it is demonstrated that in these

models standardized minimax optimality should be prefered to ordinary minimax

optimality.
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1. Introduction

Consider a response variable y having a distribution from an exponential
family p(y|x, θ) with Fisher information I(θ, x) for θ given an observation at x.
Here θ = (θ1, . . . , θm)T denotes an m-dimensional vector of unknown parameters
and x is the explanatory variable which varies in a design space X ⊆ IRk. A
design is a probability measure on X with finite support and the matrix

I(θ, ξ) =
∫
X
I(θ, x)dξ(x) ∈ IRm×m

is called the Fisher information matrix of ξ. A (locally) optimal design maximizes
an optimality criterion depending on I(θ, ξ) (see Silvey (1980), Atkinson and
Donev (1992) or Pukelsheim (1993)). In this paper we consider the problem
of constructing optimal designs for binary response models with respect to the
partial maximum variance criterion introduced by Elfving (1959)

Φ(ξ) = max
i∈M

eTi I
−(θ, ξ)ei, (1.1)

where ξ is a design for which the parameters {θi}i∈M are estimable, ei ∈ IRm

denotes the ith unit vector (i = 1, . . . ,m), M ⊂ {1, . . . ,m} and I−(θ, ξ) denotes
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a generalized inverse of I(θ, ξ). In many cases the elements of the Fisher infor-
mation matrix are of different scale. Therefore we also consider the minimum
efficiency criterion

ψ(ξ) = max
i∈M

eTi I
−(θ, ξ)ei

min
η
eTi I

−(θ, η)ei
= 1/min

i∈M
effθi

(ξ), (1.2)

which compares the variances relative to their optimal value obtainable by the
choice of a design. More precisely, the quantities effθi

(ξ) in (1.2) are the efficien-
cies of the design ξ, relative to the optimal design for estimating the parameter
θi. Designs minimizing (1.1) are called minimax optimal for the parameters
{θi|i ∈ M} and have been discussed by many authors (see e.g. Murty (1971),
Torsney and López-Fidalgo (1995), Krafft and Schaefer (1995) or Dette and Stud-
den (1994)). Following Dette (1997) we call the designs minimizing (1.2) “stan-
dardized” minimax optimal for the parameters {θi|i ∈ M}. If M = {1, . . . ,m}
we briefly talk about minimax or standardized minimax optimal designs. It is
worthwhile to mention that a similar criterion was considered by Müller (1995),
who determined designs maximizing the minimum of A-efficiencies, where the
minimum is taken with respect to the parameter θ.

Note that in many cases of practical interest the optimality criteria (1.1)
and (1.2) produce locally optimal designs which require prior knowledge of the
unknown parameter θ. Some arguments in favour of local optimality criteria can
be found in Ford, Torsney and Wu (1992). For alternative optimality criteria see
Wu (1985), Chaloner and Larntz (1989), Sitter (1992).

In Section 2 we provide some theoretical background regarding minimax
and standardized minimax optimality which is useful for the construction of
optimal designs. We also present a procedure for determining minimax and
standardized minimax optimal designs. Some guidelines for the construction of
minimax optimal designs in binary response models are given in Section 3.1. It
turns out that for some parameter combinations the minimax optimal designs
become inefficient in the sense that the number of different dose levels is less
than the number of parameters in the model. This motivates the consideration
of standardized minimax optimal designs for binary response models which are
discussed in Section 3.2. Finally, in Section 4 the results are illustrated for two
binary response models, the double exponential and the logistic regression model.

2. Constructing Minimax and Standardized Minimax Optimal Designs

The equivalence theory of the minimax optimality criteria can be obtained
from Pukelsheim (1993), page 175. More precisely, assume that {I(θ, x)|x ∈ X}
is compact, consider a subset M ⊂ {1, . . . ,m} and a design ξ for which eTj θ is
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estimable for all j ∈ M. Define ρ−1
k = minη e

T
k I

−(θ, η)ek (where the minimum is
taken over all designs for which eTk θ is estimable) and

N (ξ) :=
{
j ∈ M|eTj I−(θ, ξ)ej = max

i∈M
eTi I

−(θ, ξ)ei
}

Ñ (ξ) :=
{
j ∈ M|ρje

T
j I

−(θ, ξ)ej = max
i∈M

ρie
T
i I

−(θ, ξ)ei
}
;

then the design ξ is minimax optimal for the parameters {θi|i ∈ M} if and
only if there exists a generalized inverse G of I(θ, ξ) and nonnegative numbers
αj, j ∈ N (ξ), with sum equal to 1 such that

∑
j∈N (ξ)

αj

eTj GI(θ, x)Gej
eTj I

−(θ, ξ)ej
≤ 1, (2.1)

for all x ∈ X , where equality holds on the support of ξ. Similarly the design ξ is
standardized minimax optimal for the parameters {θi|i ∈ M} if and only if there
exists a generalized inverse G of I(θ, ξ) and nonnegative numbers α̃j , j ∈ Ñ (ξ),
with sum equal to 1 such that

∑
j∈Ñ (ξ)

α̃j

eTj GI(θ, x)Gej
eTj I

−(θ, ξ)ej
≤ 1 (2.2)

with equality on the support of ξ. The following two Lemmata are obvious from
these considerations.

Lemma 2.1. A minimax optimal design ξ∗ for the parameters {θi|i ∈ M} is also
minimax optimal for the parameters {θi|i ∈ N (ξ∗)}. A standardized minimax
optimal design ξ̃ for the parameters {θi|i ∈ M} is also standardized minimax
optimal for the parameters {θi|i ∈ Ñ (ξ̃)}.
Lemma 2.2. If for all A ⊂ M with #A ≤ k < #M the (standardized ) minimax
optimal design for the parameters {θi|i ∈ A} is not (standardized ) minimax
optimal for {θi|i ∈ M}, then in the generalized inverse of the Fisher information
matrix of the (standardized ) minimax optimal design for {θi|i ∈ M} the largest
diagonal entry has at least multiplicity k + 1.

Lemma 2.2 suggests an iterative procedure for determining minimax optimal
designs for the parameters {θi|i ∈ M}. For n = 1, . . . ,#M − 1 we proceed as
follows.
1. For all subsets Mn ⊂ M with #Mn = n we calculate the minimax optimal

designs ξ∗n for the parameters {θi|i ∈ Mn} under the constraint that the
corresponding entries in the diagonal of the inverse fisher information matrix
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are all equal and check if ξ∗n is already minimax optimal for the parameters
{θi|i ∈ M}. By (2.1) this is equivalent to showing

max
j∈Mn

eTj I
−(θ, ξ∗n)ej = max

j∈M
eTj I

−(θ, ξ∗n)ej . (2.3)

2. If (2.3) is satisfied, then ξ∗n is minimax optimal for the parameters {θi|i ∈ M}
and the procedure stops. Otherwise we put n = n+ 1 and repeat step (1).

Although this procedure appears to be cumbersome (because in the worst case
one has to go #M steps), the results obtained in the literature (see Murty
(1971), Krafft and Schaefer (1995), Dette and Studden (1994)) suggest that in
many regression models the algorithm stops after the first or second step.

For the standardized minimax optimality criterion the procedure is similar,
replacing (2.3) by

max
j∈Mn

ρje
T
j I

−(θ, ξ∗n)ej = max
j∈M

ρje
T
j I

−(θ, ξ∗n)ej .

Moreover, the following Lemma shows that for standardized minimax optimality
one can always start with n = 2.

Lemma 2.3. If ξ∗ is a standardized minimax optimal design for the parameters
{θi|i ∈ M} and #M ≥ 2, then #N (ξ∗) ≥ 2.

Proof. Let ξ∗ denote the standardized minimax optimal design and assume
#Ñ (ξ∗) = 1. Without loss of generality we put Ñ (ξ∗) = {1}. By Lemma 2.1 ξ∗

is also optimal for estimating the parameter θ1; in other words

1 = ρ1e
T
1 I

−(θ, ξ∗)e1 = max
j∈M

ρje
T
j I

−(θ, ξ∗)ej ≥ min
j∈M

ρje
T
j I

−(θ, ξ∗)ej ≥ 1.

This proves Ñ (ξ∗) = M, contradicting the assumption #M ≥ 2.

3. Minimax and Standardized Minimax Optimal Designs for Binary
Response Models

In this section we demonstrate the calculation of minimax and standardized
minimax optimal designs in binary response models. Consider a binary response
variable y with probability of success p(x, θ), where θ is a two dimensional pa-
rameter. We discuss two different parametrizations

p1(x, θ) = F (β(x − µ)) θ = (µ, β), x ∈ IR (3.1)
p2(x, θ) = F (a+ bx) θ = (a, b), x ∈ IR (3.2)

that are commonly used in practice. Here F is a known distribution function with
symmetric density function f , which is assumed to be differentiable for x �= 0.
Define

h(x) =
f2(x)

F (x)(1 − F (x))
; (3.3)
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then the Fisher information for the parameter θ of a design ξ is given by

I1(θ, ξ) =
∫
h(β(x− µ))

( β2 −β(x− µ)
−β(x− µ) (x− µ)2

)
dξ(x) (3.4)

if the parametrization (3.1) is used, and by

I2(θ, ξ) =
∫
h(a+ bx)

( 1 x

x x2

)
dξ(x)

if we use parametrization (3.2). Locally optimal designs in these models for var-
ious differentiable optimality criteria have been discussed by several authors (see
e.g. Wu (1988), Abdelbasit and Placket (1983), Sitter and Wu (1993), Gaudard,
Karson, Lindner and Tse (1993)). Note that the number of support points of
(locally) optimal designs depends sensitively on the form of the function h in
(3.3) (see e.g. Sitter and Wu (1993)). We will now give some general guidelines
for the determination of minimax and standardized minimax optimal designs in
these models; illustrative examples are presented in the following section.

Throughout this paper we will assume that

max
t∈IR

h(t) = h(0) (3.5)

and
k2 = max

t∈IR
t2h(t) = c2h(c), c > 0 (3.6)

which is satisfied for most of the commonly used binary response models. More-
over, the point c where the function t2h(t) attains its maximum is usually unique
(up to its sign) and can be obtained from Table 4 in Ford, Torsney and Wu
(1992).

3.1. Minimax optimal designs

We concentrate on the parametrization (3.1). Standard arguments show
that there is a minimax optimal design symmetric with respect to the LD 50.
Moreover, by the following lemma it suffices to consider symmetric designs with
at most 4 support points.

Lemma 3.1. In a binary response model with parametrization (3.1) there exists
a minimax optimal design with at most 4 support points which is symmetric to
the LD50 µ.

The proof is deferred to the appendix. Note, however, that this result does
not depend on the binary response model but holds for any regression model
with two paramters having a corresponding symmetry property.
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Following the procedure in Section 2 we first determine the optimal designs
ξµ and ξβ for estimating the LD 50 and the slope. These are easily obtained from
Elfving’s theorem (Elfving (1952)) and assumptions (3.5), (3.6) observing

ρ−1
1 = inf

ξ
eT1 I

−(θ, ξ)e1 =
1

β2h(0)
(3.7)

ρ−1
2 = inf

ξ
eT2 I

−(θ, ξ)e2 =
β2

k2
. (3.8)

This gives for ξµ a one point design at µ and for ξβ a two point design

ξβ =
(µ− c

β µ+ c
β

1
2

1
2

)
, (3.9)

where c > 0 is defined by (3.6). Now ξβ is minimax optimal if and only if

eT1 I
−1(θ, ξβ)e1 ≤ eT2 I

−1(θ, ξβ)e2

which is equivalent to β2 ≥ c. In the other case the inverse Fisher information
matrix must have equal diagonal elements. We start with a two point design
where the equality of the diagonal elements readily yields

ξ∗0 =
(µ− β µ+ β

1/2 1/2

)
. (3.10)

The minimax optimality of ξ∗0 can be checked via the inequality (2.1) where the
αj (N (ξ∗0) = {1, 2}) have to be chosen (due to equality in (2.1) at the support
points of the minimax optimal design and the differentiability of h) as

α2 = 1 − α1 = −β
2

2
h′(β2)
h(β2)

.

If inequality (2.1) is not fulfilled we increase the number of support points suc-
cessively. Thus in the next step we consider

ξ∗w =
(µ− z

β µ µ+ z
β

1−w
2 w 1−w

2

)
, (3.11)

where z > 0 and

w =
h(z)(z2 − β4)

β4[h(0) − h(z)] + z2h(z)

due to equality of the diagonal elements in I−1(θ, ξ∗w). The optimal z minimizes

h(0)
z2h(z)

− 1
z2

(3.12)
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and the “weights” α1, α2 in the equivalence theorem are given by

α2 = 1 − α1 =
[
1 − z2

β4
− 2z
β4

h(z)
h′(z)

]−1
. (3.13)

Note that the expression in (3.12) is independent of the parameters µ and β and
the minimizing z is usually also unique. If (2.1) holds for these weights, then ξ∗w
is minimax optimal, otherwise the procedure has to be continued. Thus in the
last step we have to consider designs of the form

ξ∗ =
(µ− z1

β µ− z2
β µ+ z2

β µ+ z1
β

w
2

1−w
2

1−w
2

w
2

)
.

The equality of the diagonal entries of the Fisher information matrix yields

w =
h(z2)(β4 − z2

2)
h(z2)(β4 − z2

2) + h(z1)(z2
1 − β4)

.

The optimal values for z1 and z2 maximize the function

h(z1)h(z2)(z2
1 − z2

2)
h(z2)(β4 − z2

2) + h(z1)(z2
1 − β4)

under the constraint that z1 > β2 > z2 > 0 (i.e. 0 < w < 1). Furthermore, the
differentiability of h implies that either h(z1) = h(z2) and h′(z1) = h′(z2) = 0 or

z1(h(z1))2

h′(z1)
=
z2(h(z2))2

h′(z2)
and

h(z1)h′(z2)
h(z2)(h(z2) − h(z1))

=
2z2

z2
2 − z2

1

.

The quantities α1 and α2 in the equivalence theorem are given by

α2 = 1 − α1 =
β4(h(z2) − h(z1))

h(z2)(β4 − z2
2) + h(z1)(z2

1 − β4)
.

Recent results in the literature suggest that for most binary response models the
symmetric optimal designs will have either two or three support points and are
given by (3.9), (3.10) or (3.11), respectively (see Sitter and Wu (1993) for some
results regarding A-, D- and Fieller-optimality and also for the construction of a
model with a symmetric D-optimal design supported at four points).

For the parametrization (3.2) the approach is very similar and illustrated in
the second part of Section 4.

3.2. Standardized minimax optimal designs

We demonstrate in Section 4 that minimax optimal desgins for binary re-
sponse models may become inefficient in the sense that the number of different
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dose levels of the optimal design is less than the number of parameters in the
model. This disadvantage is usually caused by the different size of the elements
in the Fisher information matrix. The standardization used in the criterion (1.2)
makes elements of different scale better comparable and does not yield degen-
erate optimal designs (see Lemma 2.3). It turns out that in binary response
models the standardized minimax optimal designs can be easily obtained from
the minimax optimal designs for special parameter combinations. More precisely,
for the parametrization (3.1) a minimax optimal design ξ∗ can be obtained from
ξ∗(x) = η(β(x− µ)) where η minimizes

1
c2c0 − c21

max{ c2
β2
, c0β

2}, (3.14)

cj =
∫
yjh(y)dη(y) (j = 0, 1, 2). Similarly, the standardized minimax optimal

design ξ̃ is given by ξ̃(x) = η̃(β(x − µ)) where η̃ minimizes

1
c2c0 − c21

max{h(0)c2, c0k2} =
√
h(0)k

c0c2 − c21
max

{√
h(0)
k

c2,
k√
h(0)

c0
}
. (3.15)

This follows easily from definitions (1.2), (3.7) and (3.8). Note that the optimiza-
tion problem in (3.15) does not depend on the parameters µ and β. Moreover,
the maximum of (3.15) is obtained by maximizing (3.14) for β2 = k/

√
h(0) which

proves the following result.

Lemma 3.2. Let ξ∗µ,β denote the minimax optimal design for a binary response
model with parametrization (3.1) such that (3.5) und (3.6) are satisfied. Then the
standardized minimax optimal design ξ̃ for this model is given by

ξ̃(x) = ξ∗0,s

(β
s
(x− µ)

)
,

where s = k1/2(h(0))−1/4 and k is defined in (3.6).

For the parametrization (3.2) a similar result can be established. The proof
is omitted for the sake of brevity.

Lemma 3.3. Let ξ∗a,b denote the minimax optimal design for a binary response
model with parametrization (3.2) such that

S =
{√

h(ω)
( 1
ω

)
|ω ∈ IR

}
(3.16)

is convex and
lim

|ω|→∞
ω2h(ω) = 0. (3.17)
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The standardized minimax optimal design for this model is given by

ξ̃(x) = ξ∗a,s

(bx
s

)
,

where s = mc, c is defined in (3.6) and

m2 = m2(a) = h(c) inf
ξ
eT1 I

−(θ, ξ)e1 =




a2

c2 if |a| > c
h(c)
h(a) if |a| ≤ c


 . (3.18)

The conditions (3.16) and (3.17) are satisfied for the commonly used re-
gression models (see Sitter and Wu (1993) or Ford, Torsney and Wu (1992)).
It is also worthwile to mention that for both parametrizations (3.1) and (3.2)
the standardized minimax optimal designs are scale invariant in the sense that
a scaling of the explanatory variable x transfers to the standardized minimax
optimal design. The experimenter only has to scale the support points of the
standardized minimax optimal design according to the transformation of the x-
space. Moreover, by Lemma 3.2, the same argument applies for translations in
binary response models with parametrization (3.1). In this case the standardized
minimax optimal designs are invariant with respect to linear transformations of
the explanatory variable. This is a strong advantage of parametrization (3.1)
over the alternative parametrization (3.2) in binary response models.

4. Examples

In this section we illustrate the result with two examples; a double exponen-
tial model with parametrization (3.1) and a logistic regression with parametriza-
tion (3.2). We also demonstrate that the maximum variance criterion can produce
inefficient designs for the binary response model in the sense that the number
of different dose levels of the minimax optimal design is less than the number of
parameters in the model.

4.1. Double exponential model

Let
F (t) =

1 + sign(t)
2

− sign(t)
2

e−|t|

and consider the parametrization (3.1). We calculate h(t) = (2e|t|−1)−1 and the
values for k and c in (3.6) are easily obtained as

c ≈ 1.84141 k ≈ 0.5404. (4.1)

We now apply the general procedure of Section 3.1. If β2 ≥ c, the optimal design
ξβ for estimating the slope is also minimax optimal and given by (3.9). In a
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second step we consider the case β2 ≤ c and check whether the design in (3.10)
is minimax optimal using α2 = 1 − α1 = −β2h′(β2)/2h(β2) in the inequality
(2.1). A straightforward calculation shows that (2.1) is satisfied if and only if
v0 ≤ β2 ≤ c where v0 is the unique positive solution of v+2e−v = 2, v0 ≈ 1.59362.
Finally, if β2 < v0 the minimax optimal design is given by (3.11) where z and w
are defined by v0 and

w =
(v2

0 − β4)h(v0)
h(v0)(v2

0 − β4) + β4
, (4.2)

respectively (note that h(0) = 1). This can be shown by the equivalence theorem
(2.1) observing the representation of α1 and α2 in (3.13). The minimax optimal
designs are listed in Table 4.1.

The standardized minimax optimal design are easily obtained by Lemma 3.2.
More precisely we obtain, for s = k1/2, (h(0))−1/4 = c

√
h(c) ≈ 0.5404 <

√
v0,

which shows that the standardized minimax optimal design is always supported
at three points, i.e.

ξ̃ =


µ− v0

β µ µ+ v0
β

1−w̃
2 w̃ 1−w̃

2


 , (4.3)

where v0 ≈ 1.59326 and w̃ is obtained from (4.2) as

w̃ =
(v2

0 − k2)h(v0)
k2 + h(v0)(v2

0 − k2)
≈ 0.4653.

This design has equal efficiencies effβ(ξ) = effµ(ξ) = (1−w)(v2
0h(v0))(c

2h(c))−1 ≈
0.5258 for the individual parameters β and µ.

Table 4.1. Minimax optimal designs ξ∗ for the double exponential model
with parametrization (3.1) (first row). The second row gives the value α̃2

in the equivalence theorem (2.2), while the third and fourth rows contain
the efficiencies for estimating the individual parameters µ and β. The table
shows the influence of the size of the slope parameter on the minimax optimal
design. The weight w is given by (4.2), the constant c by (4.1) and v0
minimizes (3.12) [c ≈ 1.84141, v0 ≈ 1.59362].

β2 < v0 v0 ≤ β2 ≤ c β2 > c

ξ∗
(µ− v0

β µ µ+ v0
β

1−w
2 w 1−w

2

) (µ− β µ+ β
1
2

1
2

) (µ− c
β µ+ c

β
1
2

1
2

)

α2
β4

β4 + 1.008
β2

2
(1 + h(β2)) 1

effµ
0.287

0.287 + 0.887β4
h(β2) h(c)

effβ
0.983β4

0.287 + 0.887β4

β4h(β2)
c2h(c)

1
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A brief comparison of the minimax and standardized minimax optimal de-
signs in the double exponential model might be appropriate at this point. The
standardized minimax optimal designs are based on more points than there are
parameters in the model. As a consequence tests of goodness-of-fit of the double
exponential model can be performed. Note also that the minimax optimal design
for a small slope β quickly degenerates to a one point design (see Table 4.1). For
example, if β = 0.1, the minimax optimal design advises the experimenter to
take 99.9% of the observations at the LD 50 µ. However, this design does not
allow any statistical inference regarding the slope parameter. These observations
can be explained by observing the “different scales” of the elements in the Fisher
information matrix (3.4). For small values of the slope the dominating element
in I−1(θ, ξ) is the element at position (1, 1). Consequently the minimax optimal
design is “close” to the optimal design for estimating the LD 50, which is usually
the one point design concentrated at µ. Note that these phenomena contradict
the intuition. If the probability of success is slowly increasing with the dose level,
a good design should cover a large range of dose levels. The standardization of
the maximum variance criterion in (1.2) produces efficiencies, which are of the
same scale and therefore better comparable than the “pure” diagonal elements of
I−1(θ, ξ). As a consequence we do not observe degenerate standardized minimax
optimal designs at all. For example, if β = 0.1, the standardized minimax opti-
mal design advises the experimenter to take 26.7% of the observations at µ±15.93
and the remaining 46.6% of the observations at the LD50 µ (see equation (4.3)).

4.2. Logistic regression
As a second example consider the logistic regression model with parametriza-

tion (3.2), i.e.

F (t) = [1 + e−t]−1 and h(t) =
et

(1 + et)2
, t ∈ IR

and the value c > 0 maximizing t2h(t) is given by c ≈ 2.39936. We first determine
the optimal designs for ξa and ξb for estimating the individual coefficients a and
b using Elfving’s theorem (Elfving (1952)). This gives

inf
ξ
eT1 I

−(θ, ξ)e1 = eT1 I
−(θ, ξa)e1 =

m2

h(a)

inf
ξ
eT2 I

−(θ, ξ)e2 = eT2 I
−(θ, ξb)e2 =

b2

c2h(c)
,

(where m2 is defined by (3.18)) and the optimal designs are given by

ξa =




(0
1

)
if |a| ≤ c

(−a
b − c

b −a
b + c

b
1
2 − c

2a
1
2 + c

2a

)
if |a| > c

ξb =
(−a

b − c
b −a

b + c
b

1
2

1
2

)
.



1260 HOLGER DETTE AND MICHAEL SAHM

From the procedure in Section 2 it follows that ξb is minimax optimal if and only
if

eT1 I
−(θ, ξb)e1 ≤ eT2 I

−(θ, ξb)e2
which is equivalent to b2 ≥ a2 + c2. Similarly we obtain

ξa is minimax optimal ⇐⇒ b2 ≤ a2 − c2.

In all other cases (|b2 − a2| < c2) we must have equality of the diagonal ele-
ments of the inverse Fisher information matrix of the minimax optimal design.
A reasonable guess for a design at two points is

ξ =
(−a

b − v
b −a

b + v
b

1 − w w

)
v > 0, w ∈ (0, 1) (4.4)

which implies for the weight

w =




1
2 if a = 0

1
2 + v2+(a2−b2)

4av if a �= 0.
(4.5)

The point v > 0 can be found by maximizing the function h(x)g(x) for x > 0,
where

g(x) = 2x2(a2 + b2) − x4 − (a2 − b2)2, (4.6)

and the optimality of the design in (3.10) is established using the equivalence
theorem (2.1).

The resulting cases are listed in Table 4.2 which also contains the corre-
sponding quantities αj , used for checking the minimax optimality by (2.1). Note
that the table does not include the case a = 0, b2 < c2. In this case the minimax
optimal design has equal masses at the points −1 and 1 which also follows from
(2.1) using α1 = 1.

Table 4.2. Locally minimax optimal designs for the logistic regression model
with parametrization (3.2). The table shows the dependence of the lo-
cally optimal design on the size of the quantity a2 − b2. Here g(x) is de-
fined by (4.6), the constant c = arg max{x2h(x)} ≈ 2.39936 by (3.6), v =
arg max{h(x)g(x)} and w by (4.5).

a2 − b2 ≤ −c2 |a2 − b2| < c2 c2 ≤ a2 − b2

minimax opt. design
( c−a

b
−c−a

b
1
2

1
2

) ( −v−a
b

v−a
b

1 − w w

) ( −c−a
b

c−a
b

a−c
2a

a+c
2a

)

α1 0
b4 − (a2 − v2)2

g(v)
1

Φ(ξ)
b2

c2h(c)
4a2b2

h(v)g(v)
a2

c2h(c)
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Finally, the standardized minimax optimal designs for the logistic regression
with parametrization (3.2) are obtained from Lemma 3.3 and given by

ξ̃ =
(−a

b − ṽ
b −a

b + ṽ
b

1 − w̃ w̃

)
(4.7)

ṽ = arg max{h(x)[2x2(a2 + s2) − x4 − (a2 − s2)2];x > 0} (4.8)

w̃ =




1
2 if a = 0

1
2 + ṽ2+(a2−s2)

4aṽ if a �= 0,
(4.9)

where s = s(a) is defined in Lemma 3.3. Note that the standardized minimax
optimal design is scale invariant, because ṽ and w̃ defined in (4.8) and (4.9)
do not depend on the slope parameter b. In Tables 4.3 and 4.4 the minimax
and standardized minimax optimal designs for the logistic regression model with
parametrization (3.2) are calculated for some specific values of a and b as well as
their efficiencies with respect to the optimal designs for the individual parameters
a and b. We observe again that for many parameter combinations the minimax
optimal designs are inefficient for estimating the slope, especially for small values
of the slope parameter. The standardized minimax optimal designs are equally
efficient for estimating the individual parameters. This efficiency does not depend
on the parameter b and is increasing with the “intercept” a.

Table 4.3. Locally minimax optimal designs ξ∗ for logistic regression with
parametrization (3.2) for various values of a and b. The designs are obtained
from (4.4)-(4.6) and put masses 1 − w and w at the points −a/b− v/b and
−a/b+v/b. The last two columns give the efficiencies of the minimax optimal
design for estimating the individual parameters. The table illustrates how
sensitively the locally minimax optimal design depends on the slope parame-
ter of the binary response model. In particular it shows that for small values
of the slope, the minimax optimal design becomes inefficient for estimating
the slope parameter.

a b v w Φ(ξ∗) effa(ξ∗) effb(ξ∗)
0 0.1 0.1 0.5 4.01 0.9975 0.0057
0 1 1 0.5 5.09 0.786 0.448
0 c c 0.5 13.11 0.305 1
1 0.1 1.003 0.9975 5.10 0.9982 0.0045
1 1 1.256 0.814 6.07 0.838 0.375
1 c 2.228 0.523 13.24 0.384 0.9902
c 0.1 2.397 0.9996 13.11 1. 0.0017
c 1 2.228 0.955 13.24 0.9902 0.172
c c 2.033 0.712 16.58 0.790 0.790
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Table 4.4. Locally standardized minimax optimal designs for the logistic
regression model with parametrization (3.2) for various values of a and ar-
bitrary b. The last column gives the efficiencies of the minimax optimal
design for estimating the individual parameters. The designs are obtained
from (4.7)-(4.9) and put masses 1 − w̃ and w̃ at the points −a/b− ṽ/b and
−a/b + ṽ/b. The locally standardized minimax optimal designs and its ef-
ficiencies are invariant with respect to the slope parameter. Thus the table
illustrates the impact of the intercept on the locally standardized minimax
optimal designs. Note that these designs never become inefficient for esti-
mating the individual parameters.

a ṽ w̃ Ψ(ξ̃) effa(ξ̃) = effb(ξ̃)
0 1.325 0.5 1.507 0.663

0.1 1.328 0 523 1.507 0.664
1 1.541 0.685 1.475 0.678
c 2.033 0.712 1.265 0.790
10 2.376 0.559 1.014 0.986

5. Conclusions

In this paper we considered the problem of constructing minimax optimal
designs for binary response models which minimize the asymptotic maximum
variance of the estimates for the individual parameters. Some general guidelines
for the determination of these designs are given and illustrated in the double
exponential and logistic regression model. It turns out that minimax optimal de-
signs may become inefficient in the sense, that the number of their dose levels is
less than the number of parameters in the model. For this reason a standardized
version (standardized minimax optimality) of Elfving’s partial minimax criterion
is also considered, which is based on the variances of the estimators for the in-
dividual coefficients relative to the best variances obtainable by the choice of an
experimental design, i.e. efficiencies of the estimates are considered. The stan-
dardized minimax optimal designs for binary response models can be obtained
from the minimax optimal designs and produce equal efficiencies for estimating
the individual parameters in the model. In some cases the standardized minimax
optimal design has more support points than the minimax optimal design and
a goodness-of-fit test of the binary response model can be performed. Because
the standardized minimax optimal designs are scale invariant and because they
cannot degenerate to one point designs, we would recommend their application
instead of minimax optimal designs.
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Appendix

Proof of Lemma 3.1. Let z1, . . . , zk be arbitrary nonnegative numbers. We
show that there is a symmetric minimax optimal design with at most four support
points in the class of all symmetric designs with support in the set {µ± zi/β|i =
1, . . . , k}. Therefore, let ξ be a symmetric measure on {µ ± zi/β|i = 1, . . . , k}
with weights wi/2 at the points µ± zi/β. Due to the symmetry of ξ the Fisher
information matrix is diagonal, i.e.

I(θ, ξ) = diag
(
β2

k∑
i=1

wih(zi), β−2
k∑

i=1

wiz
2
i h(zi)

)
.

Optimizing with respect to the criterion (1.1) is therefore equivalent to maximiz-
ing

min
{
β2

k∑
i=1

wih(zi), β−2
k∑

i=1

wiz
2
i h(zi)

}

over all possible weights, that is maximizing on the k-simplex

{
w1, . . . , wk | wi ≥ 0,

k∑
i=1

wi = 1
}
.

Since both functions are linear in the weights the Lemma follows from a gen-
eral result from linear programming. More precisely, the maximum value of the
minimum of two linear functions on the k-simplex is always attained at a convex
combination of two extreme points. The extreme points of the k-simplex repre-
sent the symmetric two point designs with weight 1/2 at the points µ ± zi0/β,
1 ≤ i0 ≤ k. That means there is always a minimax optimal design in the consid-
ered class with at most 4 support points.
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