BAYESIAN INFERENCE OF POPULATION SIZE FOR BEHAVIORAL RESPONSE MODELS

Shen-Ming Lee and Cathy W. S. Chen
Feng-Chia University

Abstract

The primary goal of this paper is to estimate population size associated with the capture-recapture model when the capture probability vary with behavior response and time (or trapping occasion). We cast the capture-recapture model in a Bayesian framework and make inference by using the Gibbs sampler, a Markov Chain Monte Carlo method. Using the method of maximum likelihood estimation, certain assumptions on the relationship between the capture and recapture probabilities are required in order to make inference of population size for the behavior response model. The major advantage of this approach is that no assumption is needed in our proposed procedure. The proposed methodology is illustrated with real data and a simulation study. The results show that the Gibbs sampler provides sound inference of population size.

Key words and phrases: Behavior response, capture-recapture model, Gibbs sampler, Markov Chain Monte Carlo method, population size, time variation.

1. Introduction

The capture-recapture model is widely used in the estimation of population sizes. We will consider the problem of estimating population size under a closed population in the capture-recapture model when the capture probabilities vary with behavior response and time (or trapping occasion). This model is known as Model $M_{t b}$. There are three special models of Model $M_{t b}$: Model M_{t}, Model M_{b}, and Model M_{0}. Model M_{t} and Model M_{b} consider the capture probabilities varying with time and behavior response, respectively. If the capture probability is a constant, we call it Model M_{0}. Laplace (1786) used the Petersen method to estimate the total population size of France from a register of births for the whole country in 1783 (see p. 16 in Otis, Burnham, White, and Anderson (1978) for more detail). This approach received its main impetus in the context of a estimating the size of a wildlife population. However, no breakthrough has been made in this area until the last three decades. For examples, see the work by Otis, Burnham, White, and Anderson (1978), White, Anderson, Burnham, and Otis (1982), Seber (1982, 1986, 1992), and Pollock (1991). The problem of estimating population size also has been encountered in epidemiology (Wittes (1974), Wittes, Colton, and Sidel (1974)), computer science (Jewell (1985), Lanbgberg and Singpurwalla
(1983), Nayak (1991), Chao, Ma and Yang (1993)), and demography (Wolter (1986)).

Model M_{b} and Model $M_{t b}$ are practically important and useful in biological and ecological applications because animals frequently exhibit a behavioral response to capture. Little work has been done on Model $M_{t b}$ in the literature (see Lloyd (1994), Rexstad and Burnham (1991), and Lee (1996) for references). Seber and Whale (1970) show that the maximum likelihood estimate (MLE) of population sizes exists only under some conditions for Model M_{b}. From a Bayesian viewpoint, Castledine (1981), Smith (1991) and George and Robert (1992) make inference of population size for Model M_{t}. When there is a behavioral response to capture, the inference of population size for Model M_{t} may have either a positive or negative bias according to whether the animals become trap shy or trap happy. Therefore, we concentrate on the behavioral response models. In this paper, we generalize a Bayesian analysis of Model M_{b} and Model $M_{t b}$ by using the Gibbs sampler, a Markov Chain Monte Carlo method.

The aim of this paper is to show that the Gibbs sampler, as a viable alternative to both analytical calculation and numerical approximation, can facilitate Bayesian calculations for capture-recapture behavioral response models, thereby enhancing their scope. Moreover, since the Model $M_{t b}$ involves more parameters than the minimal sufficient statistic, not all parameters can be estimated and maximum likelihood estimation of the population size proves to be impossible. Consequently, in order to make the population size N an identifiable parameter under maximum likelihood estimation, one has to make certain assumptions on the relationship between the recapture probability and first capture probability. One assumption often used is that of proportionality. It is possible in a Bayesian approach to estimate more parameters than observations at hand. (For example, see McCulloch and Tsay (1994).) A great advantage of the proposed procedure is that the unidentifiability problem can be resolved under Model $M_{t b}$ in the Bayesian approach using the Gibbs sampler. We shall not repeat the details of the Gibbs sampler which can be found elsewhere (e.g. Geman and Geman (1984), Tanner and Wong (1987), Gelfand and Smith (1990), and Gelfand, Hills, RacinePoon, and Smith (1990)). It suffices to say that what we need are conditional distributions of subsets of parameters given the others. The Gibbs sampler is iterated many times in order to obtain a sample of draws from the posterior distribution. The empirical distribution of this sample converges weakly to the true joint distribution. (For more details of convergence results, see Tierney (1994).) Interested readers are also referred to Casella and George (1992) and Tanner (1994) for a general comprehensive review of the Gibbs sampler. Section 2 presents the behavioral response models and the setup of Bayesian framework. Section 3 illustrates the methodology using a real data set and simulation study. We give concluding remarks in Section 4.

2. Bayes Estimates for the Behavioral Response Model

Let N be the unknown size of the population of interest and t be the total number of trapping samples. The animals can be indexed by $1, \ldots, N$ and $P_{i j}$ is the capture probability of the i th animal in the j th trapping sample, $i=1, \ldots, N$; $j=1, \ldots, t$. Animals are assumed to act independently. If the animals exhibits behavior response, $P_{i j}$ depends on the capture history of the first $j-1$ samples and $P_{i j}$ can be expressed as

$$
P_{i j}= \begin{cases}P_{i j}^{*} & \text { if the } i \text { th animal is not caught in the first } j-1 \text { samples; } \tag{1}\\ b_{i j}^{*} & \text { if the } i \text { th animal has been caught in the first } j-1 \text { samples }\end{cases}
$$

Let $X_{i j}$ be equal to 1 if the i th animal is caught in the j th sample, and 0 otherwise. The underlying general probability structure of the capture-recapture experiments is as follows:

$$
\begin{align*}
L(N, \boldsymbol{P} \mid \mathcal{D})= & \prod_{i=1}^{N} \prod_{j=1}^{t} P_{i j}^{X_{i j}}\left(1-P_{i j}\right)^{1-X_{i j}} \\
= & \prod_{i=1}^{N} \prod_{j=1}^{t} P_{i j}^{* X_{i j} I\left[\left(\sum_{k=1}^{j-1} X_{i k}\right)=0\right]} b_{i j}^{* X_{i j} I\left[\left(\sum_{k=1}^{j-1} X_{i k}\right)>0\right]} \\
& \times\left(1-P_{i j}^{*}\right)^{\left(1-X_{i j}\right) I\left[\left(\sum_{k=1}^{j-1} X_{i k}\right)=0\right]}\left(1-b_{i j}^{*}\right)^{\left(1-X_{i j}\right) I\left[\left(\sum_{k=1}^{j-1} X_{i k}\right)>0\right]} \tag{2}
\end{align*}
$$

where $I(\cdot)$ is the usual indicator function, $\boldsymbol{P}=\left(P_{i j}, i=1, \ldots, N ; j=1, \ldots, t\right)$, $\mathcal{D}=\left\{X_{i j}, i=1, \ldots, N ; j=1, \ldots, t\right\}$, and $L(N, \boldsymbol{P} \mid \mathcal{D})$ denotes the likelihood function.

There are too many parameters in the general model in (2), so the information about N can not be extracted from data. Therefore, the parameter space of the general model in (2) must be restricted. When the animals do not exhibit behavior response, the most common restrictions used are $P_{i j}=P$ or $P_{i j}=P_{j}$ (see Darroch (1958), Castledine (1981), George and Robert (1992)). These models are designated as Model M_{0} or Model M_{t} respectively in Otis, Burnham, White, Anderson (1978). If there is behavior response for the captured animals, the restrictions become

$$
\begin{equation*}
P_{i j}=P_{j} I\left(\sum_{k=1}^{j-1} X_{i k}=0\right)+b_{j} I\left(\sum_{k=1}^{j-1} X_{i k}>0\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{i j}=P I\left(\sum_{k=1}^{j-1} X_{i k}=0\right)+b I\left(\sum_{k=1}^{j-1} X_{i k}>0\right) \tag{4}
\end{equation*}
$$

where b_{j} is the recapture probability in the j th sample and b is the recapture probability for any sample. We denote (3) and (4) by Model $M_{t b}$ and Model M_{b}, respectively. In this paper, we will focus on Model $M_{t b}$ and Model M_{b}.

2.1. Bayesian inference about N for Model $M_{t b}$

In this subsection, we consider all animals which are not caught in the first $j-1$ samples having the same capture probability P_{j} in the j th sample. The recapture probability for all animals in the j th sample is b_{j}. The structure of $P_{i j}$ has the same explicit formula as (3). The likelihood function for this model is a special case of (2) and is obtained as follows:

$$
\begin{equation*}
L(N, \boldsymbol{P}, \boldsymbol{b} \mid \mathcal{D}) \propto \frac{N!}{\left(N-M_{t+1}\right)!} \prod_{j=1}^{t} P_{j}^{u_{j}}\left(1-P_{j}\right)^{N-M_{j+1}} \prod_{j=2}^{t} b_{j}^{m_{j}}\left(1-b_{j}\right)^{M_{j}-m_{j}} \tag{5}
\end{equation*}
$$

where $\boldsymbol{P}=\left(P_{1}, \ldots, P_{t}\right), \boldsymbol{b}=\left(b_{2}, \ldots, b_{t}\right), M_{j+1}=u_{1}+\cdots+u_{j}$ is the number of distinct animals captured before the first j samples, and u_{j} and m_{j} are the number of unmarked and marked animals captured in the j th sample, respectively.

The likelihood function can be exhibited by the product of some binomial distributions. The conditional distributions of m_{j} given M_{j} and u_{j} given $N-M_{j}$ are, respectively,

$$
m_{j} \mid M_{j} \sim B\left(b_{j}, M_{j}\right), \quad j=2, \ldots, t
$$

and

$$
u_{j} \mid N-M_{j} \sim B\left(P_{j}, N-M_{j}\right), \quad j=1, \ldots, t
$$

Consequently, the explicit formula for the likelihood function is
$L(N, \boldsymbol{P}, \boldsymbol{b} \mid \mathcal{D})=\left\{\prod_{j=1}^{t}\binom{N-M_{j}}{u_{j}} P_{j}^{u_{j}}\left(1-P_{j}\right)^{N-M_{j}-u_{j}}\right\}\left\{\prod_{j=2}^{t}\binom{M_{j}}{m_{j}} b_{j}^{m_{j}}\left(1-b_{j}\right)^{M_{j}-m_{j}}\right\}$.
We consider priors of the form $\pi(N, \boldsymbol{P}, \boldsymbol{b})=\left(\prod_{j=1}^{t} \pi\left(P_{j}\right)\right)\left(\prod_{j=2}^{t} \pi\left(b_{j}\right)\right) \pi(N)$. Such priors lead to posterior conditionals of the forms:

$$
\begin{align*}
& \pi(N \mid \boldsymbol{P}, \boldsymbol{b}, \mathcal{D}) \propto \frac{N!}{\left(N-M_{t+1}\right)!}\left(\prod_{j=1}^{t}\left(1-P_{j}\right)^{N}\right) \pi(N) \tag{7}\\
& \pi(\boldsymbol{P} \mid N, \boldsymbol{b}, \mathcal{D}) \propto \prod_{j=1}^{t} P_{j}^{u_{j}}\left(1-P_{j}\right)^{\left(N-M_{j+1}\right)} \pi\left(P_{j}\right) \tag{8}\\
& \pi(\boldsymbol{b} \mid N, \boldsymbol{P}, \mathcal{D}) \propto \prod_{j=2}^{t} b_{j}^{m_{j}}\left(1-b_{j}\right)^{\left(M_{j}-m_{j}\right)} \pi\left(b_{j}\right) \tag{9}
\end{align*}
$$

The conditional posterior of N in Equation (7) is the same as proposed by George and Robert (1992) under Model M_{t}.

We take the priors of \boldsymbol{P} and \boldsymbol{b} to be $\pi(\boldsymbol{P})=\prod \pi\left(P_{j}\right)$ and $\pi(\boldsymbol{b})=\Pi \pi\left(b_{j}\right)$ respectively, where $\pi\left(P_{j}\right)=\operatorname{Be}\left(\gamma_{1}, \gamma_{2}\right), \pi\left(b_{j}\right)=\operatorname{Be}\left(\gamma_{3}, \gamma_{4}\right)$ with $\operatorname{Be}(x, y)$ denoting a beta distribution. It follows that Eqns. (8) - (9) can then be reduced to

$$
\begin{equation*}
\pi(\boldsymbol{P} \mid N, \boldsymbol{b}, \mathcal{D}) \propto \prod_{j=1}^{t} B e\left(u_{j}+\gamma_{1}, N-M_{j+1}+\gamma_{2}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(\boldsymbol{b} \mid N, \boldsymbol{P}, \mathcal{D}) \propto \prod_{j=2}^{t} B e\left(m_{j}+\gamma_{3}, M_{j}-m_{j}+\gamma_{4}\right) . \tag{11}
\end{equation*}
$$

If the prior of N is Jeffrey's prior $\pi(N)=1 / N$, the conditional posterior of N is

$$
P(N=n \mid \boldsymbol{P}, \boldsymbol{b}, \mathcal{D})=\binom{n-1}{M_{t+1}-1}\left(1-\prod_{j=1}^{t}\left(1-P_{j}\right)\right)^{M_{t+1}}\left(\prod_{j=1}^{t}\left(1-P_{j}\right)\right)^{N-M_{t+1}}
$$

where $n=M_{t+1}, M_{t+1}+1, \ldots$ It is easy to recognize the conditional posterior of N is negative binomial with parameter $\left(M_{t+1}, 1-\Pi\left(1-P_{j}\right)\right)$. Alternatively, for the constant prior of N, the conditional posterior on N is negative binomial with parameter $\left(M_{t+1}+1,1-\Pi\left(1-P_{j}\right)\right)$. Starting with an initial value of $N^{(0)}$ for N, we can produce a 'Gibbs sequence' $\left\{\boldsymbol{P}^{(k)}, N^{(k)}, \boldsymbol{b}^{(k)}\right\}(k=0,1, \ldots)$ with simulated sampling from (10), (7) and (11).

We can also consider a logit model on the P_{j} and b_{j}, that is, $\alpha_{j}=$ $\log \left(P_{j} /\left(1-P_{j}\right)\right) \sim N\left(\mu_{j}, \sigma^{2}\right)$ and $\beta_{j}=\log \left(b_{j} /\left(1-b_{j}\right)\right) \sim N\left(\nu_{j}, \sigma^{2}\right)$. In this structure, the conditional posterior of $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is

$$
\begin{equation*}
\pi(\boldsymbol{\alpha} \mid N, \boldsymbol{\beta}, \mathcal{D}) \propto \prod_{j=1}^{t} \frac{\exp \left(\alpha_{j} u_{j}-\frac{1}{2}\left(\frac{\alpha_{j}-\mu_{j}}{\sigma}\right)^{2}\right)}{\left(1+e^{\alpha_{j}}\right)^{N-M_{j}}} \tag{12}
\end{equation*}
$$

where $\boldsymbol{\beta}=\left(\beta_{2}, \ldots, \beta_{t}\right)$. It is easy to check $\pi(\boldsymbol{\alpha} \mid N, \boldsymbol{\beta}, \mathcal{D})$ is \log concave in α_{j} so that α_{j} can be simulated by adaptive rejection sampling. (For more details of this sampling, see Gilks and Wild (1992).) Note that the inference of N does not depend on β_{j} when $\pi(\boldsymbol{\alpha}, \boldsymbol{\beta}, N)=\left(\prod \pi\left(\alpha_{j}\right)\right)\left(\Pi \pi\left(\beta_{j}\right)\right) \pi(N)$. Therefore, we omit the conditional posterior of $\boldsymbol{\beta}$ here. Note further that the inference of N depends only on u_{1}, \ldots, u_{t}. Consequently, our method can also be extended to the removal model.

2.2. Bayesian inference about N for Model M_{b}

Suppose all animals have the same capture probability P in the first capture, and the same recapture probability b after the first capture. This structure of
capture probability $P_{i j}$ is reduced to (4) and the likelihood function becomes

$$
\begin{equation*}
L(N, P, b \mid \mathcal{D}) \propto \frac{N!}{\left(N-M_{t+1}\right)!} P^{M_{t+1}}(1-P)^{t N-M \cdot-M_{t+1}} b^{m \cdot}(1-b)^{M \cdot-m} \tag{13}
\end{equation*}
$$

where $M_{.}=M_{2}+\cdots+M_{t}$ and $m_{.}=m_{2}+\cdots+m_{t}$. Taking N, P, and b to be a priori independent, the conditional posterior distributions are

$$
\begin{align*}
& \pi(N \mid P, b, \mathcal{D}) \propto \frac{N!}{\left(N-M_{t+1}\right)!}(1-P)^{t N} \pi(N) \tag{14}\\
& \pi(P \mid N, b, \mathcal{D}) \propto P^{M_{t+1}}(1-P)^{t N-M .-M_{t+1}} \pi(P) \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\pi(b \mid N, P, \mathcal{D}) \propto b^{m \cdot}(1-b)^{M \cdot-m \cdot} \pi(b) \tag{16}
\end{equation*}
$$

We choose $\pi(P)=B e\left(\gamma_{1}, \gamma_{2}\right)$ and $\pi(b)=B e\left(\gamma_{3}, \gamma_{4}\right)$. Subsequently, (15) and (16) can be reduced to

$$
\begin{equation*}
\pi(P \mid N, b, \mathcal{D})=B e\left(M_{t+1}+\gamma_{1}, t N-M_{.}-M_{t+1}+\gamma_{2}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(b \mid N, P, \mathcal{D})=B e\left(m_{\bullet}+\gamma_{3}, M_{\bullet}-m_{\bullet}+\gamma_{4}\right) \tag{18}
\end{equation*}
$$

Taking the prior of N to be constant or Jeffrey's prior in (14), the conditional posterior of N follows a negative binomial distribution with respective parameter $\left(M_{t+1}+1,1-(1-P)^{t}\right)$ or $\left(M_{t+1}, 1-(1-P)^{t}\right)$.

Based on these conditional posterior distributions, the Gibbs sampler can be readily implemented.

3. Illustrative Examples

In this section, we illustrate the proposed methodology with a real example and a brief simulation study, focusing on inference about population sizes. The chosen prior of N is the Jeffrey's prior.

3.1. Real example

We consider the cotton rat data in White, Anderson, Burnham, and Otis (1982). In a Florida sugar cane field, 76 traps were placed along 6 parallel transects and baited with apples. Traps were placed 15.4 m apart on a transect, transects were an average 80 m apart, and trapping was done for eight consecutive days. As shown in Table 1, it consists of $t=8$ capture occasions from a population of cotton rats (Sigmodon hispidus). Notice that the total number of animals captured (not counting recaptures) is $M_{t+1}=M_{9}=82$ for this cotton rat data. Consequently we know the population size of cotton rats is above 82 .

The model selected by White, Anderson, Burnham, and Otis (1982) as the appropriate model for population estimate is the behavioral response Model M_{b}. We are interested in making inference of the number of cotton rats for Model M_{b} as well as Model $M_{t b}$. The hyper-parameters used are $\left(\gamma_{3}, \gamma_{4}\right)=(3.0,3.0)$ and 9 specifications for $\left(\gamma_{1}, \gamma_{2}\right)$ are given in Table 2. The choice $\left(\gamma_{1}, \gamma_{2}\right)=(5.3,17.6)$ maximizes the likelihood as empirical Bayes. Note that $(106,352)$ is proportional to ($5.3,17.6$), and other choices are informative. We do not vary the hyperparameters $\left(\gamma_{3}, \gamma_{4}\right)$. The reason is that the value of $\left(\gamma_{3}, \gamma_{4}\right)$ only affects \boldsymbol{b} in (11) which does not alter the estimate of population sizes. For each prior, Gibbs sampler is run for 3500 iterations. We record every 5th value in the sequence of the last 1500 in order to have more nearly independent contributions. For each sequence, Table 2 lists median, mean, standard error of N, and a 95% credible interval for N is obtained from the 2.5% and 97.5% quantiles.

Table 1. Capture-recapture counts of cotton rat data

occasion		1	2	3	4	5	6	7	8
animals caught		19	26	33	27	33	37	27	28
total caught	$\left(M_{i}\right)$	0	19	36	52	60	66	74	81
newly caught	$\left(u_{i}\right)$	19	17	16	8	6	8	7	1
marked animals caught	$\left(m_{i}\right)$	0	9	17	19	27	29	20	27

Table 2. Results of cotton rat data under Model M_{b}.

	M_{b}			$M_{t b}$		
$\operatorname{Beta}\left(\gamma_{1}, \gamma_{2}\right)$	Median	Mean	95\% CI	Median	Mean	95\% CI
(1.0,5.0)	97	98	$(88,113)$	105	108	$(91,141)$
		(7.03)			(13.95)	
(2.0,5.0)	95	96	$(87,110)$	89	90	$(84,99)$
		(5.78)			(4.09)	
(3.0,5.0)	94	95	$(88,108)$	85	86	$(83,90)$
		(5.21)			(1.70)	
(4.0,5.0)	94	94	$(87,105)$	84	84	$(82,87)$
		(4.57)			(1.12)	
(5.0,5.0)	92	93	$(87,102)$	83	83	$(82,85)$
		(3.92)			(0.79)	
(10.0,5.0)	90	90	$(86,97)$	82	82	$(82,83)$
		(3.09)			(0.17)	
(5.3,17.6)	95	96	$(89,109)$	93	94	$(88,103)$
		(4.97)			(3.72)	
$(106,352)$	94	94	$(88,102)$	94	94	$(90,97)$
		(3.0)			(1.7)	
(1.0,3.3)	97	98	$(88,112)$	92	94	$(85,114)$
		(6.15)			(7.73)	

Although the shape of beta distributions is quite different for each hyperparameter $\left(\gamma_{1}, \gamma_{2}\right)$, the estimator associated with Model M_{b} reveals only minor difference in mean as compared with that of Model $M_{t b}$. Using the method of maximum likelihood estimation, White, Anderson, Burnham, and Otis (1982) obtained $\hat{N}=93$ with a standard error of 6.69 and $(79,107)$ as the 95% confidence interval, which are similar to our estimates. However, the 95% lower confidence bound for the population sizes in White, Anderson, Burnham, and Otis (1982) is 79 which underestimates the actual population size. Table 2 shows that the 95% lower credible bounds are all above 82 and the range of 95% credible intervals for Model M_{b} are shorter than the range of White, Anderson, Burnham, and Otis. To compare the 95% credible intervals for each prior for Model M_{b} and Model $M_{t b}$, Figures 1(a) and 1(b) are given. Figure 1(a) displays similar variability across priors while Figure 1(b) shows different variability across priors. The wide variability in posterior characteristics shows sensitive dependence on the choice of $\left(\gamma_{1}, \gamma_{2}\right)$. The largest realization for $\left(\gamma_{1}, \gamma_{2}\right)=(1,5)$ tends to be much larger than those for any other prior for Model $M_{t b}$. The value for $\left(\gamma_{1}, \gamma_{2}\right)=(1,5)$ is the most dispersed in Figure 1(b). In short, the proposed method works reasonably well for Model M_{b} but less well for Model $M_{t b}$ with regard to the cotton rat data.

Figure 1. (a) 95% credible intervals for Model M_{b} of cotton rat data. The xaxis represents priors in the order given in Table 2. (b) 95% credible intervals for Model $M_{t b}$ of cotton rat data. The x-axis represents priors in the order given in Table 2.

3.2. Simulation study

In this subsection, we carried out a limited simulation study to investigate the performance of the proposed inference procedure. We fixed the population size $N=100$ and $t=6$. Let the first capture probability of animals in the j th sample be P_{j} and δ be the behavior response factor. Capture and recapture data were generated from a population where the recapture probability is $b_{j}=\delta P_{j}$. Since the recapture probability b_{j} does not alter the estimate of population size under the proposed method for Models M_{b} and $M_{t b}$, we fix δ at 0.36 and consider $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)$ as follows.

Case 1. ($0.14,0.14,0.14,0.14,0.14,0.14)$;
Case 2. $(0.18,0.18,0.18,0.18,0.18,0.18)$;
Case 3. ($0.22,0.22,0.22,0.22,0.22,0.22$);
Case 4. ($0.18,0.10,0.10,0.22,0.12,0.12)$;
Case 5. ($0.22,0.14,0.26,0.14,0.14,0.18$);
Case 6. ($0.20,0.16,0.16,0.36,0.20,0.24$),
where the underlying models are Model M_{b} for cases 1-3 and Model $M_{t b}$ for cases 4-6.

We apply the Bayesian approach to all simulation. The hyper-parameters used are $\left(\gamma_{3}, \gamma_{4}\right)=(3,3)$ and 5 specifications for $\left(\gamma_{1}, \gamma_{2}\right)$. The choices $\left(\gamma_{1}, \gamma_{2}\right)=$ $(1,5),(2,5),(3,5)$ and $(5,5)$ can be motivated as informative prior. For each data set, we make inference of N via the proposed method for Model M_{b} and Model $M_{t b}$, respectively. It is possible to obtain a beta distribution with either of the parameters γ_{1} or γ_{2} being zero in Equation (10) when we adopt noninformative priors for $\left(\gamma_{1}, \gamma_{2}\right)$ for Model $M_{t b}$. Therefore we do not consider noninformative priors for $\left(\gamma_{1}, \gamma_{2}\right)$ in our simulation study. For each data set, the Gibbs sampler was run for 3500 iterations but collected every 5 th of the last 1500 iterations for making inference. Two hundred data sets were generated and analyzed for each of the two Models $M_{t b}$ and M_{b}. Moreover, Seber and Whale (1970) proposed the failure criterion for Model M_{b}

$$
\begin{equation*}
\sum_{j=1}^{t}(t+1-2 j) u_{j} \leq 0 \tag{19}
\end{equation*}
$$

When satisfied, it is impossible to obtain valid estimation of N by using the method of maximum likelihood estimation. In the simulation study, we estimate N for Model M_{b} when (19) is not satisfied, otherwise we do not estimate N. We denote this estimator as " $M_{b(m l e)}$ " in our simulation. For each data set, we calculated the mean, median, standard deviation, and the 2.5% and 97.5% quantiles of the marginal posterior distribution. Tables 3-8 list the following:
the average of mean, median, and standard deviation, the medians of 2.5% and 97.5% quantiles, and the coverage of the 95% credible intervals for 200 data sets. Notice that we can not obtain valid maximum likelihood estimates for some data sets; therefore, the inference of $M_{b(m l e)}$ is based only on the remaining data sets with valid maximum likelihood estimates.

Table 3. Simulation results for 200 runs, $N=100, t=6$, $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.14,0.14,0.14,0.14,0.14,0.14), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage
$\operatorname{Beta}(1,5)$	M_{b}	149	274	366.3	$(78-318)$	0.83
	$M_{t b}$	90	91	9.6	$(76-113)$	0.92
	$M_{b(\text { mle })}$	-	113	75.3	$(42-$	$142)$
$\operatorname{Beta}(2,5)$	M_{b}	103	115	43.0	$(75-181)$	0.85
	$M_{t b}$	71	72	3.5	$(66-$	$80)$
	$M_{b(\text { mle })}$	-	108	63.0	$(44-141)$	0.00
$\operatorname{Beta}(3,5)$	M_{b}	92	98	21.5	$(71-144)$	0.88
	$M_{t b}$	66	66	2.0	$(63-$	$70)$
	$M_{b(\text { mle })}$	-	106	50.0	$(39-149)$	0.00
$\operatorname{Beta}(5,5)$	M_{b}	84	86	12.3	$(70-111)$	0.83
	$M_{t b}$	63	63	1.0	$(62-$	$66)$
	$M_{b(\text { mle })}$	-	111	69.7	$(43-$	$145)$
						0.00

Table 4. Simulation results for $200 \mathrm{runs}, N=100, t=6$, $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.18,0.18,0.18,0.18,0.18,0.18), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage
$\operatorname{Beta}(1,5)$	M_{b}	125	203	163.5	$(84-185)$	0.88
	$M_{t b}$	104	106	10.9	$(88-131)$	0.97
	$M_{b(m l e)}$	-	103	29.2	$(62-124)$	0.83
$\operatorname{Beta}(2,5)$	M_{b}	105	112	26.6	$(82-155)$	0.91
	$M_{t b}$	82	83	3.8	$(77-$	$91)$
	$M_{b(m l e)}$	-	103	26.1	$(61-$	$132)$
$\operatorname{Beta}(3,5)$	M_{b}	97	101	15.6	$(80-130)$	0.84
	$M_{t b}$	77	77	2.1	$(73-$	$82)$
	$M_{b(m l e)}$	-	101	25.8	$(62-121)$	0.00
$\operatorname{Beta}(5,5)$	M_{b}	92	94	10.7	$(80-116)$	0.77
	$M_{t b}$	73	73	1.1	$(71-$	$76)$
	$M_{b(\text { mle })}$	-	107	32.7	$(61-$	$137)$
						0.00

First, we consider cases 1-3 in Tables 3-5. Most of the coverage probabilities for Model M_{b} are above 80%. The 95% lower confidence bounds for the method
of maximum likelihood estimation are underestimated when compared with that of M_{b}. In Tables 6-8, the estimator associated with Model $M_{t b}$ is sensitive to the priors selection. It has been known in the literature that the estimator associated with Model $M_{t b}$ can cause technical problems. For example, Pollock et al. (1990) point out that "Model $M_{t b}$ has no estimators in CAPTURE, but Burnham (Colo. Coop. Fish and Wildl. Res. Unit, pers. commun.) has derived an estimator that often does not perform very well ...".

Table 5. Simulation results for 200 runs, $N=100, t=6$,
$\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.22,0.22,0.22,0.22,0.22,0.22), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage
$\operatorname{Beta}(1,5)$	M_{b}	114	163	111.9	$(90-154)$	0.82
	$M_{t b}$	115	117	11.9	$(98-144)$	0.69
	$M_{b(\text { mle })}$	-	103	18.3	$(74-$	$122)$
$\operatorname{Beta}(2,5)$	M_{b}	105	108	16.7	$(87-135)$	0.88
	$M_{t b}$	91	91	4.0	$(84-100)$	0.49
	$M_{b(\text { mle })}$	-	101	15.8	$(74-126)$	0.87
$\operatorname{Beta}(3,5)$	M_{b}	102	105	13.0	$(88-127)$	0.86
	$M_{t b}$	85	85	2.2	$(82-$	$90)$
	$M_{b(m l e)}$	-	103	16.8	$(74-$	$122)$
$\operatorname{Beta}(5,5)$	M_{b}	95	97	8.0	$(85-113)$	0.88
	$M_{t b}$	81	81	1.1	$(79-$	$83)$
	$M_{b(\text { mle })}$	-	100	14.6	$(73-119)$	0.00

Table 6. Simulation results for 200 runs, $N=100, t=6$, $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.18,0.10,0.10,0.22,0.12,0.12), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage	
$\operatorname{Beta}(1,5)$	M_{b}	134	294	370.1	$(77-296)$	0.91	
	$M_{t b}$	90	91	9.7	$(76-$	$113)$	0.92
	$M_{b(m l e)}$	-	105	68.5	$(45-$	$132)$	0.75
$\operatorname{Beta}(2,5)$	M_{b}	97	106	33.2	$(72-157)$	0.86	
	$M_{t b}$	71	71	3.4	$(65-$	$78)$	0.00
	$M_{b(m l e)}$	-	103	59.1	$(47-$	$130)$	0.74
$\operatorname{Beta}(3,5)$	M_{b}	88	93	19.2	$(70-128)$	0.79	
	$M_{t b}$	66	66	1.9	$(64-$	$71)$	0.00
	$M_{b(m l e)}$	-	95	34.0	$(48-$	$127)$	0.75
$\operatorname{Beta}(5,5)$	M_{b}	114	209	241.9	$(71-$	$197)$	0.80
	$M_{t b}$	63	63	1.9	$(60-$	$68)$	0.00
	$M_{b(m l e)}$	-	102	56.6	$(47-$	$124)$	0.70

Table 7. Simulation results for 200 runs, $N=100, t=6$,
$\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.22,0.14,0.26,0.14,0.14,0.18), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage
$\operatorname{Beta}(1,5)$	M_{b}	100	113	38.4	$(80-130)$	0.79
	$M_{t b}$	103	105	10.7	$(88-129)$	0.99
	$M_{b(m l e)}$	-	89	13.1	$(65-$	$105)$
Beta $(2,5)$	M_{b}	93	96	15.2	$(78-118)$	0.59
	$M_{t b}$	81	82	3.6	$(76-$	$90)$
	$M_{b(m l e)}$	-	89	13.9	$(65-107)$	0.05
	Beta $(3,5)$	M_{b}	89	92	10.2	$(79-112)$
	$M_{t b}$	77	77	2.0	$(74-$	$82)$
	$M_{b(m l e)}$	-	89	12.5	$(66-$	$108)$
Beta $(5,5)$	M_{b}	85	87	7.3	$(76-102)$	0.00
	$M_{t b}$	73	73	1.0	$(72-$	$76)$
	$M_{b(m l e)}$	-	90	13.4	$(65-$	$104)$

Table 8. Simulation results for 200 runs, $N=100, t=6$, $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(0.20,0.16,0.16,0.36,0.20,0.24), \delta=0.36$.

Prior	Method	Median	Mean	Std	95% CI	Coverage
$\operatorname{Beta}(1,5)$	M_{b}	178	284	296.6	$(104-344)$	0.39
	$M_{t b}$	118	120	12.6	$(100-149)$	0.54
	$M_{b(\text { mle })}$	-	139	63.1	$(62-$	$181)$
$\operatorname{Beta}(2,5)$	M_{b}	134	146	45.1	$(99-215)$	0.99
	$M_{t b}$	93	93	4.3	$(87-103)$	0.70
	$M_{b(\text { mle })}$	-	139	57.9	$(63-183)$	0.99
$\operatorname{Beta}(3,5)$	M_{b}	123	128	25.2	$(96-179)$	0.67
	$M_{t b}$	87	87	2.4	$(83-$	$93)$
	$M_{b(\text { mle })}$	-	142	76.2	$(65-$	$181)$
$\operatorname{Beta}(5,5)$	M_{b}	109	112	14.5	$(92-144)$	0.99
	$M_{t b}$	82	82	1.2	$(80-$	$85)$
	$M_{b(\text { mle })}$	-	136	63.0	$(65-173)$	0.00
						0.99

When the prior mean of $P_{j}, \gamma_{1} /\left(\gamma_{1}+\gamma_{2}\right)$, is approximately equal to $\bar{P}=$ $(1 / t) \sum P_{j}$, the performance of inferences for Model $M_{t b}$ can be improved and have better coverage probabilities. In the simulation study, the average of P_{j} $\left(\bar{P}=(1 / t) \sum P_{j}\right)$ in cases $4-6$, are $0.14,0.18$, and 0.22 respectively. Consider $\bar{P}=0.22$ in case 6 . The prior means are between 0.167 and 0.286 . Therefore, the inference performance with priors $B e(1,5)$ and $B e(2,5)$ for Model $M_{t b}$ are better than the others in Table 8. The remaining coverage probabilities for 95% credible intervals are small since the prior mean is far away from \bar{P}. Therefore,
the estimator associated with Model $M_{t b}$ behaves nicely when the prior mean is close to the average, \bar{P}. The result is summarized as follows:

	\bar{P}	$B e\left(\gamma_{1}, \gamma_{2}\right)$	$\frac{\gamma_{1}}{\gamma_{1}+\gamma_{2}}$	Coverage for Model $M_{t b}$
case 4	0.14	$(1,5)$	0.167	0.92
case 5	0.18	$(1,5)$	0.167	0.99
case 6	0.22	$(2,5)$	0.286	0.70

We repeated the simulation several times with different capture probabilities and different hyper-parameters for the prior distributions. Due to limited space, the detailed results are omitted. The results indicate that the posterior median for Model M_{b} gives reasonable inference. In summary, in most of the cases the performance of inference for Model M_{b} is much better than the performance inference for Model $M_{t b}$. Moreover, the estimates for Model M_{b} are less sensitive than estimates for Model $M_{t b}$ when the priors are selected. The estimator associated with Model $M_{t b}$ behaves nicely when the prior mean is close to the average of capture probabilities.

4. Concluding Remarks

The conventional capture-recapture model is often used to estimate population size; however, estimation becomes troublesome when problems arise such as when the MLE does not exist or when there is an unidentifiability problem if the animals exhibit behavior response after they have been captured. The unidentifiability problem can be overcome in the proposed Bayesian approach. We apply the Gibbs sampling technique to make inference of population size for two kinds of behavior response models, Model $M_{t b}$ and M_{b}.

When it is not possible to obtain valid estimation of the population size for Model M_{b} by using the method of maximum likelihood estimation, we propose Bayesian estimation procedures. The results show that the performance for Model M_{b} gives sound inference of the population size and the performance for Model M_{b} is less sensitive than that for Model $M_{t b}$ with the priors selected. The conventional estimation of the population size for Model $M_{t b}$ requires certain assumptions on the relationship between the recapture probability and first capture probability. The major result of this work is that we have shown no such assumption is needed in our proposed approach. That is, we do not need to know any information about recaptures. Finally, since we make inference of the population size without using the recapture information, we can extend the application of this procedure to the removal model.

Acknowledgement

The authors thank two referees and the associate editor for their constructive comments which led to significant improvement in this paper. S.-M. Lee and C. W. S. Chen acknowledge research support from the National Science Council of Taiwan grants NSC86-2115-M-035-012 and NSC86-2115-M-035-017.

References

Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46, 167-174.
Castledine, B. (1981). A Bayesian analysis of multiple-recapture sampling for a closed population. Biometrika 68, 197-210.
Chao, A., Ma, M.-C. and Yang, M. C. K. (1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80, 193-201.
Darroch, J. (1958). The multiple-recapture census, I: Estimation of a closed population. Biometrika 45, 343-359.
Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approach to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85, 972-985.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pat. Anal. and Mach. Intel. 6, 721-741.
George, E. I. and Robert, C. P. (1992). Capture-recapture estimation via Gibbs sampling. Biometrika 79, 677-683.
Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41, 337-348.
Jewell, W. (1985). Bayesian estimation of undetected errors. In Bayesian Statistics 2 (Edited by J. Bernardo, M. DeGroot, D. V. Lindley and A. F. M. Smith), 663-672. Amsterdam: North-Holland.
Langberg, N. and Singpurwalla, N. D. (1983). A unification of same software reliability model. SIAM J. Sci. Statist. Comput. 6, 781-790.
Laplace, P. S. (1786). Sur les naissances, les mariages et les morts. Histoire de ℓ 'Académie Royale des Sciences, Année 1783, Paris.
Lee, S.-M. (1996). Estimating population size for capture-recapture data when capture probabilities vary by time, behavior and individual animal. Comm. Statist. Simulation Comput. 25, 431-457.
Lloyd, C. J. (1994). Efficiency of martingale methods in recapture studies. Biometrika 81, 305-315.
McCulloch, R. E. and Tsay, R. S. (1994). Bayesian analysis of autoregressive time series via the Gibbs sampler. J. Time Ser. Anal. 15, 235-250.
Nayak, T. K. (1991). Estimating the number of component processes of a superimposed process. Biometrika 78, 75-81.
Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical inference for capture data on closed animal populations. Wildlife Monographs 62, Louisville: University of Kentucky.

Pollock, K. H. (1991). Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations: past, present, and future. J. Amer. Statist. Assoc. 86, 225-238.
Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990). Statistical inference for capture-recapture experiments. Wildlife Monographs 107, 1-97.
Rexstad, E. and Burnham, K. P. (1991). User's Guide for Interactive Program CAPTURE. Colorado cooperative Fish and Wildlife Research Unit, Fort Collins.
Seber, G. A. F. (1982). The Estimation of Animal Abundance, 2nd Edition. Griffin, London.
Seber, G. A. F. (1986). A review of estimating animal abundance. Biometrics 42, 267-292.
Seber, G. A. F. (1992). A review of estimating animal abundance II. Internat. Statist. Rev. 60, 129-166
Seber, G. A. F. and Whale, J. F. (1970). The removal method for two and three samples. Biometrics 26, 393-400.
Smith, P. J. (1991). Bayesian analysis for a multiple capture-recapture model. Biometrika 78, 399-407.
Tanner, M. (1994). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer-Verlag, New York.
Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82, 528-550.
Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22, 1701-1762.
White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982). Capture-recapture and removal methods for sampling closed populations. Los Alamos National Lab. Publication LA-8787-NERP.
Wittes, J. T. (1974). Applications of a multinomial capture-recapture to epidemiological data. J. Amer. Statist. Assoc. 69, 93-97.

Wittes, J. T., Colton, T. and Sidel, V. W. (1974). Capture-recapture methods for assessing the completeness of case ascertainment when using multiple information sources. J. Chronic Disease 27, 25-36.
Wolter, K. (1986). Some coverage error models for census data. J. Amer. Statist. Assoc. 81, 338-346.

Department of Statistics, Feng-Chia University, Taichung, Taiwan.
E-mail: smlee@stat.fcu.edu.tw
E-mail: wschen@stat.fcu.edu.tw

