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Abstract: This paper is concerned with the estimation of correlated response vari-

ance from unbalanced data in complex surveys. The Minimum Variance Quadratic

Unbiased Estimator (MINQUE) proposed by Rao (1971, 1972) is often used for

variance components estimations. However, for unbalanced data the equations for

obtaining the MINQU estimates are very difficult to solve. In this paper we propose

a constrained MINQU estimator by substituting robust unbiased estimates for the

random residual errors in the MINQUE equations to obtain estimates of the corre-

lated response variance. We demonstrate through numerical and empirical studies

that the constrained MINQUE is efficient compared to the full MINQU estimator.

We also point out that the constrained MINQU estimator can be used in other

cases where reducing the complexity of the MINQUE equations is desired.
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1. Introduction

In most sample surveys the responses are subject to measurement errors
which depend on the nature of the survey and on the methods employed for
collection, recording and processing, where the term measurement error is used as
a generic term to cover all errors other than sampling errors. It is now recognized
that these errors may be a major component of total survey error, and that
effective control of the survey process requires that wherever possible all sources
of error should be identified and their magnitude estimated. Systematic errors
which cause biases can only be estimated if there is information on the “true”
values, and these are rarely available. In this paper we are concerned with the
estimation of the random errors that arise during the survey process.

The fundamental work on the estimation and control of measurement errors
was carried out at the Bureau of the Census by Morris Hansen and his colleagues
(see for example, Hansen, Hurwitz and Bershad (1961)). The Bureau of the
Census model partitions random measurement error into correlated errors, arising
from the use of common operators, such as interviewers, supervisors and coders,
and uncorrelated, or simple, errors arising from the inevitable random errors
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that may occur in any complex process such as a survey or a census. Operators
common to several sampling units impose a clustering structure on the units
which leads to an additional contribution to the total variance of a sample mean
in the form σ2(1+ (m̄− 1)ρ0) where σ2 is the random error associated with each
sampling unit, m̄ is the average number of units processed by each operator and
ρ0 is the intra-cluster correlation induced by the operator. If m̄ is large then even
small values of ρ0 can lead to a substantial increase in the total variance. This
has been the motivation for first measuring, and then controlling, the various
sources of measurement error. For a recent review of measurement error effects
on the analysis of survey data see Biemer and Trewin (1997) in Section E of
Survey Measurement and Process Quality edited by Lyberg et al. (1997).

Estimation of measurement error variances requires replication. For simple
errors it is usually impossible to replicate procedures independently and these
errors are therefore completely confounded with the values of the observations,
since only the sum of the observation and the measurement error can be observed.
For correlated errors the confounding structure can be broken if it can be assumed
that operator effects are fixed conditional on the operator, and two or more
operators are employed within homogeneous groups of sampling units. A common
survey design is to select two primary sampling units (psu) from within strata
and to allocate one interviewer to each psu. Interviewers are then confounded
with psus. Employing two interviewers within each psu breaks this confounding,
and an ANOVA can be carried out within each stratum and the results can then
be pooled across interpenetrated strata.

The cost of implementing an interpenetrated design is believed to be high,
although if implemented routinely this need not be so. High cost means that
only a small sample of strata may be used for the interpenetration experiment,
with a consequent inefficiency in the estimation of the operator component of
variance. In the balanced case, with equal workloads per operator, Fellegi (1974)
demonstrated how the information on the sum of sampling and measurement
errors from the noninterpenetrated groups could be combined with the informa-
tion on the sampling variance from the interpenetrated groups to give a second
estimator of the operator variance. He then argued that an average of the two
estimators would often be better than the ANOVA estimator alone. The validity
of his analysis depends on being able to select the interpenetrated groups (pairs
of psus) at random from the set of all such sample groups. This random selec-
tion converts the stratum fixed effect into a random effect in a marginal analysis
which averages over all possible selections.

Biemer and Stokes (1985) generalized Fellegi’s approach to cover unequal
workloads within groups and unequal variances for each group. Using a linear
model approach as in Hartley and Rao (1978), they employed the synthesis ver-
sion of MINQUE, MINQUE(0), due to Hartley, Rao and LaMotte (1978) as the
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first estimator in the unbalanced case, and showed that this depended on the in-
terpenetrated groups only. Essentially this is an alternative unbiased estimator
to an ANOVA estimator. Their second estimator is a simple extension of Fellegi’s
second estimator. They also proved that under the assumption of normality the
two estimators are independent and that an optimally weighted estimator would
have smaller variance than either estimator individually. However, the optimal
weights would usually be unknown. They gave explicit expressions for the esti-
mators for the balanced case of equal achieved workloads. Their analysis also
requires that the interpenetrated units be chosen at random.

The fact that a general estimation procedure such as MINQUE does not
utilise the information in the noninterpenetrated groups is explained by the fact
that the stratum effects are treated as fixed effects. Kleffe, Prasad and Rao (1991)
extended the Biemer and Stokes model to encompass the complete set of sample
groups by assuming that the group means were random variables following a
components of variance model of the form proposed by Scott and Smith (1969).
This model provides a link between the interpenetrated and the noninterpene-
trated groups analogous to that provided by randomisation. They estimated the
operator variance using the general MINQUE(α) procedure due to Rao (1971,
1972). Under the assumption of normality their estimator will be the locally best
invariant unbiased estimator if the prior values (α) are correctly specified. They
showed how to compute the estimator in the general unbalanced case of unequal
workloads and unequal variances within groups, but recognized that the MINQU
estimating equations would be difficult to solve if there were a large number of
groups. They derived an explicit estimator for the balanced case, with both
equal workloads and equal variances, and compared the efficiency of their new
estimator with earlier estimators.

This review of the work which has followed Fellegi’s original proposal has
highlighted two issues. The first is that of linking the information in both inter-
penetrated and noninterpenetrated groups when the sampling effects are fixed
stratification effects. The two alternatives are either to select groups at random
and to average over the distribution of all such selections, or to model the group
means and to carry out the analysis conditional on the given selection. Since
the object of the exercise is analytic rather than descriptive we favour the mod-
elling approach. This gives much more freedom to the selection of groups and
to the allocation of operators to groups provided always that the allocation is
uninformative in the sense of not being related to the effect being estimated.
Randomisation guarantees that the allocation will be uninformative. The second
issue is the technical one of solving the estimating equations for a class of realis-
tic models which should encompass the unbalanced case with unequal variances
at the final stage and unequal workloads. It is the unequal variance assumption
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that makes the computations difficult. Empirical evidence from Rao, Kaplan and
Cochran (1981) shows that it is inefficient to assume equality of variances when
in fact they are unequal. In this paper we adopt the general model of Kleffe et
al. (1991) and propose a new form of constrained MINQU estimator which can
handle the computations in the unbalanced case more easily.

The paper is organized as follows. In Section 2 we propose the constrained
MINQU estimator using the model assumption of Kleffe et al. (1991). In Section
3 we demonstrate that the constrained MINQU estimator performs well relative
to the full MINQU estimator by numerical studies and simulations. We discuss
the use of the constrained MINQU estimator in other cases in Section 4.

2. The Model Assumption and the Constrained MINQU Estimator

We consider a survey where interviewers are to be used. Suppose the enu-
meration areas can be conveniently grouped into P blocks. Randomly select t

enumeration areas (clusters) out of each block, and randomly select p blocks out
of the P blocks to carry the interpenetrated interview scheme. The t interview-
ers sent to the p blocks will split the workload of each enumeration area equally,
hence each will carry nhi interviews for the ith enumeration area of the hth block.
The t interviewers sent to the remaining P-p blocks will each interview a whole
enumeration area, thus each will carry tnhi interviews.

Biemer and Stokes (1985) formulated the following linear model for the in-
terpenetrated and noninterpenetrated assignments:

y
(1)
hijk = µhi + ahj + e

(1)
hijk, h = 1, . . . , p,

y
(2)
hik = µhi + ahi + e

(2)
hik, h = p + 1, . . . , P, (2.1)

where y
(1)
hijk and y

(2)
hik are observations from the interpenetrated survey and the

non-interpenetrated survey, respectively, µhi is the population mean in the hith
EA, ahj is the random effect of variance σ2

a associated with the jth interviewer
in the hth block, and e

(1)
hijk and e

(2)
hik are the random residual errors of variances

σ2
hi associated with each unit in the p blocks and the P-p blocks, respectively.

Biemer and Stokes (1985) showed that the synthesis MINQUE for the above
model depends only on the interpenetrated data. Kleffe et al. (1991) indicate
that this result holds for the general MINQUE.

To take advantage of the information in the noninterpenetrated blocks, Kl-
effe et al. (1991) made an assumption on the means of the clusters by treating
them as random variables following the approach in Scott and Smith (1969). As
their paper showed, this assumption can prove the unbiasedness of Fellegi’s sec-
ond estimator without the randomness assumption on the design of the survey



A CONSTRAINED MINQU ESTIMATOR FOR UNBALANCED DATA 1179

imposed in Biemer and Stokes (1985). Here we adopt the model assumption of
Kleffe et al. (1991):

y
(1)
hijk = β + bh + chi + ahj + e

(1)
hijk, h = 1, . . . , p,

y
(2)
hik = β + bh + chi + ahi + e

(2)
hik, h = p + 1, . . . , P, (2.2)

where y
(1)
hijk, y

(2)
hik, ahj, ahi, e

(1)
hijk and e

(2)
hik are defined as in the Biemer-Stokes

model (2.1), β is the overall true mean for the clusters, bh is the random effect
of variance σ2

b associated with the hth block, chi is the random effect of variance
σ2

c associated with the hith cluster.
The above model can also be written in matrix form as:

y = Xβ + U1ξ1 + U2ξ2 + U3ξ3 +
P∑

h=1

t∑
i=1

Uhiξhi, (2.3)

where X is the design vector for the mean parameter β, U1, U2, U3 and Uhi are
the design matrices for the random effects ξ1, ξ2, ξ3 and ξhi, respectively. (See
Kleffe et al. (1991). Appendix A for the definitions of U’s and ξ’s.) A general
method for estimating variance components from model (2.3) is the MINQUE
of C. R. Rao. For model (2.3) the MINQU estimator of σ2 = (σ2

b , σ
2
c , σ

2
a, σ

2
hi)

′ is
obtained by solving the following system of linear equations:

z11σ
2
b + z12σ

2
c + z13σ

2
a +

P∑
h=1

t∑
i=1

z1hiσ
2
hi = q1

z12σ
2
b + z22σ

2
c + z23σ

2
a +

P∑
h=1

t∑
i=1

z2hiσ
2
hi = q2

z13σ
2
b + z23σ

2
c + z33σ

2
a +

P∑
h=1

t∑
i=1

z3hiσ
2
hi = q3

z1hiσ
2
b + z2hiσ

2
c + z3hiσ

2
a +

P∑
h′=1

t∑
i′=1

zh′i′hiσ
2
hi = qhi,

h = 1, . . . , P, i = 1, . . . , t, (2.4)

where

zij = ‖U′
iRUj‖2, zkhi = ‖U′

kRUhi‖2, zhih′i′ = ‖U′
hiRUh′i′‖2,

qi = ‖U′
iRy‖2, qhi = ‖U′

hiRy‖2

R = V−1 − V−1X
(
X′V−1X

)−1
X′V−1,

V is the variance covariance matrix of y,

V = σ2
bU1U′

1 + σ2
cU2U′

2 + σ2
aU3U′

3 +
∑
hi

σ2
hiUhiU′

hi,
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and ‖ · ‖2 denotes the Euclidean norm of a matrix.
The estimator obtained by solving equation (2.4) has locally minimum vari-

ance among all invariant unbiased estimators(LMIVQUE) under normality as-
sumption of the data. However, there are several difficulties in solving equation
(2.4) for σ2. First, the number of linear equations (Pt+3) gets so large with the
increase in the number of blocks or the number of clusters within each block that
solving the equations would become an infeasible task. Second, the unequal clus-
ter size tnhi will be reflected in the design matrices and in the variance covariance
matrix V, hence some convenient expressions for design matrices from balanced
data, such as the Kronecker products of matrices, cannot be used. Third, the
heterogeneity of the residual errors σ2

hi will also be reflected through the variance
covariance matrix and hence further complicate equation (2.4).

So far there are basically two ways to overcome the first and the third diffi-
culties, namely, the synthesis MINQUE and the equal residual error assumption.
The synthesis MINQUE, proposed by Hartley, Rao and LaMotte (1978), is the
MINQUE obtained by using the identity matrix in the place of the variance co-
variance matrix in the MINQUE equation. This approach can indeed reduce the
complexity of the MINQUE equations greatly. However, Rao and Kleffe (1988)
and Kleffe et al. (1991) have shown by numerical comparisons that the synthesis
MINQUE for the models they considered can be inefficient. The equal residual
error assumption reduces the dimension of (2.4) from Pt + 3 to 4. Although a
dramatic reduction of the complexity, this approach may at the same time re-
duce the efficiency of the estimator. A study by Rao, Kaplan and Cochran (1981)
considered the MINQUE obtained by assuming equal residual error (MINQUE
EQUAL) for the one-way random effect model with unequal error variances, and
found that (the variance of MINQUE EQUAL) “increases substantially when the
implied assumption of the equality of the σ2

i is not satisfied”. Furthermore, both
approaches will be deeply complicated by the unequal cluster size. In fact, all
explicit estimators derived from the two approaches assumed equal cluster size.

Kleffe et al. (1991) give useful expressions for the design matrices from un-
balanced data with general nhi and σ2

hi, and they also derive an expression for
the matrix R by ingeniously avoiding the inversion of the matrix V which is of
order

∑
hi tnhi. While they acknowledge the difficulty in solving (2.4), they point

out different assumptions on the residual errors to reduce the number of σ2
hi, for

example, σ2
hi = σ2

h. The explicit estimator σ̂2
a they derive, however, is for the

balanced case nhi = n and σ2
hi = σ2

e , which reduces the dimension of the MINQU
equation from Pt + 3 to 4.

In this paper we propose an approach to derive an efficient estimator for
unbalanced data, i.e. unequal cluster sizes and heterogeneous residual errors,
which are commonly encountered in complex surveys, and we find a way to reduce
the large numbers of equations in the MINQUE equation to a manageable level.
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Swallow and Searle (1978) in a numerical study on MINQUE from unbal-
anced data demonstrate that the ANOVA estimator of σ2

e , obtained by equating
quadratic forms to their expectations, proves to be an excellent estimator in the
sense that its variance is very close to that of MINQUE. Therefore, there is strong
evidence suggesting that we can estimate the σ2

hi’s efficiently by ANOVA.
Using the obtained unbiased estimators for the σ2

hi’s, we can move the σ̂2
hi’s

to the right hand side of the equations, and hence we only need to solve:

z11σ
2
b + z12σ

2
c + z13σ

2
a = q1 −

P∑
h=1

t∑
i=1

z1hiσ̂
2
hi

z12σ
2
b + z22σ

2
c + z23σ

2
a = q2 −

P∑
h=1

t∑
i=1

z2hiσ̂
2
hi

z13σ
2
b + z23σ

2
c + z33σ

2
a = q3 −

P∑
h=1

t∑
i=1

z3hiσ̂
2
hi. (2.5)

Let Z = (zij) be the 3 × 3 matrix containing the zij’s, and let

a1 =
Z31

|Z| =
1
|Z|(z12z23 − z13z22),

a2 =
Z32

|Z| =
1
|Z|(z12z13 − z11z23),

a3 =
Z33

|Z| =
1
|Z|(z11z22 − z2

12),

where Zij is the cofactor of zij , and |Z| is the determinant of the matrix Z,

|Z| = z11(z22z33 − z2
23) − z12(z12z33 − z13z23) + z13(z12z23 − z13z22).

Let whi = a1z1hi + a2z2hi + a3z3hi; then the constrained MINQU estimator
of σ2

a is

σ̂2
a = a1q1 + a2q2 + a3q3 −

P∑
h=1

t∑
i=1

whiσ̂
2
hi. (2.6)

It can be seen from (2.5) that the number of blocks and the number of
clusters have virtually no effect on the number of equations contained in (2.5).
The estimator σ̂2

a obtained from (2.6) remains unbiased provided that σ̂2
hi’s are

unbiased for σ2
hi’s.

One ANOVA estimator of the σ2
hi may be:

σ̂2
hi =

1
t(nhi − 1)

∑
jk

(y(1)
hijk − ȳ

(1)
hi.. − ȳ

(1)
h.j. + ȳ

(1)
h...)

2, 1 ≤ h ≤ p,

σ̂2
hi =

1
tnhi − 1

∑
k

(y(2)
hik − ȳ

(2)
hi. )

2, p + 1 ≤ h ≤ P. (2.7)
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This estimator of σ2
hi assumes that there is no interaction between the clusters

and the interviewers for the p interpenetrated blocks.
Another ANOVA estimator of σ2

hi may be more robust when there are inter-
actions in model (2.2):

σ̃2
hi =

1
t(nhi − 1)

∑
jk

(y(1)
hijk − ȳ

(1)
hij.)

2, 1 ≤ h ≤ p,

σ̃2
hi =

1
tnhi − 1

∑
k

(y(2)
hik − ȳ

(2)
hi. )

2, p + 1 ≤ h ≤ P. (2.8)

In the following section we compare the efficiency of the constrained MINQU
estimator to the full MINQU estimator for balanced and unbalanced data, re-
spectively.

3. The Efficiency of the Constrained MINQU Estimator

3.1. The balanced case

The optimal MINQU estimator was derived for the balanced case where
nhi = n and σ2

hi = σ2
e by Kleffe et al. (1991), assuming a normal distribution of

the data. The constrained MINQUE approach in the previous section reduces
the dimension of the MINQUE equations by one from four to three in this case,
hence it is not a significant reduction. Nevertheless , it is useful to compare the
constrained MINQU estimator in the balanced case to the optimal estimator and
see how much efficiency we have to compromise by reducing the dimension of the
equations.

With nhi = n and σ2
hi = σ2

e , leting

c =
tn

1 + tnα2
, b =

tn

1 + tn(α2 + α3)
, d =

tn

1 + tnα3
, a =

tn

1 + tn(α2 + α3 + tα1)
,

the constrained MINQU estimator can be written as:

σ̂2
a = b2Q2 + b3Q3 + b4Q4 + beσ̂

2
e , (3.1)

where Q2, Q3 and Q4 are defined in the same way as Kleffe et al. (1991):

Q2 =
∑
hi

(ȳ(1)
hi.. − ȳ

(1)
h...)

2, Q3 =
∑
hi

(ȳ(2)
hi. − ȳ

(2)
h.. )

2, Q4 =
∑
hj

(ȳ(1)
h.j. − ȳ

(1)
h...)

2,

and

b2 = −b2c2(P − p)
p(t − 1)W

, b3 =
b2c2

(t − 1)W
,

b4 =
c2d2p + d2b2(P − p)

p(t − 1)W
, be = −c2d2p + d2b2(P − p)

ntW
,
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and W = c2d2p + d2b2(P − p) + b2c2(P − p).
If we choose the non-interaction estimator of σ2

e of (2.7):

σ̂2
e =

1
tT

[ ∑
hijk

(y(1)
hijk − ȳ

(1)
hi.. − ȳ

(1)
h.j. + ȳ

(1)
h...)

2 +
∑
hik

(y(2)
hik − ȳ

(2)
hi. )

2
]
, (3.2)

where T = 1/(pt(n − 1) + (P − p)(tn − 1)), σ̂2
e is unbiased and if we let Q7 =∑

hijk(y
(1)
hijk − ȳ

(1)
hi.. − ȳ

(1)
h.j. + ȳ

(1)
h...)

2 +
∑

hik(y
(2)
hik − ȳ

(2)
hi. )

2, then σ̂2
a in (3.1) can be

rewritten as:
σ̂2

a = b2Q2 + b3Q3 + b4Q4 + b7Q7, (3.3)

where b7 = be/tT .
The optimal MINQU estimator given by Kleffe et al. for the balanced case

is:
σ̂2

a(KPR) = a2Q2 + a3Q3 + a4Q4 + a5Q5, (3.4)

where Q5 =
∑

hijk(y
(1)
hijk − ȳ

(1)
h.j.)

2 +
∑

hik(y
(2)
hik − ȳ

(2)
hi. )

2, and a2, a3, a4 and a5 are
given in their paper.

Kleffe et al. give the variances of the Q statistics used in their estimator. We
further obtain that V (Q7) = 2tTσ4

e , and find that Q7 is uncorrelated with Q2,
Q3 and Q4, and that the Q5 used in Kleffe et al. is correlated with Q2.

Kleffe and Rao (1993) derive conditions for the admissibility of the variance
components estimators for model (2.2) in the set of quadratic unbiased estimators
in the balanced case. An estimator θ̂ is admissible in a set of unbiased estimators
if there is no other unbiased estimator in the class that is uniformly better than θ̂

with respect to variance. Kleffe and Rao (1993) show that any unbiased quadratic
estimator of σ2

a can be written in the form of s2
a = s3 − γW0, where

s3 =
1

p(t − 1)
Q4 − 1

tnT
Q7,

and
W0 = − nt

p(t − 1)
Q2 +

nt

(P − p)(t − 1)
Q3 − nt

p(t − 1)
Q4 +

1
T

Q7.

Kleffe and Rao (1993) prove that s2
a is admissible iff cf ≤ γ ≤ 0, where

cf = − 1
nt

P − p

P
max

{
1,

(P − p

P
+

T

T + p(t − 1)

)−1}
.

Note that the constrained MINQU estimator σ̂2
a using the non-interaction

estimator of σ2
e given by (3.3) can be written as:

σ̂2
a = s3 − γ∗W0,
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where

γ∗ = − 1
nt

b2c2(P − p)
W

.

Therefore the admissibility of σ̂2
a depends on the comparisons of γ∗ with

cf . Since γ∗ is a complicated function of the variance components, we made a
numerical evaluation of γ∗ at n = 3, t = 2, P = 10, p = 4 and σ2

e = 1 and
plotted the values of γ∗ at σ2

c = 0.1, 1 and 10 in the range of 0 ≤ σ2
a ≤ 10 in

Figure 1. Note in this situation cf = −0.1. It can be seen from Figure 1 that
γ∗ showed a monotone decreasing trend and cf ≤ γ∗. Hence σ̂2

a is admissible in
these cases. Although the results are numerical for limited parameter values, they
do demonstrate that the constrained MINQUE performs well relative to the full
MINQUE in these cases. Although the MINQU estimator of Kleffe et al. is locally
optimal, the admissibility of the constrained MINQU estimator indicates that the
constrained MINQU is not uniformly worse than the full MINQU estimator.
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Figure 1. Numerical evaluations of γ∗ for n = 3, t = 2, P = 10, p = 4 and σ2
e = 1

3.2. The unbalanced case

We carried out a simulation study to compare the constrained MINQU es-
timators to the MINQU estimators. Specifically, we compared the performances
of four estimators: the full MINQU estimator, σ̂2

a(MINQUE), which is obtained
by solving equation (2.4); the constrained MINQU estimator, σ̂2

a(CMINQUE),
using non-interaction estimators in (2.7); the constrained MINQU estimator,
σ̃2

a(CMINQUE), using the robust estimator in (2.8); and the MINQU estimator
by assuming equal random errors, i.e. σ2

hi = σ2, σ̂2
a(EMINQUE). The EMINQU

estimator is not necessarily unbiased. However, since this is the most widely em-
ployed approach in practice for unbalanced data, we included it for the purpose
of comparison.
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To demonstrate the impact of the unequal random errors on the estimation
of the correlated response variance and also to simplify the configuration of the
simulation, we assumed equal sample sizes for the clusters. We used P=10, p=4,
t=2 and n=30. The parameters were: σ2

b=0.1, σ2
c=0.1, σ2

h1=1.0, and σ2
h2=4.0.

One thousand simulations are performed for each parameter configuration.
We also considered the performances of the four estimators in the presence

of model misspecification. Instead of using model (2.2), we generated random
numbers under the following model for the interpenetrated blocks:

y
(1)
hijk = β + bh + chi + ahj + dhij + e

(1)
hijk, h = 1, . . . , p, (3.5)

where the random variable dhij has a mean of zero and variance of σ2
d. The non-

interpenetrated blocks are assumed to follow the same model as in (2.2). The
above model contains an interaction term between the clusters and the interview-
ers and the analysis is done assuming no interactions. In the simulation we set
σ2

d = 0.1 for simulation numbers 6 to 9 and we increased the interaction term to
σ2

d = 0.5 in simulation number 10 to dominate the other variance components.

Table 1. Monte Carlo values of the expected values of various estimators and
their mean squared errors from the simulation. P = 10, p = 4, t = 2, n = 30.
σ2

b =0.1, σ2
c=0.1. σ2

h1 = 1.0 and σ2
h2 = 4.0 for all simulations except No. 5

where equal random errors σ2
hi = 1 were used. σ2

d = 0.1 in the misspecified
model (3.5) for simulations No. 6-9 and σ2

d = 0.5 for simulation No. 10.

Simulation

Model Number σ2
a σ̂2

a(MINQUE) σ̂2
a(CMINQUE) σ̃2

a(CMINQUE) σ̂2
a(EMINQUE)

1 0.02 0.0054 0.0497 0.0494 0.0091

0.00085 0.00152 0.00150 0.000236

2 0.1 0.0903 0.1036 0.1035 0.1155

0.00997 0.00987 0.00987 0.00295

(2.1) 3 0.2 0.1952 0.1829 0.1829 0.2553

0.03721 0.03743 0.03743 0.01094

4 0.5 0.4998 0.4658 0.4660 0.6847

0.18530 0.18617 0.18617 0.06544

5 0.2 0.2010 0.2037 0.2037 0.2637

0.02297 0.02296 0.02296 0.01067

6 0.02 0.0494 0.0956 0.0946 0.0211

0.00408 0.00882 0.00901 0.00013

7 0.1 0.1054 0.1187 0.1184 0.1154

0.01117 0.01150 0.01149 0.00299

(3.5) 8 0.2 0.1856 0.1719 0.1722 0.2453

0.03400 0.03452 0.03451 0.01133

9 0.5 0.4669 0.4305 0.4312 0.6618

0.16772 0.17126 0.17115 0.0669

10 0.5 0.3893 0.3478 0.3507 0.5883

0.19410 0.20505 0.20489 0.07276
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Table 1 presents the Monte Carlo values of the expected values of the various
estimators and their mean squared errors. From the simulation results we can
see that when the correlated response variance σ2

a is relatively large compared
to the other variance components in the model, the two constrained MINQU
estimators are close to the full MINQU estimator in terms of biases and the
mean squared errors. The two constrained MINQU estimators are comparable
in the situations considered here, although the constrained MINQU estimators
using the robust random error estimator is slightly better than the constrained
MINQUE with no interaction assumption under the misspecified model (3.5)
with an interaction term. The EMINQU estimator has a rather large bias when
σ2

a is large, although it has the smallest empirical mean squared error among the
four estimators considered. No estimator is uniformly best.

The simulation results support our belief that using a robust estimator for
the residual errors in the constrained MINQU equations does not compromise
the efficiency of the other components of variance and is easy to compute.

4. Discussion

This paper deals with interpenetrated and noninterpenetrated assignments
for stratified samples. For more complex survey designs the approach of Hart-
ley and Rao (1978) allows the correlated response variance to be estimated for
appropriate assignments.

Although the motivation for the constrained MINQU estimator given in Sec-
tion 3 was to derive an efficient estimator of correlated response variance from
unbalanced data in complex surveys, the approach can be used in other cases
where reducing the complexity of the MINQUE equations is desired. Suppose we
can obtain robust estimators on k out of K variance components, then instead
of dealing with: [

A1 A3

A′
3 A2

] [
θ1

θ2

]
=

[
q1

q2

]
, (4.1)

assuming that θ2 contains all the k variance components for which we have ob-
tained estimates, we now only need to solve:

A1θ1 = q1 − A3θ̂2, (4.2)

which reduces the dimension of the MINQUE equations from K to K − k. The
information contained in q2 can be saved through an adequately chosen θ̂2, hence
no information is lost by the reduction of the equations.

Our approach can perhaps be better understood in the context of REML—
the restricted maximum likelihood estimation of variance components, developed
by Patterson and Thompson (1971). In theory, equating the first derivative of
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the restricted likelihood function to zero results in the same estimating equa-
tions as MINQUE. However, while MINQUE adopts the use of prior values,
REML obtains its estimates by iterative algorithms to ensure the maximum for
its likelihood function. Our approach can be interpreted in REML as seeking
the conditional maximum for the restricted likelihood function with some vari-
ance components known or fixed. In fact, the REML function installed in the
statistical software Genstat is implemented with the option of fixing some vari-
ance components so that they would not need further iterations. However, since
the survey model (2.2) does not fit into the general model assumption of hav-
ing homogeneous residual errors, we can not derive our estimator by the REML
function in Genstat.

In this paper we have not considered the impact of prior values on the con-
strained MINQU estimates. Various studies (Kleffe et al. (1991), Rao and Kleffe
(1988)) have shown that the prior choice (0, 0) for (σ2

c/σ
2
e , σ

2
a/σ

2
e) is the least

desirable. For the MINQU estimator to be less influenced by prior values, Rao
and Kleffe (1988) suggest one-step iteration and they show in two examples that
the estimators obtained by one-step iteration are practically independent of prior
values. Since no gradient algorithm is imposed on our estimator we can not guar-
antee that continuous iteration will result in the convergence of the estimates.
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