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Abstract: The primary goal of this paper is to estimate population size associated

with the capture-recapture model when the capture probability vary with behavior

response and time (or trapping occasion). We cast the capture-recapture model in

a Bayesian framework and make inference by using the Gibbs sampler, a Markov

Chain Monte Carlo method. Using the method of maximum likelihood estimation,

certain assumptions on the relationship between the capture and recapture proba-

bilities are required in order to make inference of population size for the behavior

response model. The major advantage of this approach is that no assumption is

needed in our proposed procedure. The proposed methodology is illustrated with

real data and a simulation study. The results show that the Gibbs sampler provides

sound inference of population size.

Key words and phrases: Behavior response, capture-recapture model, Gibbs sam-

pler, Markov Chain Monte Carlo method, population size, time variation.

1. Introduction

The capture-recapture model is widely used in the estimation of population
sizes. We will consider the problem of estimating population size under a closed
population in the capture-recapture model when the capture probabilities vary
with behavior response and time (or trapping occasion). This model is known
as Model Mtb. There are three special models of Model Mtb: Model Mt, Model
Mb, and Model M0. Model Mt and Model Mb consider the capture probabilities
varying with time and behavior response, respectively. If the capture probability
is a constant, we call it Model M0. Laplace (1786) used the Petersen method to
estimate the total population size of France from a register of births for the whole
country in 1783 (see p.16 in Otis, Burnham, White, and Anderson (1978) for more
detail). This approach received its main impetus in the context of a estimating
the size of a wildlife population. However, no breakthrough has been made in this
area until the last three decades. For examples, see the work by Otis, Burnham,
White, and Anderson (1978), White, Anderson, Burnham, and Otis (1982), Seber
(1982, 1986, 1992), and Pollock (1991). The problem of estimating population
size also has been encountered in epidemiology (Wittes (1974), Wittes, Colton,
and Sidel (1974)), computer science (Jewell (1985), Lanbgberg and Singpurwalla
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(1983), Nayak (1991), Chao, Ma and Yang (1993)), and demography (Wolter
(1986)).

Model Mb and Model Mtb are practically important and useful in biologi-
cal and ecological applications because animals frequently exhibit a behavioral
response to capture. Little work has been done on Model Mtb in the literature
(see Lloyd (1994), Rexstad and Burnham (1991), and Lee (1996) for references).
Seber and Whale (1970) show that the maximum likelihood estimate (MLE)
of population sizes exists only under some conditions for Model Mb. From a
Bayesian viewpoint, Castledine (1981), Smith (1991) and George and Robert
(1992) make inference of population size for Model Mt. When there is a behav-
ioral response to capture, the inference of population size for Model Mt may have
either a positive or negative bias according to whether the animals become trap
shy or trap happy. Therefore, we concentrate on the behavioral response models.
In this paper, we generalize a Bayesian analysis of Model Mb and Model Mtb by
using the Gibbs sampler, a Markov Chain Monte Carlo method.

The aim of this paper is to show that the Gibbs sampler, as a viable alter-
native to both analytical calculation and numerical approximation, can facilitate
Bayesian calculations for capture-recapture behavioral response models, thereby
enhancing their scope. Moreover, since the Model Mtb involves more parameters
than the minimal sufficient statistic, not all parameters can be estimated and
maximum likelihood estimation of the population size proves to be impossible.
Consequently, in order to make the population size N an identifiable parameter
under maximum likelihood estimation, one has to make certain assumptions on
the relationship between the recapture probability and first capture probability.
One assumption often used is that of proportionality. It is possible in a Bayesian
approach to estimate more parameters than observations at hand. (For example,
see McCulloch and Tsay (1994).) A great advantage of the proposed procedure
is that the unidentifiability problem can be resolved under Model Mtb in the
Bayesian approach using the Gibbs sampler. We shall not repeat the details of
the Gibbs sampler which can be found elsewhere (e.g. Geman and Geman (1984),
Tanner and Wong (1987), Gelfand and Smith (1990), and Gelfand, Hills, Racine-
Poon, and Smith (1990)). It suffices to say that what we need are conditional
distributions of subsets of parameters given the others. The Gibbs sampler is
iterated many times in order to obtain a sample of draws from the posterior
distribution. The empirical distribution of this sample converges weakly to the
true joint distribution. (For more details of convergence results, see Tierney
(1994).) Interested readers are also referred to Casella and George (1992) and
Tanner (1994) for a general comprehensive review of the Gibbs sampler. Section
2 presents the behavioral response models and the setup of Bayesian framework.
Section 3 illustrates the methodology using a real data set and simulation study.
We give concluding remarks in Section 4.



BAYESIAN INFERENCE OF POPULATION SIZE 1235

2. Bayes Estimates for the Behavioral Response Model

Let N be the unknown size of the population of interest and t be the total
number of trapping samples. The animals can be indexed by 1,. . . , N and Pij is
the capture probability of the ith animal in the jth trapping sample, i = 1, . . .,N ;
j = 1, . . . , t. Animals are assumed to act independently. If the animals exhibits
behavior response , Pij depends on the capture history of the first j − 1 samples
and Pij can be expressed as

Pij =

{
P ∗

ij if the ith animal is not caught in the first j − 1 samples;
b∗ij if the ith animal has been caught in the first j − 1 samples.

(1)

Let Xij be equal to 1 if the ith animal is caught in the jth sample, and 0
otherwise. The underlying general probability structure of the capture-recapture
experiments is as follows:

L(N,P |D) =
N∏

i=1

t∏
j=1

P
Xij

ij (1 − Pij)1−Xij

=
N∏

i=1

t∏
j=1

P
∗XijI[(

∑j−1

k=1
Xik)=0]

ij b
∗XijI[(

∑j−1

k=1
Xik)>0]

ij

×(1−P ∗
ij)

(1−Xij)I[(
∑j−1

k=1
Xik)=0](1−b∗ij)

(1−Xij )I[(
∑j−1

k=1
Xik)>0], (2)

where I(·) is the usual indicator function, P = (Pij , i = 1, . . . , N ; j = 1, . . . , t),
D = {Xij , i = 1, . . . , N ; j = 1, . . . , t}, and L(N,P |D) denotes the likelihood
function.

There are too many parameters in the general model in (2), so the informa-
tion about N can not be extracted from data. Therefore, the parameter space
of the general model in (2) must be restricted. When the animals do not exhibit
behavior response, the most common restrictions used are Pij = P or Pij = Pj

(see Darroch (1958), Castledine (1981), George and Robert (1992)). These mod-
els are designated as Model M0 or Model Mt respectively in Otis, Burnham,
White, Anderson (1978). If there is behavior response for the captured animals,
the restrictions become

Pij = PjI
( j−1∑

k=1

Xik = 0
)

+ bjI
( j−1∑

k=1

Xik > 0
)

(3)

or

Pij = PI
( j−1∑

k=1

Xik = 0
)

+ bI
( j−1∑

k=1

Xik > 0
)
, (4)
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where bj is the recapture probability in the jth sample and b is the recapture
probability for any sample. We denote (3) and (4) by Model Mtb and Model Mb,
respectively. In this paper, we will focus on Model Mtb and Model Mb.

2.1. Bayesian inference about N for Model Mtb

In this subsection, we consider all animals which are not caught in the first
j − 1 samples having the same capture probability Pj in the jth sample. The
recapture probability for all animals in the jth sample is bj . The structure of Pij

has the same explicit formula as (3). The likelihood function for this model is a
special case of (2) and is obtained as follows:

L(N,P , b|D) ∝ N !
(N − Mt+1)!

t∏
j=1

P
uj

j (1 − Pj)N−Mj+1

t∏
j=2

b
mj

j (1 − bj)Mj−mj , (5)

where P = (P1, . . . , Pt) , b = (b2, . . . , bt), Mj+1 = u1 + · · · + uj is the number of
distinct animals captured before the first j samples, and uj and mj are the num-
ber of unmarked and marked animals captured in the jth sample, respectively.

The likelihood function can be exhibited by the product of some binomial
distributions. The conditional distributions of mj given Mj and uj given N −Mj

are, respectively,
mj | Mj ∼ B(bj,Mj), j = 2, . . . , t

and
uj | N − Mj ∼ B(Pj , N − Mj), j = 1, . . . , t.

Consequently, the explicit formula for the likelihood function is

L(N,P , b|D)=
{ t∏

j=1

(
N−Mj

uj

)
P

uj

j (1−Pj)N−Mj−uj

}{ t∏
j=2

(
Mj

mj

)
b
mj

j (1−bj)Mj−mj

}
.

(6)
We consider priors of the form π(N,P , b) = (

∏t
j=1 π(Pj))(

∏t
j=2 π(bj))π(N).

Such priors lead to posterior conditionals of the forms:

π(N | P , b,D) ∝ N !
(N − Mt+1)!

( t∏
j=1

(1 − Pj)N
)
π(N), (7)

π(P | N, b,D) ∝
t∏

j=1

P
uj

j (1 − Pj)(N−Mj+1)π(Pj), (8)

π(b | N,P ,D) ∝
t∏

j=2

b
mj

j (1 − bj)(Mj−mj)π(bj). (9)
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The conditional posterior of N in Equation (7) is the same as proposed by George
and Robert (1992) under Model Mt.

We take the priors of P and b to be π(P ) =
∏

π(Pj) and π(b) =
∏

π(bj) re-
spectively , where π(Pj) = Be(γ1, γ2), π(bj) = Be(γ3, γ4) with Be(x, y) denoting
a beta distribution. It follows that Eqns. (8) - (9) can then be reduced to

π(P | N, b,D) ∝
t∏

j=1

Be(uj + γ1, N − Mj+1 + γ2) (10)

and

π(b | N,P ,D) ∝
t∏

j=2

Be(mj + γ3, Mj − mj + γ4). (11)

If the prior of N is Jeffrey’s prior π(N) = 1/N , the conditional posterior of N is

P (N = n | P , b,D) =

(
n − 1

Mt+1 − 1

)(
1 −

t∏
j=1

(1 − Pj)
)Mt+1

( t∏
j=1

(1 − Pj)
)N−Mt+1

,

where n = Mt+1,Mt+1 + 1, . . . It is easy to recognize the conditional posterior
of N is negative binomial with parameter (Mt+1, 1 −∏(1 − Pj)). Alternatively,
for the constant prior of N , the conditional posterior on N is negative binomial
with parameter (Mt+1 + 1, 1−∏(1− Pj)). Starting with an initial value of N (0)

for N , we can produce a ‘Gibbs sequence’ {P (k), N (k), b(k)}(k = 0, 1, . . .) with
simulated sampling from (10), (7) and (11).

We can also consider a logit model on the Pj and bj , that is, αj =
log(Pj/(1−Pj)) ∼ N(µj , σ

2) and βj = log(bj/(1 − bj)) ∼ N(νj , σ
2). In this struc-

ture, the conditional posterior of α = (α1, . . . , αt) is

π(α | N,β,D) ∝
t∏

j=1

exp(αjuj − 1
2(αj−µj

σ )2)
(1 + eαj )N−Mj

, (12)

where β = (β2, . . . , βt). It is easy to check π(α | N,β,D) is log concave in αj

so that αj can be simulated by adaptive rejection sampling. (For more details
of this sampling, see Gilks and Wild (1992).) Note that the inference of N does
not depend on βj when π(α, β, N) = (

∏
π(αj)) (

∏
π(βj))π(N). Therefore, we

omit the conditional posterior of β here. Note further that the inference of N

depends only on u1, . . . , ut. Consequently, our method can also be extended to
the removal model.

2.2. Bayesian inference about N for Model Mb

Suppose all animals have the same capture probability P in the first capture,
and the same recapture probability b after the first capture. This structure of
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capture probability Pij is reduced to (4) and the likelihood function becomes

L(N,P, b|D) ∝ N !
(N − Mt+1)!

PMt+1(1 − P )tN−M.−Mt+1bm.(1 − b)M.−m. , (13)

where M. = M2 + · · · + Mt and m. = m2 + · · · + mt. Taking N , P , and b to be
a priori independent, the conditional posterior distributions are

π(N | P, b,D) ∝ N !
(N − Mt+1)!

(1 − P )tNπ(N), (14)

π(P | N, b,D) ∝ PMt+1(1 − P )tN−M.−Mt+1π(P ), (15)

and
π(b | N,P,D) ∝ bm.(1 − b)M.−m.π(b). (16)

We choose π(P ) = Be(γ1, γ2) and π(b) = Be(γ3, γ4). Subsequently, (15) and
(16) can be reduced to

π(P |N, b,D) = Be(Mt+1 + γ1, tN − M. − Mt+1 + γ2) (17)

and
π(b|N,P,D) = Be(m. + γ3,M. − m. + γ4). (18)

Taking the prior of N to be constant or Jeffrey’s prior in (14), the conditional
posterior of N follows a negative binomial distribution with respective parameter
(Mt+1 + 1, 1 − (1 − P )t) or (Mt+1, 1 − (1 − P )t).

Based on these conditional posterior distributions, the Gibbs sampler can be
readily implemented.

3. Illustrative Examples

In this section, we illustrate the proposed methodology with a real example
and a brief simulation study, focusing on inference about population sizes. The
chosen prior of N is the Jeffrey’s prior.

3.1. Real example

We consider the cotton rat data in White, Anderson, Burnham, and Otis
(1982). In a Florida sugar cane field, 76 traps were placed along 6 parallel tran-
sects and baited with apples. Traps were placed 15.4 m apart on a transect,
transects were an average 80 m apart, and trapping was done for eight consec-
utive days. As shown in Table 1, it consists of t = 8 capture occasions from a
population of cotton rats (Sigmodon hispidus). Notice that the total number of
animals captured (not counting recaptures) is Mt+1 = M9 = 82 for this cotton
rat data. Consequently we know the population size of cotton rats is above 82.
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The model selected by White, Anderson, Burnham, and Otis (1982) as the
appropriate model for population estimate is the behavioral response Model Mb.
We are interested in making inference of the number of cotton rats for Model Mb

as well as Model Mtb. The hyper-parameters used are (γ3, γ4) = (3.0, 3.0) and 9
specifications for (γ1, γ2) are given in Table 2. The choice (γ1, γ2) = (5.3, 17.6)
maximizes the likelihood as empirical Bayes. Note that (106, 352) is proportional
to (5.3, 17.6), and other choices are informative. We do not vary the hyper-
parameters (γ3, γ4). The reason is that the value of (γ3, γ4) only affects b in
(11) which does not alter the estimate of population sizes. For each prior, Gibbs
sampler is run for 3500 iterations. We record every 5th value in the sequence of
the last 1500 in order to have more nearly independent contributions. For each
sequence, Table 2 lists median, mean, standard error of N , and a 95% credible
interval for N is obtained from the 2.5% and 97.5% quantiles.

Table 1. Capture-recapture counts of cotton rat data

occasion 1 2 3 4 5 6 7 8
animals caught 19 26 33 27 33 37 27 28
total caught (Mi) 0 19 36 52 60 66 74 81
newly caught (ui) 19 17 16 8 6 8 7 1
marked animals caught (mi) 0 9 17 19 27 29 20 27

Table 2. Results of cotton rat data under Model Mb.

Mb Mtb

Beta(γ1, γ2) Median Mean 95% CI Median Mean 95% CI
(1.0,5.0) 97 98 (88,113) 105 108 (91,141)

(7.03) (13.95)
(2.0,5.0) 95 96 (87,110) 89 90 (84,99)

(5.78) (4.09)
(3.0,5.0) 94 95 (88,108) 85 86 (83, 90)

(5.21) (1.70)
(4.0,5.0) 94 94 (87,105) 84 84 (82, 87)

(4.57) (1.12)
(5.0,5.0) 92 93 (87,102) 83 83 (82, 85)

(3.92) (0.79)
(10.0,5.0) 90 90 (86, 97) 82 82 (82, 83)

(3.09) (0.17)
(5.3,17.6) 95 96 (89,109) 93 94 (88,103)

(4.97) (3.72)
(106,352) 94 94 (88,102) 94 94 (90, 97)

(3.0) (1.7)
(1.0,3.3) 97 98 (88,112) 92 94 (85,114)

(6.15) (7.73)
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Although the shape of beta distributions is quite different for each hyper-
parameter (γ1, γ2), the estimator associated with Model Mb reveals only minor
difference in mean as compared with that of Model Mtb. Using the method
of maximum likelihood estimation, White, Anderson, Burnham, and Otis (1982)
obtained N̂ = 93 with a standard error of 6.69 and (79, 107) as the 95% confidence
interval , which are similar to our estimates. However, the 95% lower confidence
bound for the population sizes in White, Anderson, Burnham, and Otis (1982) is
79 which underestimates the actual population size. Table 2 shows that the 95%
lower credible bounds are all above 82 and the range of 95% credible intervals for
Model Mb are shorter than the range of White, Anderson, Burnham, and Otis.
To compare the 95% credible intervals for each prior for Model Mb and Model
Mtb, Figures 1(a) and 1(b) are given. Figure 1(a) displays similar variability
across priors while Figure 1(b) shows different variability across priors. The wide
variability in posterior characteristics shows sensitive dependence on the choice
of (γ1, γ2). The largest realization for (γ1, γ2) = (1, 5) tends to be much larger
than those for any other prior for Model Mtb. The value for (γ1, γ2) = (1, 5) is the
most dispersed in Figure 1(b). In short, the proposed method works reasonably
well for Model Mb but less well for Model Mtb with regard to the cotton rat data.

(a)

(b)

Figure 1. (a) 95% credible intervals for Model Mb of cotton rat data. The x-
axis represents priors in the order given in Table 2. (b) 95% credible intervals
for Model Mtb of cotton rat data. The x-axis represents priors in the order
given in Table 2.
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3.2. Simulation study

In this subsection, we carried out a limited simulation study to investigate
the performance of the proposed inference procedure. We fixed the population
size N = 100 and t = 6. Let the first capture probability of animals in the jth
sample be Pj and δ be the behavior response factor. Capture and recapture data
were generated from a population where the recapture probability is bj = δPj .
Since the recapture probability bj does not alter the estimate of population size
under the proposed method for Models Mb and Mtb, we fix δ at 0.36 and consider
(P1, P2, P3, P4, P5, P6) as follows.

Case 1. (0.14, 0.14, 0.14, 0.14, 0.14, 0.14);
Case 2. (0.18, 0.18, 0.18, 0.18, 0.18, 0.18);
Case 3. (0.22, 0.22, 0.22, 0.22, 0.22, 0.22);
Case 4. (0.18, 0.10, 0.10, 0.22, 0.12, 0.12);
Case 5. (0.22, 0.14, 0.26, 0.14, 0.14, 0.18);
Case 6. (0.20, 0.16, 0.16, 0.36, 0.20, 0.24),

where the underlying models are Model Mb for cases 1-3 and Model Mtb for cases
4-6.

We apply the Bayesian approach to all simulation. The hyper-parameters
used are (γ3, γ4)=(3, 3) and 5 specifications for (γ1, γ2). The choices (γ1, γ2) =
(1, 5), (2, 5), (3, 5) and (5, 5) can be motivated as informative prior. For each data
set, we make inference of N via the proposed method for Model Mb and Model
Mtb, respectively. It is possible to obtain a beta distribution with either of the
parameters γ1 or γ2 being zero in Equation (10) when we adopt noninformative
priors for (γ1, γ2) for Model Mtb. Therefore we do not consider noninformative
priors for (γ1, γ2) in our simulation study. For each data set, the Gibbs sampler
was run for 3500 iterations but collected every 5th of the last 1500 iterations for
making inference. Two hundred data sets were generated and analyzed for each
of the two Models Mtb and Mb. Moreover, Seber and Whale (1970) proposed the
failure criterion for Model Mb

t∑
j=1

(t + 1 − 2j)uj ≤ 0. (19)

When satisfied, it is impossible to obtain valid estimation of N by using the
method of maximum likelihood estimation. In the simulation study, we estimate
N for Model Mb when (19) is not satisfied, otherwise we do not estimate N .
We denote this estimator as “Mb(mle)” in our simulation. For each data set,
we calculated the mean, median, standard deviation, and the 2.5% and 97.5%
quantiles of the marginal posterior distribution. Tables 3-8 list the following:
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the average of mean, median, and standard deviation, the medians of 2.5% and
97.5% quantiles , and the coverage of the 95% credible intervals for 200 data sets.
Notice that we can not obtain valid maximum likelihood estimates for some data
sets; therefore, the inference of Mb(mle) is based only on the remaining data sets
with valid maximum likelihood estimates.

Table 3. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.14, 0.14, 0.14, 0.14, 0.14, 0.14), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 149 274 366.3 (78 - 318 ) 0.83

Mtb 90 91 9.6 (76 - 113 ) 0.92
Mb(mle) − 113 75.3 (42 - 142 ) 0.85

Beta(2, 5) Mb 103 115 43.0 (75 - 181 ) 0.93
Mtb 71 72 3.5 (66 - 80 ) 0.00
Mb(mle) − 108 63.0 (44 - 141 ) 0.83

Beta(3, 5) Mb 92 98 21.5 (71 - 144 ) 0.88
Mtb 66 66 2.0 (63 - 70 ) 0.00
Mb(mle) − 106 50.0 (39 - 149 ) 0.83

Beta(5, 5) Mb 84 86 12.3 (70 - 111 ) 0.70
Mtb 63 63 1.0 (62 - 66 ) 0.00
Mb(mle) − 111 69.7 (43 - 145 ) 0.82

Table 4. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.18, 0.18, 0.18, 0.18, 0.18, 0.18), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 125 203 163.5 (84 - 185 ) 0.88

Mtb 104 106 10.9 (88 - 131 ) 0.97
Mb(mle) − 103 29.2 (62 - 124 ) 0.83

Beta(2, 5) Mb 105 112 26.6 (82 - 155 ) 0.91
Mtb 82 83 3.8 (77 - 91 ) 0.10
Mb(mle) − 103 26.1 (61 - 132 ) 0.84

Beta(3, 5) Mb 97 101 15.6 (80 - 130 ) 0.90
Mtb 77 77 2.1 (73 - 82 ) 0.00
Mb(mle) − 101 25.8 (62 - 121 ) 0.87

Beta(5, 5) Mb 92 94 10.7 (80 - 116 ) 0.79
Mtb 73 73 1.1 (71 - 76 ) 0.00
Mb(mle) − 107 32.7 (61 - 137 ) 0.88

First, we consider cases 1-3 in Tables 3-5. Most of the coverage probabilities
for Model Mb are above 80%. The 95% lower confidence bounds for the method
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of maximum likelihood estimation are underestimated when compared with that
of Mb. In Tables 6-8, the estimator associated with Model Mtb is sensitive to
the priors selection. It has been known in the literature that the estimator
associated with Model Mtb can cause technical problems. For example, Pollock
et al. (1990) point out that “Model Mtb has no estimators in CAPTURE, but
Burnham (Colo. Coop. Fish and Wildl. Res. Unit, pers. commun.) has derived
an estimator that often does not perform very well · · ·”.

Table 5. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.22, 0.22, 0.22, 0.22, 0.22, 0.22), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 114 163 111.9 (90 - 154 ) 0.82

Mtb 115 117 11.9 (98 - 144 ) 0.69
Mb(mle) − 103 18.3 (74 - 122 ) 0.88

Beta(2, 5) Mb 105 108 16.7 (87 - 135 ) 0.84
Mtb 91 91 4.0 (84 - 100 ) 0.49
Mb(mle) − 101 15.8 (74 - 126 ) 0.87

Beta(3, 5) Mb 102 105 13.0 (88 - 127 ) 0.86
Mtb 85 85 2.2 (82 - 90 ) 0.02
Mb(mle) − 103 16.8 (74 - 122 ) 0.88

Beta(5, 5) Mb 95 97 8.0 (85 - 113 ) 0.84
Mtb 81 81 1.1 (79 - 83 ) 0.00
Mb(mle) − 100 14.6 (73 - 119 ) 0.89

Table 6. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.18, 0.10, 0.10, 0.22, 0.12, 0.12), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 134 294 370.1 (77 - 296 ) 0.91

Mtb 90 91 9.7 (76 - 113 ) 0.92
Mb(mle) − 105 68.5 (45 - 132 ) 0.75

Beta(2, 5) Mb 97 106 33.2 (72 - 157 ) 0.86
Mtb 71 71 3.4 (65 - 78 ) 0.00
Mb(mle) − 103 59.1 (47 - 130 ) 0.74

Beta(3, 5) Mb 88 93 19.2 (70 - 128 ) 0.79
Mtb 66 66 1.9 (64 - 71 ) 0.00
Mb(mle) − 95 34.0 (48 - 127 ) 0.75

Beta(5, 5) Mb 114 209 241.9 (71 - 197 ) 0.80
Mtb 63 63 1.9 (60 - 68 ) 0.00
Mb(mle) − 102 56.6 (47 - 124 ) 0.70
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Table 7. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.22, 0.14, 0.26, 0.14, 0.14, 0.18), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 100 113 38.4 (80 - 130 ) 0.79

Mtb 103 105 10.7 (88 - 129 ) 0.99
Mb(mle) − 89 13.1 (65 - 105 ) 0.59

Beta(2, 5) Mb 93 96 15.2 (78 - 118 ) 0.77
Mtb 81 82 3.6 (76 - 90 ) 0.05
Mb(mle) − 89 13.9 (65 - 107 ) 0.58

Beta(3, 5) Mb 89 92 10.2 (79 - 112 ) 0.72
Mtb 77 77 2.0 (74 - 82 ) 0.00
Mb(mle) − 89 12.5 (66 - 108 ) 0.63

Beta(5, 5) Mb 85 87 7.3 (76 - 102 ) 0.52
Mtb 73 73 1.0 (72 - 76 ) 0.00
Mb(mle) − 90 13.4 (65 - 104 ) 0.59

Table 8. Simulation results for 200 runs, N = 100, t = 6,
(P1, P2, P3, P4, P5, P6) = (0.20, 0.16, 0.16, 0.36, 0.20, 0.24), δ = 0.36.

Prior Method Median Mean Std 95% CI Coverage
Beta(1, 5) Mb 178 284 296.6 (104 - 344 ) 0.39

Mtb 118 120 12.6 (100 - 149 ) 0.54
Mb(mle) − 139 63.1 ( 62 - 181 ) 0.99

Beta(2, 5) Mb 134 146 45.1 ( 99 - 215 ) 0.55
Mtb 93 93 4.3 (87 - 103 ) 0.70
Mb(mle) − 139 57.9 ( 63 - 183 ) 0.99

Beta(3, 5) Mb 123 128 25.2 ( 96 - 179 ) 0.67
Mtb 87 87 2.4 ( 83 - 93 ) 0.05
Mb(mle) − 142 76.2 ( 65 - 181 ) 0.99

Beta(5, 5) Mb 109 112 14.5 ( 92 - 144 ) 0.86
Mtb 82 82 1.2 (80 - 85 ) 0.00
Mb(mle) − 136 63.0 ( 65 - 173 ) 0.99

When the prior mean of Pj , γ1/(γ1 + γ2), is approximately equal to P̄ =
(1/t)

∑
Pj , the performance of inferences for Model Mtb can be improved and

have better coverage probabilities. In the simulation study, the average of Pj

(P̄ = (1/t)
∑

Pj) in cases 4-6, are 0.14, 0.18, and 0.22 respectively. Consider
P̄ = 0.22 in case 6. The prior means are between 0.167 and 0.286. Therefore,
the inference performance with priors Be(1, 5) and Be(2, 5) for Model Mtb are
better than the others in Table 8. The remaining coverage probabilities for 95%
credible intervals are small since the prior mean is far away from P̄ . Therefore,
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the estimator associated with Model Mtb behaves nicely when the prior mean is
close to the average, P̄ . The result is summarized as follows:

P̄ Be(γ1, γ2) γ1
γ1+γ2

Coverage for Model Mtb

case 4 0.14 (1,5) 0.167 0.92
case 5 0.18 (1,5) 0.167 0.99
case 6 0.22 (2,5) 0.286 0.70

We repeated the simulation several times with different capture probabilities
and different hyper-parameters for the prior distributions. Due to limited space,
the detailed results are omitted. The results indicate that the posterior median
for Model Mb gives reasonable inference. In summary, in most of the cases the
performance of inference for Model Mb is much better than the performance in-
ference for Model Mtb. Moreover, the estimates for Model Mb are less sensitive
than estimates for Model Mtb when the priors are selected. The estimator associ-
ated with Model Mtb behaves nicely when the prior mean is close to the average
of capture probabilities.

4. Concluding Remarks

The conventional capture-recapture model is often used to estimate popula-
tion size; however, estimation becomes troublesome when problems arise such as
when the MLE does not exist or when there is an unidentifiability problem if the
animals exhibit behavior response after they have been captured. The unidenti-
fiability problem can be overcome in the proposed Bayesian approach. We apply
the Gibbs sampling technique to make inference of population size for two kinds
of behavior response models, Model Mtb and Mb.

When it is not possible to obtain valid estimation of the population size
for Model Mb by using the method of maximum likelihood estimation, we pro-
pose Bayesian estimation procedures. The results show that the performance
for Model Mb gives sound inference of the population size and the performance
for Model Mb is less sensitive than that for Model Mtb with the priors selected.
The conventional estimation of the population size for Model Mtb requires cer-
tain assumptions on the relationship between the recapture probability and first
capture probability. The major result of this work is that we have shown no
such assumption is needed in our proposed approach. That is, we do not need
to know any information about recaptures. Finally, since we make inference of
the population size without using the recapture information, we can extend the
application of this procedure to the removal model.
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