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Abstract: Tt is known that under conditions of long-range dependence, and for time
series subordinated to Gaussian processes, the block bootstrap method produces
invalid estimators of the distribution of the sample mean unless the limiting dis-
tribution is normal. In this paper we show that the sampling window method
produces valid, consistent estimators for non-normal as well as normal limits. Ad-
ditionally, we introduce a method for “studentizing” the sample mean of long-range
dependent data, and show that sampling window approximations of its distribution
are also valid. That result suggests that the sampling window method is useful for
setting confidence intervals for a population mean in a particularly wide range of
circumstances. This conclusion is supported by a small simulation study.

Key words and phrases: Block bootstrap, consistency, Gaussian processes, long-
range dependence, sampling window method.

1. Introduction

Approximating sampling distributions of estimators based on dependent data
remains a challenging problem in Statistics. When the dependence structure in
the data can be explained by simple models driven by independent and iden-
tically distributed disturbances (e.g. autoregressive processes with independent
innovations, or countable Markov chains satisfying certain geometric ergodicity
conditions), the bootstrap method of Efron (1979) may be employed with only
minor modifications. See for example Freedman (1984), Bose (1988), Athreya
and Fuh (1992), Datta and McCormick (1992), and the references therein. For
dependent data that do not admit such models, however, a more suitable resam-
pling scheme is the “block bootstrap” method developed by Hall (1985), Carlstein
(1986), Kiinsch (1989), and Liu and Singh (1992) in different contexts. When the
data are weakly dependent, the block bootstrap provides accurate approxima-
tions for the unknown sampling distributions of many commonly used estimators.
See, for example, Lahiri (1991, 1996), Gotze and Kiinsch (1996), Hall, Horowitz
and Jing (1996), and the references therein.

The situation is very different when the data are strongly dependent, how-
ever. For example, it has been shown by Lahiri (1993) that the block bootstrap
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is not consistent when the observations come from certain long-range dependent
processes. The main conclusion of that paper can be roughly summarized as “the
block bootstrap fails to capture the limit law of the normalized sample mean X,
of long-range dependent data, whenever X,, has a non-normal limit law”. The
main reason for this behaviour is that joining independent bootstrap blocks to
define the bootstrap sample fails to reproduce the long-range dependence features
of the time series, and so makes the block bootstrap ineffective.

In this note we discuss the sampling window method of Hall and Jing (1996)
(see also Politis and Romano (1994) and Bickel, G6tze and van Zwet (1997)) in
the context of long-range dependent data. It is shown that under appropriate reg-
ularity conditions, the sampling window method produces consistent estimators
of the distribution of the normalized sample mean in the cases of both normal
and non-normal limit laws. Furthermore, we introduce a method for studentizing
X,,, and show that the sampling window method is also successful in approxi-
mating the distribution of the studentized statistic, again for both normal and
non-normal limit laws. The ability of the sampling window approach to capture
non-normal limit distributions under conditions of very-long-range dependence
is particularly important, and it appears that this technique may be employed to
construct valid confidence intervals in a particularly wide range of circumstances.

Section 2 first introduces the sampling window method and briefly reviews
relevant asymptotic properties of long-range dependent processes. Then we state
our main theoretical results. The problem of choosing window length is addressed
through a numerical study in Section 3. Technical arguments are outlined in
Section 4.

2. Methodology and Theoretical Properties
2.1. Asymptotic distribution of the mean

We assume that the observed data represent a realization of a stationary
sequence X,, = {Xi,...,X,}, which may be represented as a function of a
stationary Gaussian process Z = {Z,,—oc0 < n < oo} in the following way:
X; =G1(Z;), 1> 1, where G1 : IR — IR is a Borel-measurable function satisfying
EG1(Z1)% < co. The sample mean X,, = n™' Y ,~, X; is a consistent estima-
tor of the population mean, p = E(X;), although its rate of convergence may be
slower than n~/2, and its asymptotic distribution may be non-normal. Following
Taqqu (1975) we describe the limiting properties of X,, in terms of the Hermite
rank of G = G1 — p. To this end, let Hy(-), for £ > 1, denote the kth Hermite
polynomial, Hy(z) = (—1)* exp(2?/2)(d* /dz*)(exp(—2?/2)), € IR. Then, the
Hermite rank ¢ of G(-) is defined as

q=inf{k > 1: E[Hy(Z21)G(Z,)] # 0}.
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The limit distribution of X,, depends on ¢ and on the asymptotic behaviour
of the autocovariance function, r(k) = Cov (Z;, Z;41), as follows. Suppose 7(-)
is regularly varying at infinity — that is,

r(k) = k=L(k) (2.1)

as k — oo, where a > 0 and the function L is slowly varying (see Bingham,
Coldie and Teugels (1987)). Let d, = {n> " 9Li(n)}/?, A = 2I'(a)cos(an/2)
and Cy = E{H,(Z1)G(Z1)}/q..

Theorem 2.1. (Taqqu (1975, 1979), Dobrushin and Major (1979)) Assume
that v admits the representation at (2.1), and that G has Hermite rank q, where
0 <a< gt Then, n(X, — u)/d, — W, in distribution, where Wy is defined
i terms of a multiple Wiener-Ité integral with respect to the random spectral
measure W of the Gaussian white-noise process as

Gy (et 2 -1 ey
W"_Aq/Q/ (T 4+ 2q) kl;[l |z dW (1) - - - dW (z4). (2.2)

When ¢ = 1, W, has a normal distribution with mean zero and variance
2C2/{(1—a)(2—a)}, but for ¢ > 2 the distribution of W, is non-normal (Taqqu
(1975)). For details of the representation of W, in (2.2), and the concept of
a multiple Wiener-It6 integral with respect to the random spectral measure of
a stationary process, see Dobrushin and Major (1979) and Dobrushin (1979)
respectively.

2.2. Sampling window estimator of the distribution of the mean

Let X,, = {X3,..., X, } denote a stationary stochastic process, of which the
observed data represent a realization; let 1 < £ < n be the length of sampling
window; and let B; = (X;,...,Xj10-1), for 1 < i < N = n —{+ 1, denote
the ith among the blocks of length ¢ into which X,, may be divided. We may
regard the blocks as scaled-down replicates of the original data sequence X,,. Let
Sti = > i<j<ite—1 Xj be the sum of the elements of B;, and let Tj; = (Spii—£X,)/dy
denote the analogue of the normalized sample mean T,, = n(X,, — u)/d, for B;.
The sampling window (SW) estimator F,,(z) of the distribution function F,(z)

of T}, is defined as the proportion of the Ty;’s that do not exceed x:

N
Fo(z) = NV I{(Su — £X,)/dg < ),
i=1

where I(-) denotes the indicator function.
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2.3. Consistency of the sampling window estimator

Here it is convenient to describe the strength of dependence in terms of
the spectral density, f, of {Z,}, rather than its autocovariance. The two ap-
proaches are equivalent. Indeed, Abelian-Tauberian theorems (e.g. Zygmund
(1968), Ch. 5, and Bingham, Goldie and Teugels (1987)) may be used to prove
that if (2.1) holds then

f(2)/{z"'L(1/z)} — C(a) as z — 0, (2.3)

where C'(«) > 0 depends only on «; and conversely, if (2.3) holds for a slowly
varying function L then r admits the representation (2.1) with (without loss of
generality) the same L.

Since f is symmetric the Fourier series of log f is a pure cosine series. Re-
placing each cosine function by the corresponding sine we obtain the Harmonic
conjugate of log f, which we denote by log f. We shall ask that log f be contin-
uous, which implies that the process {Z,,} is completely regular (see Ibragimov
and Rozanov (1978) for a definition). Note that while log f, being unbounded
in every neighbourhood of the origin, is not continuous on the circle |z| < 7, an
appropriately chosen branch of log f can be continuous there.

Our first theorem describes consistency of the SW method under a condition
similar to (2.3). (By way of comparison, the block bootstrap provides consistency
only when ¢ = 1.) We treat only the case 0 < a < ¢!, noting that the central
limit holds (with a Normal limit) when o > ¢~ !, and so result (2.4) is relatively
trivial there.

Theorem 2.2. Let ¢ > 1 denote the Hermite rank of G. Suppose that f(x) =
|| L (|z]) for 0 < |z| < 7, where 0 < a < ¢~ and Ly is slowly varying at 0
and of bounded variation on every closed subinterval of (0,7]; that a branch of
log f is continuous on |x| < m; and that £~ + n=(1=9¢ = o(1) for some € > 0.
Then, R
sup |F(x) — Fy(z)] — 0 (2.4)
z€lR
in probability as n — oo.

When ¢ = 1 or 2 the distribution of W, is completely determined by its
moments, which property we use to establish a version of Theorem 2.2 under
weaker assumptions.

Theorem 2.3. If g =1 or 2, and £~ + n=(1=9¢ = o(1) for some € > 0, then
(2.4) holds under the assumptions of Theorem 2.1.

Arguments similar to those employed to prove Theorem 2.3 may be used to
derive LP consistency of the SW method without assuming that {X;} is a function
of a Gaussian process. We need asymptotic independence of moments of shifted
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partial sums (see (2.6) below), and that the limit distribution is completely deter-
mined by its moments. Let {X;, —oo < j < oo} denote a stationary stochastic

process with all moments finite, mean p and the property that n(X, — u)/sy

converges in distribution to a proper random variable ¢, where s2 = n?*Var (X,,).
Let £ = ¢(n) < n be a sequence of positive integers, and define Sy;, Ty; and F), as
in Section 2.2 but with d, replaced by s,. Write F' for the distribution function

of C.

Theorem 2.4. Assume that the distribution of  is continuous and uniquely
determined by its moments, all of which are finite. Suppose £(n) — oo,

(£sn)/(nse) — 0, (2.5)

and for each € > 0 and each pair of positive integers ri,ra,

sup |E[{sy" (St — w))" {5 (St — )} = ECEQ)| = 0. (26)
Then, R
B{_sw |F(r) - F@)} -0
—oo<r<0o0
as n — oQ.

Condition (2.5) is of course equivalent to Var (X,,)/Var (X;) — 0 as n — oo,
which is the standard assumption for the “m-out-of-n bootstrap” (cf. Bickel, et
al. (1997)). Since all moments of X; are finite, condition (2.6) is a relatively
weak dependence assumption, and has the advantage over potential alternative
conditions that it has a simple statistical interpretation — it asks that polyno-
mials functions of normalised means, computed from well-separated parts of the
stochastic process, be asymptotically uncorrelated.

2.4. The case of the studentized mean

Here we describe an empirical device for standardizing scale, replacing d,,
by a function of the data but preserving consistency of the SW method for long-
range dependent data. Let m; = my(n),ma = ma(n) € [1,n] denote integers
such that for some € € (0,1),

mi/my~n and m; =0(Mn'"¢) as n— oo, (2.7)

where a, ~ b, means that a,/b, — 1 as n — oo. (For example, we could
have m; ~ n® where 0 < az < 1 and oy = (1 + az).) Define &}2 = (n —m +
1)~y mt (S, —mX,)? and d2 = d;ﬁtl /di2 . Under the conditions of Theorem
2.5 below, cZn is consis:cent for d,, in the sense that dn/dn — 1 in probability
as n — oo. We use d, for studentizing the sample mean X,,. Note that in
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contrast to the case of short-range dependence, where the right scaling constant
(viz. nl/ 2) for asymptotic normality of the centered sample mean is known, the
scaling constant d,, = {n?~%*L4(n)}'/? in the long-range dependent case involves
the unknown quantities o and L(-). Construction of the estimator dy, here, with
the two smoothing parameters mq and msy, yields a consistent estimator of d,,
without requiring knowledge of « and L(-).

Next we define the SW estimator of the sampling distribution of the studen-
tized sample mean Ty, = n(X, — )/ d,. Let dgz) denote the version of d,, for the
ith block B;, defined using the smoothing parameters mq(¢) and mso(¢). (Note
that the values my(¢) and mo(¢) satisfy the relations ‘my(£)%/ma(f) ~ £ and
‘m; = O(£1~€) for some € > 0’, which correspond to the length ¢ of the block B;
as compared to (2.7). This in turn relates to the sample size n.) Let F,, denote
the distribution function of the studentized sample mean Ti,,, and write

n—~+1 )
Fin@) = (n=0+1)7" Y I{(S — Xn)/d} < 2}
=1

for the SW estimator of F,,.

Theorem 2.5. Assume the conditions of Theorem 2.1 for some q > 1, that
ma,my satisfy (2.7), that £=1 +n~0=90 = o(1) for some € > 0, and that

L(ay) AL L)} — 1 as 2,y — . (2.8)

Then, (a) dy/d, — 1 in probability as n — oo, (b) Ti, — W, in distribution as
n — oo, (¢) forq=1,2,
sup | Fi, (z) — Fin(z)] — 0 (2.9)
zclR

in probability as n — oo, and (d) if in addition the conditions of Theorem 2.2
hold, then (2.9) holds for all ¢ > 1.

The accuracy of the SW approximation depends not only on ¢ but also on
choice of the integers mq, ms. Admissible values are mq = n(+0)/2 and my = ne,
for 0 < § < 1. It follows from the proof of Theorem 2.5 that the intermediate
estimator d;, has smaller bias for large values of m. Hence, one may choose
f close to 1 in order to keep mq and mso large and to ensure that the effects
described by Theorem 2.5 are more apparent.

3. Numerical Study
3.1. Algorithm for generating data

We generated stationary increments of a self-similar process with self-similar-
ity parameter (or Hurst constant) H = %(2 — «), and took an appropriate trans-
formation of these data to produce a realization of a long-range dependent process
with Hermite rank ¢. The algorithm was as follows.
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1. Generate a random sample Z,o = {Z19, ..., Zno} of size n from the standard
normal distribution.
2. Let R = (r;;) denote the correlation matrix defined by

rij = %{(k +1)2H 4 (ke — 1) — 2121 (3.1)

for k = |j —i|] and % < H < 1. Decompose R into R = UTU by Cholesky
factorization.

3. Define Z, = {Z1,...,Z,} = U'Z,o. Then the process Z, is stationary and
Gaussian with zero mean, unit variance and autocovariance at lag k given by

1
r(k) = 5{(k+ DH 4 (k= 1) — 2k} ~ Ok~ as k — oo, (3.2)

where « = 2 — 2H € (0,1). Therefore, Z,, = {Z1,...,2,} is a long-range
dependent process. The r(k)’s are the autocovariances of the stationary incre-
ments of a self-similar process with self-similarity parameter H; see e.g. Beran
(1994), p. 50.

4. Define X; = Hy(Z;), fori =1,...,n, where H, is the ¢th Hermite polynomial.
Then X,, = {Xy,..., X, } is a long-range dependent series with Hermite rank
q. We report results derived by simulating from this process in the cases
q=1,2,3.

3.2. Coverage accuracy of the SW method

Let X,, = {X1,...,X,} be the long-range dependent time series with Her-
mite rank ¢, generated in Section 3.1. In the present section we analyse the
finite-sample coverage probabilities of pointwise confidence intervals at a fixed
point produced using the studentized sampling window approach from Section
2.4. Throughout, we take the nominal level to be 0.95. The empirical approx-
imations to coverage probabilities reported here were derived by averaging over
B = 1000 independent simulations.

Experience with the case of short-range dependent data, reported by Hall
and Jing (1996), suggests that we should take [ considerably smaller than n. We
employed [ = en/2, for ¢ = 1,3,6,9. This choice is based not on an assertion
that the optimal value of [ is of size n'/2 (indeed, the best order of [ is not known
to us), but on intuition that the optimal size should be greater than that for the
weakly dependent case, where | ~ cn? for d < % is generally appropriate (Hall
and Jing (1996)). In choosing m; and my for the procedure mentioned in the
last paragraph of Section 2, we took 6 = 0.9.

Results are summarized in Tables 1 to 4. In all tables the bracketed pairs
(+,-) represent coverage probabilities of lower and upper 95% one-sided confidence
intervals, respectively, and ¢ denotes Hermite rank.
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Table 1. ¢ = nt/2

q a=0.1 a=0.5 a=0.9
1 (85.0, 85.6) (89.4,91.1) (91.5, 92.9)
n = 100 2 (84.4, 85.0) (89.6, 90.5) (92.1, 93.1)
3 | (84.4,84.1) (90.6, 91.6) (91.3, 93.9)
1 (92.0, 94.0) (94.5, 95.5) (96.4, 97.0)
n = 200 2 (92.7, 93.7) (95.4, 95.7) (96.3, 97.6)
3| (92.2,91.7) (95.8, 96.1) (96.7, 97.4)
1 (90.1, 91.5) (93.6, 93.9) (94.7, 95.0)
n = 500 2 (90.6, 90.4) (94.6, 95.0) (93.4, 96.0)
3 | (90.8, 89.4) (92.4, 96.0) (95.4, 95.8)
1 (96.0, 95.1) (96.9, 96.0) (97.1, 97.3)
n=1000 | 2 (96.2, 94.0) (97.0, 97.0) (96.8, 98.0)
3 | (954, 94.4) (96.6, 96.6) (97.6, 97.6)
Table 2. ¢ = 3n'/2
q a=0.1 a=0.5 a=0.9
1 (82.9, 84.1) (87.1, 89.5) (90.1, 91.7)
n = 100 2 (83.0, 84.9) (86.3, 88.8) (89.0, 91.6)
3 | (82.5,84.9) (87.7, 89.2) (90.2, 89.7)
1 (85.2, 88.0) (92.2, 91.6) (93.4, 94.0)
n = 200 2 (86.9, 86.9) (90.5, 91.6) (92.6, 93.6)
3 | (87.6,87.3) (90.1, 92.0) (92.9, 93.2)
1 (90.8, 90.8) (93.6, 94.2) (94.2, 95.8)
n = 500 2 (85.6, 91.4) (94.0, 93.4) (94.6, 95.2)
3 | (88.5,88.7) (93.0, 93.6) (95.1, 94.0)
1 (92.6, 93.8) (94.2, 95.8) (95.6, 95.8)
n=1000 | 2 (90.2, 89.2) (95.2, 95.0) (96.2, 96.2)
3 | (90.6, 91.6) (94.4, 94.4) (96.4, 96.4)
Table 3. ¢ = 6n'/?
q a=0.1 a=0.5 a=0.9
1 (66.5, 70.5) (70.8, 74.7) (73.7,77.7)
n = 100 2 (69.1, 68.6) (74.1, 72.1) (73.1, 78.0)
3 | (66.6,69.9) (70.4, 73.9) (73.2, 76.0)
1 (77.4, 80.5) (83.8, 85.5) (85.7, 87.5)
n = 200 2 (76.7, 79.5) (81.1, 84.8) (86.2, 87.4)
3 | (77.5,80.1) (83.0, 84.5) (85.3, 85.9)
1 (83.8, 84.6) (88.2, 89.9) (90.9, 91.3)
n = 500 2 (82.8, 84.4) (89.6, 90.8) (91.2, 92.4)
3 | (83.4,84.7) (90.6, 89.3) (91.8, 92.8)
1 (87.4, 85.6) (90.6, 91.2) (92.2, 91.6)
n=1000 | 2 (85.4, 87.8) (91.4, 92.8) (93.8, 93.4)
3 | (88.4,89.0) (90.4, 92.0) (93.2, 93.2)
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Table 4. ¢ = 9nl/2

q a=0.1 a=0.5 a=0.9
1 | (54.5,52.7) | (56.3,58.1) | (59.5, 62.2)
n = 100 2 | (54.1,53.3) | (55.6,58.1) | (59.8, 63.1)
3 | (83.6,53.9) | (57.3,58.1) | (58.9,63.0)
1 | (66.6,67.5) | (72.2,73.4) | (72.4,74.8)
n = 200 2 | (66.4,70.0) | (71.6,73.3) | (74.0, 75.6)
3 | (66.4,69.1) | (73.5,72.3) | (73.6, 75.6)
1 | (78.2,76.7) | (84.6,85.2) | (85.3, 86.1)
n = 500 2 | (78.8,77.0) | (84.4,84.2) | (86.6, 87.6)
3 | (78.6,77.0) | (83.3,83.2) | (87.1,87.0)
1 | (84.0,84.7) | (89.0,88.1) | (91.7,90.8)
n=1000 | 2 | (83.4,83.4) | (88.4,88.2) | (90.2, 89.8)
3 | (83.8,86.8) | (87.6,88.6) | (90.4,89.4)

The following features are evident in our results.

1. Asexpected, optimal coverage accuracy (i.e. coverage accuracy with the “best”
choice of [) improves with increasing sample size and with decreasing strength
of dependence (i.e. with increasing «r). Coverage inaccuracy is associated with
under-coverage rather than over-coverage.

2. Surprisingly, for fixed choice of ¢ in the formula | = en'/2

of the SW method depends little on the Hermite rank, q.

3. There is little difference between coverage probabilities with ¢ = 1 and 3 in
1/2

, coverage accuracy

the formula [ = c¢n'/“, but performance deteriorates rapidly as c increases to
6 and 9. Overall, our simulations suggest that [ should be no more than 20%

of sample size; this is in agreement with findings of Hall and Jing (1996).

3.3. Exact distribution and its SW estimate

We calculate the exact distribution of studentized sample means by simu-
lation. Figures 1 to 4, addressing the cases n = 100, 200, 500, 1000 respectively,
compare the exact distribution with its sampling window estimator, also obtained
by Monte Carlo simulation, for a specific sample. In all four figures we have taken
¢g=2 a=05and ¢ = 3n'/2. In each figure the five thin solid lines are the
sampling window estimates produced by five different, independent random sam-
ples. The thick line in each figure represents the “exact” distribution, computed
by simulation. The exact distributions are well approximated by their sampling
window estimates, and the latter vary only to a small extent, particularly for
large n.
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4. Proofs

We need an expression for the cross-product moments of Hermite polynomi-
als in Gaussian variables. The result is essentially Lemma 3.2 of Taqqu (1977),

but is recast here in a form that is more useful for proving our results.

Lemma 4.1. (Taqqu (1977)) Let Y = (Y1,...,Y,)T, for m > 2, be an m-
dimensional Gaussian random vector with E(Y;) = 0 and E(Yf) =1 forl<
j<m. Given M >1, let Iny = {k = (k1,...,kp)T k1 + -+ kn=2M, 0<
ki,....kyn < M}. Then, for any k € Iy,

M
E{Hy,(Y1) - Hy,,(Yo)} = (k1! k) D[] BV, Ys,)),
k,m,M j=1

where 3y ., pr evtends over indices (t1,s1),. .., (tar, sm) € {1,... ,m}? such that
(a) t1 <ty <---<tpy, (b) t1 < $1,...,tpm < Spp, and (¢) for eachp=1,...,m,
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exactly ky, elements in the array {ti,s1,...,tam,sm} equal p. Furthermore,

E{Hkl(yl)"‘Hkm(Ym)}:O fO’/’ all (kl,...,km) Q U IM.
M=1

Proof of Theorem 2.2. By Theorem 5.2.24 of Zygmund (1968), r(k) ~
k~“Ly(1/k) as k — oo, and hence, by Theorem 2.1,

n(Xy — 1) /d — WV, (4.1)

in distribution, where the normalizing constants d,, are now defined by d? =
n?79%L1(1/n)4. Consequently, by the slow variation of Ly(-),

(bdn)/(nde) = o(1). (4.2)

In view of (4.1), this implies that ¢(X,, — p)/dy = op(1). Hence, it is enough to
show that

sup |F (z) — Fy(z)] = 0p(1), (4.3)
z€R

where Ff(z) = N™' Y <oy I{(Sei — €p)/de < 2} Since the distribution of W,
is continuous, (4.3) holds provided Fj;(z) — Fy,(z) = 0,(1) for each z € IR.
Note that

E{F;(z) — Fy(x)}”
9 N-1
< (204 1)N7'F)(z) + N > IP{Sn/de < @, Spiq1/de < x} — {Fo(x)}?],
i=0+1
where for simplicity of notation, we have set = 0 in the last line. Now by
Theorem 5.5.7 of Ibragimov and Rozanov (1978), the second term on the right
hand side tends to zero. Hence, Theorem 2.2 is proved.
We shall give a relatively detailed proof of Theorem 2.4, and following that,
an outline of the proof of Theorem 2.3, which is derived in the same way.

Proof of Theorem 2.4. Without loss of generality, let © = 0. Put F;(z) =
(n—L0+1)"2 "1 1(Sy/s < ). By hypothesis, n.X,, /s, — ¢, and so by (2.5),
for each € > 0,

P(s; M| X, > €) — 0. (4.4)

Now,

sup |Fy(a) — F(x)|

—oo<r<oo

< sup |Ff(z)—F(z)|+ sup [|F(z)—F(x+e)|+I(s; | Xn| > e).

—oo<Tr<o0o —oo<r<o0
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In view of the continuity of F, sup, |F(z) — F(z + ¢)] — 0 as ¢ — 0, and so
by (4.4), it suffices to prove that E{sup, |F,(z) — F'(z)|} — 0. Again using the
continuity of F, the latter result will follow if we show that for each fixed z,
E|F)(x) — F(z)] — 0, or equivalently, that

E{F} () — F(2)}?
n——¢+1 n—~0+1
=(mn—L+1)72 > > {P(s;"Sui, <w,5;" S, < 1) — Fl2)*} — 0.

i1=1 io=1

For this is sufficient to prove that for each € > 0, and each x,

sup ’P(sglsa <@,5,18; <z)— F(a:)Q‘ — 0. (4.5)
en<i<n
Our proof of (4.5) is by contradiction. If (4.5) fails then there exist €, > 0,
sequences ny T oo and i(ny) € [eng, ng], and a real number z, such that

‘P(Sé(nk),l/sé(nk) <2, Sp(ny)itng) < T) — F(l‘)z) >0 (4.6)

for all k. Since the distribution of ¢ is completely determined by its moments
(4.6) is contradicted by (2.6), proving the theorem.

A little additional notation is necessary for the proofs of Theorems 2.3 and
2.5. For any function g : IR — IR, let || g ||co= sup{|g(z)| : x € IR} denote the
supremum norm of g. For ¢ > 1 and m > 1, write

where Cy is as in (2.2). We derive Theorem 2.3 by applying arguments in the
proof of Theorem 2.4, with X; replaced by CqH,(Z;) and Sy, playing the role
of Sy for the latter choice of X;.

Proof of Theorem 2.3. Without loss of generality, u = 0. For x € IR define
F,(z) = N! d1<i<N I(Sei/dy < x) and F(z) = P(W, < z). By Theorem 3.1
and Corollary 3.1 of Taqqu (1975), and by (4.3) above,

H ﬁn_Fn HOO<H ﬁn_F; ||oo+||F:;_Fn HOO"‘H Fn_FHOO"‘H Fn_FHoo

=l F = F oo +0p(1), (4.7)

where F)' is as defined in the proof of Theorem 2.2. Hence, it is enough to
show that the first term in the last line of (4.7) tends to zero in probability, for
which purpose we apply Theorem 2.4. Note that by (4.2), (2.5) holds. Also, by
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Theorem 3 of Taqqu (1977), for any p > 1, E(Sy /dg)P — E(W,)P as n — oo.
Hence, Theorem 2.3 will follow if we show that for positive integers a and b, and
any € > 0,

max |E{(Sn)"(Su)"} = (ESn)*(ESn)!| = o(d*"). (4.8)

en<i<n

Fix integers a,b > 0, and let en < ¢ < n. Then,
|B{(S0n)"(86)"} = (ESn)*(ESn)"|
< > > AL,y Gas ity ip), (4.9)

1<t 0Ja<l 1<in,..0p <i4-L—1

where A(j1,...,7a;%1,--.,10p) is defined to equal the absolute value of

B TT 1oz} T Ha)}] — BT a2 V84 Tz
k=1 k=1 k=1 k=1

If exactly one of ga and ¢b is odd then, using Lemma 4.1, it is easy to check
that A(j;i) = 0 for all j = (j1,...,Jq)" and i = (i1,...,4). Hence, we need to
consider the cases: (I) both ga and ¢b are even, and (II) both ga and ¢b are odd.
First we treat case (I). Let u = aq/2,v = bq/2, \, = ji for 1 < k < a, and
Agrq = 1 for 1 < k <b. Then, by Lemma 4.1,

(%

A(j»i) = (q!)a+b’ Z Iﬁ)r(ktk_ksk)_{ Z ﬁ r(jtk_jsk)}{ Z H T(itk_isk)}’7
(@) k=1

(a+b) k=1 (b) k=1

where for any integer k > 1, we write > for the summation } g 1 (1q/2) Of
Lemma 4.1, with q = (q,...,q) € IRF and (-) denoting the integer part function.

For any index {(t1,51), ..., (futv: Su+v)} under 3,y satisfying max{sy :
1 <k <uf <a <ty the term [[jcpcyyy 7(Ay, — As,) can be written as
the product of the terms [y <<, 7(jt, — Js,) and [[,41<k<uto 7 (ity—a — isp—a)-
Since each of the numbers 1,...,a + b appears exactly ¢ times in the array
(t1,81)s .-+, (tutws Susw), and all the indices (t1,$1),. .., (ty, Sy) are less than or
equal to a whenever s, < a, it follows that each of the numbers 1,...,a must
appear ¢ times in the array (t1,$1),..., (ty, sy), and hence, each of the remain-
ing numbers a + 1,...,a + b must also appear exactly ¢ times in the array
(tut1, Sus1), -« (buto, Suto)-

Therefore, [];<p<yio (At —As,) can be written as the product of two terms,
one coming from i(;) and the other from Z(b). Conversely, each term in the
cross-product of 3- ) [T1<k<y 7(Jt, —Jsi,) and 2= ) [T1<p<q (it —is,) corresponds
to a term [[;<pcypp 7( A, — As,) With max{s, : 1 <k <u} <a <ty
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Next, write > (44 = Z'(a +b) —I—Z/(/a +b)> Where Z,(,a +p) denotes summation
over all indices (t1,81),- .., (tutv, Suty) under Z(a+b) that satisfy max{s; : 1 <
k <wu} <a <tyr1. Then, by the arguments above,

u+v

AG, i) = a+b’ Z H (M, — As,)

(a+b) k=1

(4.10)

Note that for any (t1,51), ..., (futv, Sutv) under Zl(a+b), there exists k satisfying
1 <k < u+wsuch that |\, — As, | = |jm —ip| for some 1 <m <aand 1 <p<b.
Now using (4.9), (4.10) and the decay rate of r, one can establish (4.8). This
completes the proof when ag and bq are both even.

If both aq and bg are odd (case (IT)) then a,b and ¢ are odd integers. Fur-
thermore, for any 1 < ji,...,j5, <fand i <iq,...,i <i+ ¢ —1, by Lemma 4.1
and (4.9),

u+v

= e fT i T ) = 0] 2 Tl -

(a+b) k=1

where u,v and Z(a +p) are as defined above. Fix any set of indices (t1,$1), ...,
(tu+tvs Sutow) under 3° 4y, and define the set Iy [and I5] consisting of all pairs
(tg, sk) such that both ¢ and s lie in the set {1,...,a} [and in {a +1,...,a+
b}, respectively]. Evidently, none of the numbers {1,...,a} appears among the
indices in I, and similarly, none of {a+1,...,a+b} appears in I;. Since each of
1,...,a + b must be repeated exactly ¢ times in the array ti,s1, ..., tutv, Sutuvs
we must have 2|I;| < aq and 2|I3] < bg, where |J| denotes the cardinality of
a set J. Noting that both ag and bg are odd we see that |I;| < (ag — 1)/2
and |I2] < (bg — 1)/2. Therefore, [{(t1,51),-.., (tutv, Sutv)} \ (11 U I2)| > 1.
Hence, there is at least one pair (¢, s) such that [Ay, — As, | = |im, — jp| for some
1<m <band 1 <p<a. Now using the arguments that follow (4.10), one can
establish (4.8) as in case (I). This completes the proof of Theorem 2.3.

Proof of Theorem 2.5. Put M = n—m+1 and d2, = M~ S 1<icnr (Smi—mp)?.
In view of (4.2), if m denotes either m or my then

. M _ _ 1/2
BIdZ — &2 < 4M7Y. m[E(X = ) {B(Sy — mp)? + m?E(X - )]
i=1
= d4mn~d, (d2, + m*n"2d%)\/? = 0<d3n>. (4.11)

Next, write d2, = M~ Y icpy S2 .. By Corollary 3.1 of Taqqu (1975) and
the Cauchy-Schwartz inequality, for m = mq, mo,
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Eldy, —dy,

< E’[{M_l %(sz —mu + Smi)2}1/2 X {M_l %(sz —mp — gmi)Q}l/Z]
B i=1 =1

<{2E(Sm1 — mp)? +2ES2, Y2 E(Spm1 — mpu — Sp1 )12 = o(d?).  (4.12)

By (4.8), for m = my or ma,

M M
E(d3 — Bd2)? = 002> 37 | Cov {(Smir)% (Smin)?}|| = oldh).  (4.13)

J1=1j2=1

It follows that Ed2, = d2, {1+ o(1)} for i = 1,2, whence d,/d, — 1 in prob-
ability. This proves part (a) of the theorem. Parts (b), (c) and (d) now follow
by applying part (a) and Theorems 2.2 and 2.3. This completes the proof of
Theorem 2.5.
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