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Abstract: Affine invariant analogues of the two-sample Mann-Whitney-Wilcoxon

rank sum test and the c-sample Kruskal-Wallis test for the multivariate location

model are introduced. The definition of a multivariate (centered) rank function in

the development is based on the Oja criterion function. This work extends bivariate

rank methods discussed by Brown and Hettmansperger (1987a,b) and multivariate

sign methods by Hettmansperger and Oja (1994). The asymptotic distribution

theory is developed to consider the Pitman asymptotic efficiencies and the theory

is illustrated by an example.
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1. Introduction

Let x1, . . . ,xm and xm+1, . . . ,xm+n, N = m+n be two independent samples
from k-variate distributions with cumulative distribution functions F (x−µ) and
F (x − µ − ∆), respectively. We assume that F (x) is absolutely continuous
with probability density function f(x) and that the centre (the multivariate Oja
median, for example) of F is 0. In this paper we develop a multivariate affine
invariant two-sample rank test for testing H0 : ∆ = 0, a multivariate analogue
of the Mann-Whitney-Wilcoxon rank sum test. The work extends the affine
invariant bivariate rank tests proposed by Brown and Hettmansperger (1987a,b)
and is related to the affine invariant multivariate sign tests by Hettmansperger,
Nyblom and Oja (1994) and Hettmansperger and Oja (1994). The corresponding
estimates are also discussed. Further, c-sample extensions are provided.

Underlying the development of sign and rank methods is the L1 criterion.
Note first that the c-sample problem is a special case of the general k-variate
linear model case where X is an N × k response matrix with rows xT

i , Z is
the N × p design matrix (p regressors) and β the p × k matrix of regression
coefficients. The rows of the residual matrix R = X − Zβ are denoted by rT

i ,
i.e., ri is the residual vector for the ith observation. For estimating the parameter
matrix β and for constructing corresponding tests, Brown and Hettmansperger
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(1987a) described three possible extensions of the L1 criterion functions to the
multivariate setting (D1 for generalizing sign methods and D2 for generalizing
rank methods):
(1) The objective functions (“Manhattan distance”)

D1(β) = Σ(|ri1|+ · · ·+ |rik|) and D2(β) = ΣΣ(|ri1−rj1|+ · · ·+ |rik−rjk|)

(2) the objective functions (“Euclidean distance”)

D1(β) = Σ(r2
i1+· · ·+r2

ik)
1/2 and D2(β) = ΣΣ((ri1−rj1)2+· · ·+(rik−rjk)2)1/2

(3) the objective functions

D1(β)=Σi1<···<ikV (0, ri1 , . . . , rik) and D2(β)=Σi1<···<ik+1
V (ri1 , . . . , rik+1

),

where V is the volume of the k-variate simplex with k + 1 vertices given as
arguments. Note that all these three pairs of objective functions reduce to the
same L1 criterion functions in one dimension. D1 yields a family of sign tests and
median-type estimates and D2 a family of rank tests and Hodges-Lehmann type
estimates with one- and two- sample sign, signed-rank and rank tests as special
cases. In all three cases the objective functions can be rewritten as

D1(β) =
∑

ST (ri)ri and D2(β) =
∑

RT
N (ri)ri,

where S(r) and RN (r) are vector valued sign and centered rank functions, re-
spectively.

In the first criterion function case (1), the sign and rank vectors obtained
are just the vectors of componentwise signs and centered ranks. The score type
tests are then combinations of the univariate componentwise tests and the es-
timates are the vectors of the componentwise univariate estimates. In the two-
sample location case, for example, the obtained estimates of the shift parameter
∆ (corresponding to D1 and D2) are the difference of marginal sample medians
and the vector of marginal two-sample Hodges-Lehmann shift estimates. The
methods are scale equivariant/invariant but unfortunately not rotation equivari-
ant/invariant. Chakraborty and Chaudhuri (1996, 1998) utilized a transforma-
tion and retransformation approach to construct affine equivariant versions of
the estimates. (For similar techniques to find invariant tests, see Dietz (1982)
and Chaudhuri and Sengupta (1993)). The marginal efficiencies of the estimates
agree with univariate efficiencies: In the multivariate normal case, for example,
the efficiencies are .637 for the sign methods and .955 for the rank methods. The
Pitman efficiencies of the tests and ‘global efficiencies’ of the estimate vectors
(measured by the Wilks’ generalized variance) may become really poor in the
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case of highly correlated components. (See Chakraborty and Chaudhuri (1998)
for a discussion about the connection between affine equivariance and asymptotic
efficiency. See also Bickel (1964, 1965) for efficiency properties and Puri and Sen
(1971) for a detailed description of these methods.)

In the second case (2), the sign vector of ri is the unit vector in the di-
rection of ri and, also, analogously with the univariate case, the centered rank
for ri is the sum of signs of ri − rj, j = 1, . . . , N . In the one-sample location
case the estimate is the well known spatial median and in the two-sample case
the median-type estimate of the shift parameter ∆ is the difference of the sample
spatial medians. Brown (1983), Chaudhuri (1992) and Möttönen and Oja (1995),
for example, discussed one-sample and multisample spatial tests and estimates.
(For the general multivariate linear model case, see Rao (1988)). These methods
are rotation equivariant/invariant but not scale equivariant/invariant. (For affine
equivariant/invariant versions, see Rao (1988) and Chakraborty, Chaudhuri and
Oja (1997)). Brown (1983) considered the efficiency of the spatial median (and
the spatial sign test) and showed that in the multivariate spherical normal case
the efficiency increases with the dimension, being, for example, .785 in 2 dimen-
sions, .849 in 3 dimensions, .920 in 6 dimensions and going to 1 as the dimension
increases. Chaudhuri (1992) gave the formulae for calculating the efficiency of the
spatial HL-estimate in the multivariate spherical normal case, and using his for-
mula we get .967 in 2 dimensions, .973 in 3 dimensions and .984 in 6 dimensions.
Note that all these efficiencies dominate the corresponding univariate efficiency.
(For the t-distribution case, see Möttönen, Oja and Tienari (1997)). Rescaling
one of the components, i.e. moving from a spherical case to an elliptic case, may
however highly reduce the efficiency (Brown (1983), Chakraborty, Chaudhuri and
Oja (1997)). This is due to the lack of scale invariance property.

In this paper the third case (3) is considered. In the one-sample case,
the median type estimate is called the Oja median (Oja (1983)). Brown and
Hettmansperger (1987b, 1989) introduced the corresponding bivariate sign and
rank tests and Hodges-Lehmann estimate. Unlike the methods above, these es-
timates/tests are automatically affine equivariant/invariant. Sign tests are as
efficient as the spatial sign tests in spherical cases but strictly better in other el-
liptic cases (Oja and Niinimaa (1985), Niinimaa and Oja (1995)). ( For a detailed
description of the sign tests and their efficiency properties, see Hettmansperger,
Nyblom, and Oja (1994) and Hettmansperger and Oja (1994).)

The tests listed above are not strictly, but only conditionally and asymp-
totically distribution-free. Randles (1989) introduced an affine invariant sign
test, based on so-called interdirections, which has a distribution-free property
over a broad class of distributions with elliptical directions. Later (conditionally
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and asymptotically distribution-free) extensions to the two-sample case (Ran-
dles (1992)) as well as corresponding one-sample (Peters and Randles (1990),
Jan and Randles (1994)) and two-sample rank tests (Randles and Peters (1990))
were developed. Liu and Singh (1993) introduced a strictly distribution-free affine
invariant multivariate two-sample rank test ranking the depths (Liu (1990)) of
the original observations in an additional ‘reference’ sample.

Our plan is as follows. In Section 2 we introduce the multivariate centered
rank function based on the Oja (1983) criterion function (the case (3) above)
and discuss its properties. The multivariate analogue of the two-sample Mann-
Whitney-Wilcoxon statistic with corresponding shift estimate is studied in Sec-
tion 3. Asymptotic distribution theory is developed in Section 4 and multisample
extensions are discussed in Section 5. We conclude with an example and some
final remarks in Section 6.

2. Multivariate Centered Rank Function

We start with the definition of the multivariate Oja median (1983). Denote
the volume of the k-variate simplex with k + 1 vertices x1, . . . ,xk,x by

V (x1, . . . ,xk,x) =
1
k!

abs
{
det
( 1 · · · 1 1
x1 · · · xk x

)}
.

Let x1, . . . ,xN be a random sample from a k-variate distribution. The multi-
variate Oja sample median (Oja (1983)) µ̂ is then the choice of µ to minimize
the objective function

DN (µ) =

(
N

k

)−1 ∑
i1<···<ik

V (xi1 , . . . ,xik , µ).

To simplify the notation, let P = {p = (i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ N} be
the set of NP = N !/[k!(N − k)!] different k-tuples of the index set {1, . . . , N}.
Index p ∈ P then refers to a k-subset of the original observations. Note that p

also refers to the hyperplane going through the k observations listed in p.
The volume of the simplex formed by x and k observations listed in p is then

Vp(x) =
1
k!

abs
{
det
( 1 1 · · · 1 1

xi1 xi2 · · · xik x

)}
=

1
k!
|d0p + xT dp|,

where d0p and djp, j = 1, . . . , k, are the cofactors according to the last column
of the matrix above. The values d0p and dp = (d1p, . . . , dkp)T characterize the
hyperplane p as follows. The vector dp is normal to hyperplane p and we use the
direction of dp to define the positive or upper side of p. Vp = [(k − 1)!]−1||dp|| is
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the volume of the (k − 1)-dimensional subsimplex determined by k observations
listed in p. The indicator Sp(x) = sgn(d0p + xT dp) tells whether x is above
or below the hyperplane p and |d0p + xT dp|/||dp|| is the distance of point x

from the plane p. The vector Sp(x)dp, normal to p and pointing towards x (if
originating from plane p), is called the sign of x with respect to p. Note that
Sp(0) = sgn(d0p) tells in which direction the origin is. (See also Hettmansperger,
Möttönen, and Oja (1997, 1998).) Using this new notation, the objective function
for the multivariate median is DN (µ) = N−1

P

∑
p Vp(µ).

Definition 2.1. The gradient of the objective function k! DN (µ) with respect
to µ at x,

RN (x) = N−1
P

∑
p∈P

Qp(x) = N−1
P

∑
p∈P

Sp(x)dp,

is called the (empirical) vector valued multivariate centered rank of x with
respect to the sample x1, . . . ,xN . If x1, . . . ,xN is a random sample from a k-
variate distribution with cdf F then the corresponding theoretical centered
rank of x is the expected value R(x) = EF (RN (x)) = EF (Qp(x)).

Analogously to the univariate case, NP RN (x) is nothing but the sum of signs
of x w.r.t. observation hyperplanes p. In the univariate case, RN (x) = 2(FN (x)−
1/2) where FN is the sample cdf. Note that RN (x) is piecewise constant with
jumps 2N−1

P dp when crossing the hyperplane p. The centered rank function
RN (x) is affine equivariant in the sense that if R∗

N (x) is the centered rank
function for transformed observations Cx1+d, . . . ,CxN +d then R∗

N (Cx+d) =
C∗RN (x) where C∗ = abs(det(C))(C−1)T . If C is orthogonal then C∗ = C.
Consequently, the squared version of the rank test statistic introduced in Section
3 is affine invariant. Now we are ready to give the main results of this section.
The proofs are postponed to the appendix.

Theorem 2.1. The sum of the centered ranks of the observations is the zero
vector, i.e.

∑N
i=1 RN (xi) = 0.

The following result extends Theorem 1 in Brown and Hettmansperger
(1987a). (Recall the discussion in the introduction.)

Theorem 2.2.
∑N

i=1 RT
N (xi)xi = k

∑
i1<···<ik+1

{k! V (xi1 , . . . ,xik+1
)}.

3. Multivariate Two-Sample Rank Tests

Consider the multivariate two-sample location case, i.e., assume that x1, . . . ,

xm and xm+1, . . . ,xN , N = m+n, are two independent random samples from k-
variate distributions with cumulative distribution functions F (x−µ) and F (x−
µ − ∆) respectively. We wish to test the null hypothesis of no difference H0 :
∆ = 0.
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Consider first the test statistics of the form
∑N

i=m+1RN (xi) and
∑N

i=m+1Rm(xi)
where RN is constructed using the combined sample and Rm using the first
sample only. The second statistic is a placement type statistic (Orban and Wolfe
(1982)) where the observations of the second sample are ‘placed’ or ranked among
the observations in the first sample. A symmetrized version of the placement
statistic is

m

N

N∑
j=m+1

Rm(xj) − n

N

m∑
i=1

Rn(xi),

where Rm and Rn are constructed using the first and second sample, respectively.
In the univariate case all three statistics determine the same test but in the multi-
variate case the tests differ. The first version seems convenient when constructing
tests based on the permutation argument and the second and third versions are
useful when introducing the corresponding estimate, the two-sample Hodges-
Lehmann shift estimate. Another version of the first statistic

∑N
i=m+1 RN (xi),

yielding the same conditional test but being more convenient for determining the
permutational distribution, is given by the following

Definition 3.1. The two-sample rank test statistic for testing the null hypothesis
H0 : ∆ = 0 is T N =

∑N
i=1 aiRN (xi) where

ai =

{
−λ, i = 1, . . . ,m

1 − λ, i = m + 1, . . . , N

with λ = n/N .
Consider now the conditional distribution of T N , conditioned on the obser-

vation set {x1, . . . ,xN}. If the null hypothesis is true then all the N observations
come from the same distribution, and assigning ranks RN (xi) to ‘treatments’ ai

is random. There are
(N

n

)
different permutations of (a1, . . . , aN ), i.e. different

random shufflings of the m −λ’s and n (1− λ)’s to ranks RN (x1), . . . ,RN (xN ).
Hence, under the null hypothesis, these permutations are equiprobable and we
get E(ai) = 0, E(a2

i ) = λ(1 − λ) and E(aiaj) = −(N − 1)−1λ(1 − λ) and conse-
quently, conditionally, E0(T N ) = 0 and Cov0(T N ) = Nλ(1 − λ)BN where

BN =
1

N − 1

∑
RN (xi)RT

N (xi).

The approximate null distribution of the affine invariant multivariate two-
sample rank test statistic N−1/2T N is k-variate normal with zero mean vector
and covariance matrix λ(1− λ)B where B is the probability limit of BN (under
H0) and λ = lim(n/N). The limiting distribution of (Nλ(1 − λ))−1T T

NB−1
N T N

is then χ2
k. (See Puri and Sen (1971).)
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A natural two-sample shift estimate is obtained using the symmetrized place-
ment test statistic. The estimate is then an Oja median computed on the linked
pairwise differences of the second sample and first sample observations and is
the extension of the univariate Hodges-Lehmann shift estimate. The bivariate
extension was earlier given by Brown and Hettmansperger (1987a).

Definition 3.2. In the multivariate two-sample case, the Hodges-Lehmann shift
estimate ∆̂N is the choice of ∆ to minimize

[
n
(m

k

)]−1
N∑

j=m+1

∑
p∈P

Vp(xj − ∆) +
[
m
(n

k

)]−1
m∑

i=1

∑
p′∈P ′

Vp′(xi + ∆),

where p (p′) goes over all different first (second) sample hyperplanes listed in P

(P ′). The estimating equations are

(1 − λ)
N∑

j=m+1

Rm(xj − ∆̂N ) − λ
m∑

i=1

Rn(xi + ∆̂N ) = 0.

4. Limiting Distributions and Efficiency

In this section the asymptotic distribution of our test statistic T N is found
under the null hypothesis as well as under a sequence of contiguous alternatives.
In this presentation the design variables from Definition 3.1 for sample size N ,
say aN1, . . . , aNN , are fixed and λN = nN/N → λ as N → ∞.

We start the discussion by first considering the two-sample score test statis-
tics of the general form

UN =
N∑

i=1

airi =
N∑

i=1

aiR(xi)

for a fixed vector (k × 1) valued function R(x). (Later in our application R(x)
is the theoretical rank function.) R is centered so that the expected value
of UN under the null hypothesis is the zero vector, i.e., E0(r) = E0(R(x)) = 0.
It is well known that the asymptotically best choice for the score function R(x)
is the optimal score L(x), i.e., the gradient vector of the logarithm of f(x − µ)
w.r.t. µ at the origin. Let

V N =
N∑

i=1

aili =
N∑

i=1

aiL(xi)

be this optimal test statistic. Note that R(x) = x gives a test which is asymp-
totically equivalent with the two-sample Hotelling’s T 2 test and optimal under
multinormality.
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Consider now the limiting distribution of UN under the following contiguous
alternative sequences {HN}: The first sample and the second sample come from
distributions with k-variate density functions f(x) and f(x − N−1/2δ), respec-
tively. We assume that under the null hypothesis

m+n∑
i=m+1

{ln f(xi−N−1/2δ)−ln f(xi)} = N−1/2
( m+n∑

i=m+1

L(xi)
)T

δ− λ

2
δT I0δ+op(1),

where I0 = E0(llT ) is the expected Fisher information matrix for a single obser-
vation at µ = 0.

LeCam’s Third Lemma (Hajek and Sidak (1967)) then gives

Theorem 4.1. Under the alternative sequences {HN},

N−1/2
(Un

V n

)
→D N2k

(
λ(1 − λ)

(Aδ

I0δ

)
, λ(1 − λ)

( B A

AT I0

))
,

where B = E0(rrT ), A = E0(rlT ) and I0 = E0(llT ).
Unfortunately, the affine invariant two-sample rank test statistic is not of

the above form, since T N =
∑

aiRN (xi), with empirical rank function RN . As
in Brown, Hettmansperger, Nyblom and Oja (1992), Hettmansperger, Nyblom
and Oja (1994) and Möttönen, Oja, and Tienari (1997) we first show that RN is
a uniformly weakly convergent estimate of the corresponding theoretical signed-
rank function R(x). Test statistics N−1/2T N and N−1/2UN = N−1/2∑R(xi)
are then shown to be asymptotically equivalent with the same asymptotic prop-
erties and one can just apply the above formulae for A and B utilizing the “limit
score function” R. First we give the following two results.

Theorem 4.2. Under the sequence of contiguous alternatives {HN}, supx |RN (x)
−R(x)| →P 0.

Theorem 4.3. Under the sequence of contiguous alternatives {HN}, N−1/2T N−
N−1/2UN = oP (1).

The main result concerning the limiting distribution of the affine invariant
two-sample rank test statistic then follows from Theorems 4.1 and 4.3.

Theorem 4.4. Under the sequence of contiguous alternatives {HN}, N−1/2T N

is asymptotically k-variate normal with mean vector λ(1 − λ)Aδ and covariance
matrix λ(1 − λ)B given in Theorem 4.1.

Moreover, the limiting distribution of the test statistic [Nλ(1− λ)]−1T T
N

B−1
N T N under the sequence of contiguous hypotheses HN is noncentral chi-square

with k degrees of freedom and noncentrality parameter λ(1 − λ)δT AT B−1Aδ.
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Note also that [λ(1 − λ)]−1A−1B(AT )−1 is the asymptotic covariance matrix of
the Hodges-Lehmann shift estimate ∆̂ given in Definition 3.2:

Theorem 4.5. Assume that ∆0 is the true shift parameter vector. Under mild
regularity conditions, the limiting distribution of N1/2(∆̂N − ∆0) is k-variate
normal with mean vector zero and covariance matrix (λ(1−λ))−1A−1B(AT )−1.

For the one-sample HL-estimate, see Hettmansperger, Möttönen, and Oja
(1997). The efficiency factors for Hotelling’s test, for the multivariate affine
invariant sign test, for the multivariate spatial sign test and for the multivariate
spatial rank test depend similarly on the inverses of the corresponding one-sample
location estimates (mean vector, Oja median, affine invariant multivariate HL-
estimate, spatial median and spatial HL-estimate).

Theorem 4.6. The Pitman asymptotic relative efficiency of the multivariate
affine invariant two-sample rank test with respect to Hotelling’s two sample T 2

test is
δT AT B−1Aδ

δT Σ−1δ
,

A and B given in Theorem 4.1.

See Hettmansperger, Möttönen, and Oja (1997) and Möttönen, Hettmansper-
ger, Oja and Tienari (1998) for thorough discussions about the efficiency of affine
invariant rank methods as compared to Hotelling’s tests and spatial sign and
rank tests. In the k-variate normal case the efficiencies (ek) with respect to the
Hotelling’s T 2 test are e1 = 0.955, e2 = 0.937, e3 = 0.934, e6 = 0.947 and
e10 = 0.961, for example.

5. Multivariate c-Sample Rank Test

Let x1, . . . ,xn1 , xn1+1, . . . ,xn1+n2, . . . and xn1+···nc−1+1, . . . ,xn1+···+nc be c

independent samples from distributions F (x−µ), F (x−µ−∆2), . . . , F (x−µ−
∆c), correspondingly. Write N = n1 + · · · + nc and λj = nj/N and Nj = n1 +
· · · + nj, j = 1, . . . , c. We wish to test the null hypothesis that the distributions
are the same, i.e., H0 : ∆2 = · · · = ∆c = 0.

Let T Nj be the two-sample rank test statistic for testing whether the jth
sample differs from the others, i.e., T Nj =

∑N
i=1 ajiRN (xi) where

aji =

{
1 − λj , if i ∈ {Nj−1 + 1, Nj−1 + 2, . . . , Nj}
−λj, otherwise

with λj = nj/N . Write also Hj = [Nλj(1 − λj)]−1T T
NjB

−1
N T Nj . Under the

null hypothesis, the limiting distribution of Hj is chisquare with k degrees of
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freedom. Finally, the combined test statistic (the Lawley-Hotelling trace statistic
for testing H0 : ∆2 = · · · = ∆c = 0) H =

∑c
j=1(1 − λj)Hj can be approximated

by a χ2-distribution with k(c − 1) degrees of freedom. In the univariate case,
the test becomes the well known Kruskal-Wallis test for the one-way lay-out.
The test is similar in structure to the combination of componentwise rank tests
which is not affine invariant, however. (See Puri and Sen (1971).) Multivariate
multisample spatial rank tests can be constructed similarly using two-sample
spatial rank tests (Möttönen and Oja (1995)). For affine invariant multivariate
multisample sign test statistics with a similar structure, see Hettmansperger and
Oja (1994).

6. An Example

We include here a brief example illustrating the computation entailed by the
use of the two-sample rank test and the estimation of shift. The data, carapace
measurements for painted turtles, consists of two samples of size 10 taken from
Table 6.5 of Johnson and Wichern (1988) (see Table 1 below).

Table 1. Carapace measurement data: Two independent samples

First sample Second sample
98 81 38 93 74 37
109 88 44 94 78 35
123 92 50 96 80 35
133 99 51 101 84 39
133 102 51 107 82 38
133 102 51 114 86 40
153 107 56 120 89 40
155 115 63 127 96 45
159 118 63 128 95 45
162 124 61 135 106 47

We treat observations as samples from trivariate distributions that differ
at most in a shift. We first consider a test for H0: ∆ =0 where ∆ is the
trivariate shift vector separating the two distributions. To carry out the test,
we compute T N from Definition 3.1 along with BN . Then the test statistic is
[Nλ(1 − λ)]−1T T

NB−1
N T N . Then

T N = (84.4, 25.0, −340.7)T ,

BN =


 1086.9 −1277.6 −654.0
−1277.6 2610.5 −844.3
−654.0 −844.3 2982.9
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and finally [Nλ(1 − λ)]−1T T
NB−1

N T N = 13.91. We see immediately that when
compared to the percentiles of a chi-square distribution with 3 degrees of freedom
that the asymptotic P-value is .003 and we easily reject the null hypothesis H0:
∆=0. Note that it is possible to approximate the permutation P-value also. In
this case, the two samples of size 10 are combined, shuffled, and the test statistic
is recomputed. Based on 50,000 shuffles the permutation P-value is estimated
to be .0005. Assuming multinormality, the popular Hotelling’s T 2 gives the P-
value .0003. The permutation test based on T 2 (using 50,000 shuffles) yields an
estimated P-value .0002.

Since we reject H0 : ∆ =0 we next wish to estimate ∆. We apply Definition
3.2 and find the Hodges-Lehmann estimate to be ∆̂ = (−21.8,−14.1,−11.7)T .
This can be compared to the vector of differences of component means x̄1 − x̄2 =
(−24.3,−15.8,−12.7)T . SAS/IML macros and S-PLUS functions to compute cen-
tered rank vectors, covariance matrix, test statistic, asymptotic P-value, and a
simulated (or exact) permutation P-value are available on request from the au-
thors.
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Appendix A: Proofs of the Theorems

Proof of Theorem 2.1. (a) First note that

∑
i

RN (xi) = N−1
P

∑
i1<···<ik+1

{ k+1∑
j=1

sgn(d0pj + xT
ijdpj )dpj

}
,

where pj = (i1, . . . , ij−1, ij+1, . . . , ik+1). But the inner sum
∑k+1

j=1 sgn(d0pj +
xT

ij
dpj)dpj is just k + 1 times the sum of centered ranks constructed for the

subsample of k + 1 observations xi1 , . . . ,xik+1
. It is therefore enough to show

that the proposition is true for N = k + 1.
(b) Consider the sample of N = k + 1 observations x1, . . . ,xk+1. The ob-

servations then determine a simplex. Write pi = (1, . . . , i − 1, i + 1, . . . , k + 1),
i = 1, . . . , k + 1. Now

RN (x) =
1

k + 1

k+1∑
i=1

sgn(d0pi + xT dpi)dpi .

Let x0 be any fixed interior point of the simplex which means that RN (x0) = 0.
But then also

N∑
i=1

RN (xi) =
1

k + 1

k+1∑
i=1

sgn(d0pi + xT
i dpi)dpi
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=
1

k + 1

k+1∑
i=1

sgn(d0pi + xT
0 dpi)dpi = 0

since x0 and xi are always on the same side of pi.

Proof of Theorem 2.2. As in the proof of Theorem 2.1, it is enough to consider
the case N = k + 1 only. Let x1, . . . ,xk+1 again be a sample of size N = k + 1
and pi = (1, . . . , i − 1, i + 1, . . . , k + 1), i = 1, . . . , k + 1. Clearly

1
k!

k+1∑
i=1

sgn(d0pi + xT
i dpi)[d0pi + xT

i dpi ]

=
1
k!

k+1∑
i=1

|d0pi + xT
i dpi | = (k + 1)V (x1, . . . ,xk+1)

and

1
k!

k+1∑
i=1

sgn(d0pi + xT
i dpi)d0pi =

1
k!

sgn(d0p1 + xT
1 dp1)

k+1∑
i=1

(−1)k+1d0pi

=
1
k!

sgn
(
det
( 1 · · · 1
x1 · · · xk+1

))
· det

( 1 · · · 1
x1 · · · xk+1

)
= V (x1, . . . ,xk+1)

(sgn(d0pi+1 + xT
i+1dpi+1) = −sgn(d0pi + xT

i dpi), i = 1, . . . , k), which gives the
desired result

1
k!

k+1∑
i=1

RT
N (xi)xi =

1
k!

k+1∑
i=1

sgn(d0pi + xT
i dpi)x

T
i dpi = kV (x1, . . . ,xk+1).

Proof of Theorem 4.2. Consider the extension of RN (x) with the new domain
of definition Rk+1 defined by

R∗
N (z) =

1
NP

∑
p∈P

S∗
p(z)dp, z ∈ Rk+1,

where
S∗

p(z) = sgn{z1d0p + z2d1p + · · · + zk+1dkp}.
For each z, R∗

N (z) is a U-statistic with expected value R∗(z) = E(R∗
N (z)) =

E(S∗
p(z)dp). The functions R∗

N (z) and R∗(z) depend on z only through its
direction |z|−1z and

RN (x) = R∗
N

(( 1
x

))
and R(x) = R∗(( 1

x

))
.
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It is then obvious that

sup
x∈Rk

|RN (x) − R(x)|≤ sup
z∈Rk+1

|R∗
N (z) − R∗(z)|= sup

|z|≤1
|R∗

N (z) − R∗(z)|.

Now use the construction described in Hettmansperger, Nyblom, and Oja
(1994), Proof of Proposition 2: The symmetric kernel for R∗

N (z) is the sum of
2k+1 asymmetric but monotone (in zi’s) kernels hb(xi1 , . . . ,xik ;z) = S∗

p(z)(πk
i=0

I{bidip>0})dp where b = (b0, . . . , bk) goes through all possible 2k+1 (±1, . . . ,±1).
Therefore R∗

N (z) can be represented as the sum of 2k+1 U-statistics with
asymmetric kernels each being monotone in zi’s and each converging (under quite
general assumptions) pointwise in probability to a continuous limit functions.
Consequently, R∗

N (z) as a sum of uniformly convergent functions on the compact
set {z ∈ Rk+1 : |z| ≤ 1} converges uniformly in probability to the limit function
R∗(z).

Proof of Theorem 4.3. It is enough to show that the proposition is true
for the jth cordinate under the null hypothesis. First note that under the null
hypothesis,

Var (RNj(x)) ≤ k

N
E(||dp||2) → 0, uniformly in x

and also

Cov(RNj(x), RNj(y)) ≤ k

N
E(||dp||2) → 0, uniformly in x and y.

But this means that (under H0) constants vNj = Var (RNj(xi)) = E(Var (RNj(xi))
|xi) and cNj = Cov(RNj(xi), RNj(xk)) = E(Cov(RNj(xi), RNj(xk))|xi,xk) con-
verge to zero as N → ∞. Finally note that

Var
( 1√

N

N∑
i=1

ai{RNj(xi) − Rj(xi)}
)

=
vNj

N

N∑
i=1

a2
i +

cNj

N

∑
i�=k

aiak

which goes to zero since

1
N

∑
ai → λ(1 − λ) and

1
N

∑
i�=k

aiak → −λ(1 − λ)

as m,n → ∞ and n/N → λ.

Proof of Theorem 4.5. First write

DN (∆) = N−1
[
(1−λ)

(
m

k

)−1 N∑
j=m+1

∑
p∈P

Vp(xj−∆)+λ

(
n

k

)−1 m∑
i=1

∑
p′∈P ′

Vp(xi+∆)
]
.
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One can assume that the right shift parameter value is 0. Then under general
assumptions, with c = 1

2 ,

VN (∆) = N [DN (N−1/2∆) − DN (0)]

= −N−1/2
[
(1 − λ)

N∑
j=m+1

Rm(xj − cN−1/2∆)

−λ
m∑

i=1

Rn(xi + cN−1/2∆)
]T

∆ + op(1).

As in Theorem 4.4 one can show that the limiting distribution of VN (∆) is the
distribution of V (∆) = −(y − 1

2λ(1 − λ)A∆)T ∆ where y is Nk(0, λ(1 − λ)B)-
distributed. As VN (∆) and V (∆) are convex processes, VN (·) →d V (·) (Theorem
10.8 in Rockafellar (1970)). Lemma 2.2 in Davis, Knight, and Liu (1992) then
gives the result. See also the proof of Theorem 4.4 in Hettmansperger, Möttönen
and Oja (1998).
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