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Abstract: When tests or portions of tests are scored subjectively by raters, a rescor-

ing will yield a change in the ratings of some examinees. In a test with a fixed

passing score a rescoring will result in the change of some pass/fail decisions. The

number of changes depends on: the reliability of the rating system, the number of

raters, the variability in examinee abilities, the proportion of examinees that ini-

tially pass, and the policy used to incorporate the rescore into the pass/fail decision.

In this study, we provide a model that facilitates the evaluation of various rescoring

strategies. We consider and compare the efficiency of three rescoring strategies:

(1) rescore everyone, (2) rescore failures only, and (3) rescore within some range of

the passing cutoff. These rescoring strategies are evaluated by direct simulation.

Additionally we consider the optimal allocation of rescores where the probability

someone asks to be rescored is inversely proportional to the distance from their

initial score to the cutscore. This allocation is evaluated via numerical integration.

A further generalization of the basic model is also considered in which a test is

comprised of a mixture of objectively and subjectively scored items.

Key words and phrases: Constructed responses, normal linear model, rater reliabil-

ity, rescoring.

1. Introduction

“The glorious endeavour that we know today as science has grown out of the
murk of sorcery, religious ritual, and cooking. But while witches, priests, and
chefs were developing taller and taller hats, scientists worked out a method for
determining the validity of their results; they learned to ask, ‘Are they repro-
ducible?’ ”

Scherr (1983)

An important goal of educational assessments is to produce scores for an in-
dividual that are reproducible. It is well known that if someone takes a test twice
their two scores will not be identical. The variation observed may be the result
of many influences; the person may have learned something between the two ad-
ministrations, the person may have had a ‘bad day’ during one administration,
subtle differences in the specific questions asked on the two different test forms



714 ERIC T. BRADLOW AND HOWARD WAINER

may have yielded a somewhat different level of success, etc.. Traditionally the
variation in test score expected between two test administrations has been sum-
marized by the statistic ‘test reliability.’ A more informed look at test reliability
can be had through the decomposition of test score variability into its compo-
nents. The development of ‘generalizability theory’ (Cronbach, Gleser, Nanda
and Rajaratnam (1972)) has done much to popularize this approach. However
the practice of summarizing all components of score variability into a single re-
liability figure remains by far the most common one. The reliability of most
professionally prepared tests is approximately .92, which corresponds to rather
small stochastic variability of test scores. Moreover, when variability is observed
(due to an examinee retaking the test) the relative contribution of each of its
causes is obscured leaving open the variability of the person’s performance as the
principal culprit.

The highly competitive and costly implications of providing university ad-
mission, course credits, and to some extent proper course placement has recently
expanded the need for forms of assessment which go beyond those that, for the
past half century, have been tested principally with multiple-choice items. Such
demands may change the nature of many long standing examinations such as
the Scholastic Assessment Test (SAT), Graduate Record Examination (GRE),
Advanced Placement (AP) tests, and Graduate Management Admissions Test
(GMAT) to include items that are responded to in a reasonably free format.
Since an examinee must construct a response rather than choose one from among
a set of specified choices such items are often called ‘constructed response items’.
The pantheon of constructed response items includes essays, detailed mathemat-
ics problems, portfolio submissions, and, in tests of music and dance, even actual
performances. While these modified tests are considered to contain a richer as-
sortment of information about a student’s ability, there are difficulties associated
with their implementation.

One class of difficulties that such item types engender stem from the fact
that they typically require scoring by human judges. Not only is such scoring
far more expensive than automated scoring by machine, but also the judge is
an additional component of score variability. Ceteris paribus, the larger the
proportion of the test that is judge-scored the lower the overall reliability. Until
recently, it would be very rare for any examinee to request that their test be
rescored. The reason for this is that if a test is completely scored through some
objective procedure (e.g. multiple choice test items mechanically scored) there is
only a minuscule likelihood that rescoring would yield any change. This likelihood
increases enormously when the test score results from human judgment. In this
latter case rescoring will almost certainly yield a change, indeed a change that has
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nothing to do with anything different about the examinee. The issue of rescoring
achieves special importance in situations, like those found in licensing tests, in
which there is a specified passing score.

If examinees are allowed to have their tests rescored what will be the conse-
quences? One obvious effect is that scores will change upon rescoring. Some who
previously failed will pass; for some of these the change will be a correction of an
earlier error, for others their passing will be an artifact of the testing system and
ought not to have happened. How many errors will be corrected? How many
new errors will be introduced? What sort of rescoring strategy provides the most
help? How many score changes will we see? The answers to these questions
depend on: the quality of the raters, the number of raters, the variability of the
examinees, the cutting score, and the rules under which rescoring takes place.

Test rescoring is a practice that typically will differentially affect examinees
of varying economic status and ability levels. That is, in the case where exami-
nations are rescored only upon examinee request, such requests are more likely
to emanate from those individuals who are able to afford it and who performed
below their own expectations. While it is obvious that any assessment of the
costs of rescoring must include increased usage of raters’ time, one must also
include the difficult to assess costs associated with the loss of confidence in the
test’s quality due to changing test scores, and that with an ill-chosen rescoring
policy, the changed scores could be less accurate, in the aggregate, than the orig-
inal scores. Thus it is difficult to know if the increased revenue that is obtained
from rescoring outweighs all of the associated costs for that rescoring. Such out-
comes depend on the variability of the system and the rescoring rules. The desire
to provide a guide for the policy decisions regarding rescoring of examinations
initiated this research.

In this study we examine the effects that each of the relevant variables has on
both error rates and on the number of pass/fail classifications that change with
rescoring. We describe an initial system to be used throughout for exemplary
purposes in Section 2. In Section 3, we describe a model for subjectively rated
item scores. Section 4 describes the relevant cross-classified table that specifies
the entire set of error rates due to initial scoring and rescoring. Simulation
results for a variety of specified rating systems (Section 5) are given in Section 6.
A basic result for tests which are a mixture of multiple-choice and subjectively
rated items is given in Section 7. Section 8 contains some concluding remarks.

2. An Example

To facilitate the description of the model, error rates, and notation we shall
begin with an example that represents a typical testing paradigm. Although the
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example is specific, it is done so without loss of generality; however when an
explicit generalization is helpful we include it.

Consider a test administered to a population of I examinees comprised of
one subjectively rated item (e.g. an essay). Each examinee’s essay is initially
assigned to a set of raters, say t1 of them. This assignment and subsequent rating
by t1 raters is called the initial scoring period. After the initial scoring, each of
the I examinees is assigned to one of two categories (IP) = Initial Pass and (IF)=
Initial Fail. We consider the case where the assignment to IP and IF is based on
the observed mean score of the first t1 ratings, denoted ȳit1, where examinee i

is passed initially if ȳit1 is greater than or equal to a cutoff c and failed initially
if ȳit1 < c. Typically c is chosen so that a desired proportion of the population,
p, is passed initially. After the initial scoring there are those examinees who
are passed whose true ability (defined as an average over infinitely many tasks
as rated by infinitely many raters; Lord and Novick (1968)) does not warrant
passing (TF, True Failures) and similarly those that initially fail who should
pass (TP, True Passers). These cases are initial scoring errors.

In this example, we consider the simple strategy of rescoring all examinees
after t1 scorings, called the rescoring period, with T − t1 rescorings. More sophis-
ticated (and efficient) strategies are described and evaluated in Section 6. This
results in a total of T ratings for every examinee i; each score is denoted yijt,
the score from examinee i from rater j in the tth scoring period, t = 1, . . . , T .
After all T ratings are observed, a final assignment is made to passing (RP =
Rescoring Pass) or failing (RF = Rescoring Failure) based on ȳiT ≥ c and ȳiT < c

respectively. Errors at this stage (i.e. RP if TF or RF if TP) are called rescoring
errors. Some rescoring errors are remaining from the initial scoring and some are
caused by the rescoring process. A description of results for alternative scoring
rules such as taking the maximum, and minimum over all observed scores appears
in Wainer and Bradlow (1996).

For example, suppose we are faced with having to admit 50 students out of
an applicant pool of 100, on the basis of an essay test that is scored initially by
t1 = 2 expert raters. A common finding in such situations (Ruggles (1911), Bock
(1991), Linn (1994)) is that the variability due to judges is at least as large as
that associated with students. It is natural to ask how many of the admissions
decisions that we make on the basis of these ratings are likely to be in error.
And, as a follow-on question, how many of those errors can be corrected if we
rescore each test with T − t1 = 2 additional raters and use the mean of all four
ratings for our decision? This situation corresponds with simulation 13 in Table
2 and is more fully described in Section 6. The answer is that we would expect
about 72 of the decisions based on the initial scoring to be correct and 77 to be
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correct after rescoring. Thus the 200 extra rescorings results in a reduction of 5
of the incorrect decisions. If we know the cost of rescoring and the costs of errors
we can decide on an efficacious scoring strategy.

Since the error rates mentioned are all functions of the unobserved examinee
true score, we must specify a model relating the observed scores yijt to the true
scores for each examinee denoted τi. This is done next.

3. The Model

We propose a simple additive linear model for observed scores yijt given by

observed score = true score + error

yijt = τi + eijt.

True score (τi) is given an additive form with random examinee intercept (ability),
τi = µ + αi. Error is decomposed into two parts, eijt = βj + εijt; with βj

characterizing rater j severity, and εijt random variance. This yields the random
effects model for examinee scores

yijt = µ + αi + βj + εijt. (1)

The assumptions in (1) of person by rater and rater by scoring period indepen-
dence are likely to hold if rater-blind scoring and efficient allocation of exams to
raters is utilized.

Additional specification of the model is assumed by asserting independent
Gaussian prior distributions for the random effects with

αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β), and εijt ∼ N(0, σ2
ε ). (2)

We treat µ the average level of response as a fixed effect. The sensitivity of
results to the Gaussian distribution assumption are given in detail in Wainer and
Bradlow (1996).

Under the model given by (1) and (2), the entire scoring system is specified
by the parameter vector η = (c − µ, σ2

α, σ2
β , σ2

ε ). We utilize a reparameterization
of η that is more easily understood (and more commonly used) among education
researchers given by:

Var(yijt) = σ2
y = σ2

α + σ2
β + σ2

ε

Cor(yijt, yij′t) = σ2
α/σ2

y

Cor(yijt, yi′jt) = σ2
β/σ2

y

Prob(IP) = Prob(ȳit1 ≥ c)
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the marginal variance of the observed scores, the inter-rater reliability, the per-
cent of the total variation due to judges, and the desired initial passing rate
respectively.

One can simulate the entire system for any set of values desired and let
prospective users pick those values that represent their specific situation. In
Section 6 of this study we provide simulation results for a moderate and extreme
value (0.5 and 0.9) of the passing rates.

4. Description of Error Rates

Since our problem can be specified in terms of an initial pass decision followed
by a final pass decision given some true ability status, all of the events of interest
can be summarized in the 2 X 2 X 2 event table, shown here as Table 1.

Table 1. Event table for pass/fail system with initial and resoring periods.

True Pass True Fail

Rescore Pass Rescore Fail Rescore Pass Rescore Fail
Initial Pass IV III Initial Pass II I
Initial Fail I II Initial Fail III IV

Type I events are initial scoring errors (ISEs) which are fixed by rescoring.
These are a gain due to rescoring. Type II events are ISEs which are not fixed by
rescoring. Although no score changes occur here there is an associated cost for
rescoring as well as an opportunity loss to rescoring a faulty initial decision and
not correcting it. Certainly, Type II events would be more common for examinees
whose true scores are near the cut score and/or the condition where the number
of rescores T − t1 is small compared to the number of initial scorings t1. Type III
events are those cases where errors are created due to rescoring. A cost is clearly
associated with these cases and typically one goal of a rescoring system would
be to minimize Type III events. Type IV events are cases in which erroneous
decisions are never made. We note that under these definitions, ISEs are simply
the union of Type I and Type II events and that rescoring errors are the union
of Type II and Type III events. Therefore, if the percentage of Type III events
is less than that of Type I events there will be fewer errors after the rescoring
period than after the initial scoring period.

All of the probabilities corresponding to the events in Table 1 can be com-
puted sequentially from the set of probabilities containing the initial conditions:
P(TP) and P(TF), ISEs: P(IP|TF) and P(IF|TP), and rescoring probabilities:
P(RF|TF, IP), P(RP|TP, IF), P(RP|IF, TF) and P(RF|IP, TP). The initial con-
ditions would typically be set by design and are taken as given. We compute the
remaining probabilities via direct simulation for various values of η in Section 6.
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5. Various Rescoring Policies

The example given in Section 2 and its description which follows assumes
that all examinees are scored by an initial set of t1 ratings followed by a rescoring
set of T − t1 ratings. This policy, although equitable in the sense of number of
scores per individual, is probably neither practical or efficient. We present two
alternatives to the “rescore everybody” policy; “rescore only those who fail”,
and “rescore only those whose initial score is near the cutscore”. We also provide
some results on the optimal allocation of judges where the probability someone
asks to be rescored is inversely proportional to their distance from the cutscore.

If there were no monetary cost for the examinee associated with rescoring,
then rescoring all failures would correspond to rescoring all who would ask to
be rescored. As the monetary cost increases we would expect that those who
ask to be rescored would be connected to their socio-economic status as well as
their distance from the cutscore. Under this strategy, we get some simplification
of error rates in that people who initially pass are not rescored and therefore
must pass after rescoring (i.e. Prob(RP|IP, TP) = Prob(RP|IP, TF) = 1 and
Prob(RF|IP, TP) = Prob(RF|IP, TF) = 0). Rescoring only those examinees
within some range of the cutscore could correspond to a quality control strategy
implemented by a testing organization regardless of whether or not the examinee
asks (or pays) to be rescored. Rescoring with probability inversely proportional
to the distance from the cutscore is a realistic mechanism for modeling who would
ask for rescoring.

6. Simulation

6.1. Simulation design

The evaluation of the error rates described in Sections 4 and 5 were accom-
plished through direct simulation. The simulation factors that were manipulated
correspond to parameter η given in Section 3. To standardize the simulation
values the marginal variance of the observed scores, var(yij), was set equal to
one. The number of initial raters was set at t1 = 2 and the number of rescoring
raters at T − t1 = 2 as in Section 2. Changing the number of initial and resoring
raters would lead to a rescaling of the rater variance; however, since the marginal
variance is set to one, the effect of the change in number of raters is measured
by varying the rater variance between 0 and 1.

A new independent judge was drawn for each rating. This only partially
corresponds with practice, in that when an indivdual exam is rescored a new
judge is sampled from a pool of judges without replacement. This correponds
to our simulation precisely. We depart from practice when we aggregate across
examinees, for in practice the same judges are used repeatedly for different exam-
inees. We did not attempt to model this since the within judge effects are quite
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complex including, as they do, such factors as the individual foibles of each judge,
as well as differential fatigue and learning effects. The size of such judge effects
are uncertain, and we felt the role of rescoring, uncontaminated by other issues,
would be more clearly visible with independntly chosen judges. We therefore left
the complex task of modeling idiosyncratic judge behavior to other accounts.

The simulation experiment was a 3 × 2 × 3 × 3 full factorial design with
levels

(i) rescore everyone, rescore failures, rescore within some range of the cutscore
(ii) Prob(IP) = 0.5, 0.9
(iii) σ2

ε = 0.1, 0.5, 0.9
(iv) σ2

α/(σ2
α + σ2

β) = 1/6, 1/2, 5/6.
yielding a total of 54 simulation conditions. For each of the three rescoring
strategies (item (i)), we simulated 250,000 examinees at each of the 18 simulation
conditions (a sample size chosen to make the maximum standard error equal
to 0.001). The IP conditions were chosen at 0.5 to yield the largest binomial
variability, and 0.9 to represent a practical and liberal passing standard (e.g. a
certification test). The condition with Prob(IP) = 0.1 is symmetric with Prob(IP)
= 0.9 and hence not included. The values of the random variance, σ2

ε , were chosen
to represent a small amount of random variability (σ2

ε = 0.1) corresponding to
a carefully structured test with many objectively scored items (e.g., the SAT), a
test with a weakly defined structure (σ2

ε = 0.9) and rather few items (e.g., the
Vermont Portfolio Assessment), and a test with a balanced structure (σ2

ε = 0.5).
The ratio of true score variance to the sum of true score variance and variance due
to raters (σ2

α/(σ2
α + σ2

β)) was assigned three values ranging from 1/6 – true score
variance is very small compared to rater variance, 1/2 – true score variance is
the same as rater variance, and 5/6 – true score variance is very large compared
to rater variance. Because, in this simulation, we define the sum of the three
variances to be one, the exact values of the true score variance and the rater
variance will vary as a function of this ratio but also as a function of the amount
of random variance.

For the rescoring strategy, “rescore with some range of the cutscore”, we
chose to rescore the nearest 10% of the examinees on either side of the cutscore.
As the simulation conditions were set at Prob(IP) = 0.5, 0.9 this corresponds to
rescoring all examinees in the range [F̂−1(0.4), F̂−1(0.6)] for the Prob(IP) = 0.5
condition, and all examinees in the range [F̂−1(0.8), F̂−1(1.0)] for the Prob(IP)
= 0.9 condition where F̂ is the empirical CDF of the initial score distribution. It
is important to note that for the conditions with Prob(IP) = 0.9 rescoring within
10% of the cutscore rescores all those who fail (the lowest decile of the CDF) and
the 10% who barely passed. This is in contrast to the Prob(IP) = 0.5 conditions
in which rescoring within 10% of the cutscore rescores only a small subset of the
failures (1/5 of them in this case).
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6.2. Simulation results

The simulation output is presented in terms of six useful summaries com-
puted from each of the 54 2× 2× 2 event tables (as in Table 1). The summaries
included (along with abbreviated notation) are the percentage of:

1. Initial scoring errors (ISE),
2. Errors remaining after rescoring (EReR),
3. Error improvement due to rescoring (EIR),
4. Errors corrected by rescoring (ECoR),
5. Errors created by rescoring (ECrR) and
6. Scores changed due to rescoring (SCR).

By definition, we know that EIR = ISE - EReR, ECoR = EIR + ECrR, and
SCR = ECoR + ECrR.

Since we are most interested in comparing these summaries across the three
rescoring strategies (“Rescoring everyone” is denoted by EVERY, “Rescoring
Failures” by FAIL, and “Rescoring those within 10% of the cutscore” by BOU-
NDS) and by initial passing probability, we group the results into 9 triplets of
results for Prob(IP) = 0.5 (Table 2) and 9 triplets for Prob(IP) = 0.9 (Table 3).
The inferences presented are based on the significant effects from an ANOVA run
on the summary results.

A number of confirmatory and interesting findings are exhibited in Table 2
for the Prob(IP) = 0.5 conditions. As expected we observe: (a) for every con-
dition all of the changes due to rescoring in EVERY are approximately double
that in FAIL (symmetry), (b) ISE, SCR, and ECrR are an increasing function
of random variance σ2

ε , (c) the percentage of score changes which are corrections
(ECoR/SCR) is a decreasing function of σ2

ε , and (d) the number of errors remain-
ing after rescoring (EReR) is in its expected order EVERY<BOUNDS<FAIL.
The more interesting findings were: (a) the high ISE and SCR rates across all
conditions, and (b) the increased efficiency (EIR per rescore) of the BOUNDS
rescoring strategy indicated by (1/0.2) · BOUNDS >> (1/0.5) · FAIL ≈ (1/1)
· EVERY across all simulation conditions; however this efficiency gain decreases
as a function of random variance σ2

ε .
The findings for the Prob(IP) = 0.9 conditions (Table 3) were more surpris-

ing. Specifically, we found that (a) in many conditions Prob(ISE) = Prob(IF)
indicating that no initial scoring is needed to achieve the same ISE rate (!!) - a
further description of this result is given in Section 7.2, (b) the number of errors
remaining after rescoring (EReR) is ordered by FAIL<BOUNDS<EVERY, for all
but simulations 28-30 in which there is near equality, indicating that increasing
the number of rescores for those who pass initially actually increases the number
of errors after rescoring (!!), and (c) almost all score changes due to rescoring
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are due to corrections as seen by the large values of ECoR/SCR across all condi-
tions. Result (b) is mostly due to the fact that under the rescore FAIL strategy,
considerably fewer errors are created due to rescoring (ECrR) than under the
EVERY or BOUNDS strategy.

Table 2. Summary of percentage errors for three rescoring strategies with
Prob(IP) = 0.5. Each simulation is based on 250,000 simulees. We abbreviate
ISE = Initial scoring errors, EReR = Errors remaining after rescoring, EIR =
Error improvement due to rescoring, ECoR = Errors corrected by rescoring,
ECrR = Errors created by rescoring, and SCR = Scores changed due to
rescoring.

sim Strat. σ2
ε

σ2
α

σ2
α+σ2

β

ISE EReR EIR ECoR ECrR SCR

1 EVERY 0.1 5/6 12.3 8.9 3.4 6.0 2.6 8.6
2 FAIL 0.1 5/6 12.2 10.6 1.6 2.9 1.3 4.2
3 BOUNDS 0.1 5/6 12.2 9.4 2.8 4.7 1.9 6.6

4 EVERY 0.1 1/2 21.1 16.0 5.1 9.7 4.6 14.3
5 FAIL 0.1 1/2 21.0 18.5 2.5 4.8 2.3 7.1
6 BOUNDS 0.1 1/2 21.1 18.0 3.1 5.5 2.4 8.0

7 EVERY 0.1 1/6 32.9 27.8 5.1 12.9 7.9 20.8
8 FAIL 0.1 1/6 33.0 30.4 2.6 6.5 3.9 10.4
9 BOUNDS 0.1 1/6 32.7 30.3 2.4 5.5 3.1 8.7

10 EVERY 0.5 5/6 22.1 17.0 5.1 10.1 4.9 15.0
11 FAIL 0.5 5/6 22.3 19.7 2.6 5.0 2.5 7.5
12 BOUNDS 0.5 5/6 22.2 19.1 3.1 5.6 2.5 8.0

13 EVERY 0.5 1/2 28.2 22.7 5.5 12.0 6.5 18.4
14 FAIL 0.5 1/2 28.1 25.5 2.6 5.9 3.3 9.2
15 BOUNDS 0.5 1/2 28.3 25.5 2.8 5.7 2.9 8.5

16 EVERY 0.5 1/6 37.3 32.9 4.4 13.5 9.1 22.5
17 FAIL 0.5 1/6 37.1 35.0 2.1 6.6 4.5 11.2
18 BOUNDS 0.5 1/6 37.1 35.2 1.9 5.4 3.4 8.9

19 EVERY 0.9 5/6 37.3 32.9 4.4 13.5 9.1 22.6
20 FAIL 0.9 5/6 37.3 35.0 2.3 6.9 4.5 11.4
21 BOUNDS 0.9 5/6 37.3 35.4 1.9 5.4 3.5 8.9

22 EVERY 0.9 1/2 40.0 36.3 3.7 13.6 9.9 23.4
23 FAIL 0.9 1/2 40.0 38.2 1.8 6.8 5.0 11.8
24 BOUNDS 0.9 1/2 40.2 38.6 1.6 5.3 3.7 8.9

25 EVERY 0.9 1/6 44.2 41.9 2.3 13.4 11.1 24.5
26 FAIL 0.9 1/6 44.3 42.9 1.4 6.8 5.4 12.2
27 BOUNDS 0.9 1/6 44.2 43.2 1.0 4.9 3.9 8.9
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Table 3. Summary of percentage errors for three rescoring strategies with
Prob(IP) = 0.9. Each simulation is based on 250,000 simulees. We abbreviate
ISE = Initial scoring errors, EReR = Errors remaining after rescoring, EIR =
Error improvement due to rescoring, ECoR = Errors corrected by rescoring,
ECrR = Errors created by rescoring, and SCR = Scores changed due to
rescoring.

sim Strat. σ2
ε

σ2
α

σ2
α+σ2

β

ISE EReR EIR ECoR ECrR SCR

28 EVERY 0.1 5/6 5.2 3.5 1.7 2.7 1.1 3.7
29 FAIL 0.1 5/6 5.2 3.7 1.5 1.9 0.4 2.3
30 BOUNDS 0.1 5/6 5.2 3.6 1.6 2.6 1.0 3.6

31 EVERY 0.1 1/2 8.1 5.3 2.8 4.3 1.6 5.9
32 FAIL 0.1 1/2 8.1 4.8 3.3 3.7 0.4 4.1
33 BOUNDS 0.1 1/2 8.0 5.1 2.9 4.2 1.3 5.5

34 EVERY 0.1 1/6 9.9 5.2 4.7 6.4 1.7 8.0
35 FAIL 0.1 1/6 9.9 3.7 6.2 6.3 0.1 6.3
36 BOUNDS 0.1 1/6 9.9 4.6 5.3 6.3 1.0 7.3

37 EVERY 0.5 5/6 8.3 5.4 2.9 4.5 1.6 6.2
38 FAIL 0.5 5/6 8.3 4.8 3.5 3.9 0.4 4.3
39 BOUNDS 0.5 5/6 8.4 5.3 3.1 4.4 1.3 5.7

40 EVERY 0.5 1/2 9.6 5.7 3.9 5.6 1.7 7.3
41 FAIL 0.5 1/2 9.5 4.4 5.1 5.3 0.2 5.6
42 BOUNDS 0.5 1/2 9.5 5.2 4.3 5.5 1.2 6.7

43 EVERY 0.5 1/6 10.0 4.6 5.4 7.0 1.6 8.6
44 FAIL 0.5 1/6 10.0 3.0 7.0 7.0 0.0 7.0
45 BOUNDS 0.5 1/6 10.0 3.9 6.1 7.0 0.9 7.8

46 EVERY 0.9 5/6 10.0 4.5 5.5 7.0 1.5 8.5
47 FAIL 0.9 5/6 10.0 3.0 7.0 7.0 0 7.0
48 BOUNDS 0.9 5/6 10.0 3.9 6.1 6.9 0.8 7.8

49 EVERY 0.9 1/2 10.0 4.2 5.8 7.3 1.4 8.7
50 FAIL 0.9 1/2 10.0 2.8 7.2 7.2 0.0 7.2
51 BOUNDS 0.9 1/2 10.0 3.5 6.5 7.3 0.8 8.1

52 EVERY 0.9 1/6 10.0 3.7 6.3 7.6 1.3 8.9
53 FAIL 0.9 1/6 10.0 2.4 7.6 7.6 0 7.6
54 BOUNDS 0.9 1/6 10.0 3.1 6.9 7.6 0.7 8.3

6.3. Optimal allocation of judges

In this section, we consider the following sequential allocation problem. As-
sume that the initial scoring period has occurred with each of I examinees re-
ceiving t1 initial scorings and a resulting score ȳit1 . Further, suppose that a fixed
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budget of K = I · T > I · t1 scorings is allowed for the total scoring period. This
setup is identical to that of Sections 2 - 6. We address the problem of how to op-
timally allocate the remaining I · (T − t1) scorings to the I examinees given their
observed initial scores in order to minimize the total expected misclassification
error. This analysis is in contrast to Sections 6.1 and 6.2 in which a one-time
allocation decision leads to each examinee getting 0 or T − t1 additional rescores.
Intuitively, one would expect that an examinee whose score is initially far from
the cutscore would require a lower share of resource allocation than one initially
near the cutscore. We demonstrate the computation and provide details below.

The total expected misclassification error after rescoring is given by:

Prob(ME) =
I∑

i=1

Prob(Ȳini ≥ c, µ + αi < c) + Prob(Ȳini < c, µ + αi ≥ c), (3)

where Ȳini is the final average rating of the ith examinee after ni ≥ t1 scorings,
and µ, αi, and c are the grand mean, examinee ability, and cutoff as previously
described. This classification rule though simple has the drawback of equally
penalizing serious and minor misclassifications equally. A generalization of our
results to other error rules is a nice area for future consideration.

Noting that

Ȳini =
( t1∑

j=1

Yij +
ni∑

j=t1+1

Yij

)
/ni = (t1Ȳit1 + ni2Ȳini2)/(t1 + ni2)

we obtain from (3)

Prob(ME)

=
I∑

i=1

(
Prob(Ȳini2 ≥ k1, µ + αi <c) + Prob(Ȳini2 <k1, µ + αi ≥ c)

)

=
I∑

i=1

( ∫ c

−∞
Prob(Ȳini2 ≥ k1|µ + αi = t)φµ+αi(t)dt

+
∫ ∞

c
Prob(Ȳini2 < k1|µ + αi = t)φµ+αi(t)dt

)

=
I∑

i=1

( ∫ c

−∞
(1 − Φ(

k1 − t√
k2

))φ0(
t − µ

σα
)dt+

∫ ∞

c
(1 − Φ(

k1 − t√
k2

))φ0(
t − µ

σα
)dt

)
, (4)

where k1 = (c−Ȳit1
)t1+cni2

ni2
, k2 = (

σ2
β+σ2

ε

ni2
)0.5, and Φ, φz are the standard normal

cdf and normal pdf with mean z respectively. We computed the one-dimensional
integral in (4) by numerical integration over a grid of 200 equally spaced grid
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points. We found that a larger grid and/or more wisely chosen grid points yielded
no significant difference in accuracy. The constants k1 and k2 are functions of
the unknown rescoring counts ni2; yet, for any given allocation n12, . . . , nI2 the
expected error rate can be computed. Since there exists a very large class of
allocation functions from which to choose we consider a specific class of allocation
functions given by ni2 ∝ d(c, Ȳit1)

r, where d(c, Ȳit1) is the absolute distance
between the initial score for examinee i and the cutoff, and r ≤ 0. We search
among values of r which yields the smallest value of (4). For example, if r = 0
minimizes (4) then this suggests that all examinees receive the same number of
rescores, (K − t1 · I)/I regardless of their initial score. The more negative the
value of r, the larger the share of resources that are allocated to observations
near the cut score. We provide a simulation experiment below.

6.4. A simulation experiment

Our simulation experiment consisted of generating three parallel sequences of
test scores using the same plausible value of η = (σ2

ε = 0.33, σ2
α/(σ2

α+σ2
β) = 1/2)

and Prob(IP) = 0.5 where η is as defined in Section 2. The three parallel sim-
ulations all set t1 = 1, the number of initial scorings, and I = 100, the number
of examinees; however, K the total number of scorings was varied at 200, 300,
and 400 respectively (i.e. 100, 200, and 300 rescorings to allocate among the
100 examinees). This process was repeated 50 times to account for the sampling
variability of test scores. The mean optimal value of r was −.15, −.09, and,
−.09 for K = 200, 300, 400 respectively. The corresponding mean reductions in
expected number of errors over equal allocation of rescores (i.e. r = 0) were 3.6,
4.5, and 5.0 respectively.

The allocation function d(c, Ȳit1)
r, the parameter η, and values of K were

chosen to demonstrate (a) the potential for reduction in errors through a simple
yet more clever allocation of judges scorings, and (b) the order of magnitude
of these gains in an exemplary case. Intuition suggests that in cases where the
residual error variance σ2

ε is larger, there is more potential for gains. Furthermore,
we also consider that our allocation process is a “one-time” rescoring and that
a more sequential procedure with many stages of resource allocation may be
desired. However, careful inspection suggests that our procedure would still be
applicable in a sequential nature where the inputs would simply change from Ȳit1 ,
t1 to their updated values.

7. Further Results

7.1. Tests containing both objectively and subjectively scored items

We consider a set of basic results for tests which are comprised of a mixture
of objectively (e.g. multiple choice) and subjectively (e.g. an essay) scored items.



726 ERIC T. BRADLOW AND HOWARD WAINER

These results can be used in conjunction with the simulation results of Section 6
by noting that increasing the proportion of the test with objectively scored items
would lead to lower values of random variance σ2

ε .
Let xi be the score for examinee i on a subtest that is scored without rater

error, and ω be the proportion (i.e., weight) of the total score due to xi.
Assume that

xi = µ + αi + δi,

where µ + αi is the true score as defined in (1) and δi is the true score residual.
The observed score is

y∗ij = ωxi + (1 − ω)yij

= µ + (αi + ωδi) + (1 − ω)(βj + εij).

Notice that the new model has the same form as the original model. The
inter-rater reliability for the new model is

r∗ =
σ2

α + ω2σ2
δ

σ2
α + ω2σ2

δ + (1 − ω)2(σ2
β + σ2

ε )
.

When ω > 0,

r∗ − r =
(σ2

β + σ2
ε )[ω(2 − ω)σ2

α + ω2σ2
δ ]

(σ2
α + σ2

β + σ2
ε )[σ2

α + ω2σ2
δ + (1 − ω)2(σ2

β + σ2
ε )]

> 0.

That is, the inter-rater reliability for the new model is larger than that for the
original model. Moreover, r∗ is a strictly increasing function of ω (0 ≤ ω ≤ 1).
As a matter of fact,

∂r∗

∂ω
=

2(1 − ω)(σ2
α + ωσ2

δ )(σ
2
β + σ2

ε )
[σ2

α + ω2σ2
δ + (1 − ω)2(σ2

β + σ2
ε )]2

> 0 for 0 < ω < 1.

Obviously since the initial error probabilities are decreasing functions of the
inter-rater reliability, the larger ω is, the lower the initial error probabilities are.

7.2. Other interesting results

An interesting scenario related to ISEs can occur when the judges scoring
the examinees are of mediocre quality. Specifically, suppose there exists an ex-
amination with a very high true passing rate, say P(TP) = 0.90, and judges who
perform poorly enough so that P(ISE) > P(TF) = 0.10. In this case, a lower ISE
rate can be achieved by not scoring the examinees and passing everyone! Clearly
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if P(TP)=0.90, then P(ISE) associated with passing everyone is P(ISE)=0.10.
This result is obtained when

P (ISE) > P (TF ) ⇔ (5)

P (IP, TF ) + P (IF, TP ) > P (IP, TF ) + P (IF, TF ) ⇔
P (IF, TP ) > P (IF, TF ),

the probability of failing a true passer is greater than the probability of failing
a true failure. We note that in Simulations 43-54 (Table 3) equality of the ISE
rate and true failure rate (TF ) was achieved.

A related result for a slightly different problem can also be examined using
the ISEs. Consider the case in which an examination is given, the test scores are
observed, and the highest scoring x% of the examinees are passed. If the P(ISE)
in this case is greater than 2x(1 − x), the error rate associated with the random
assignment of examinees to pass with probability x and fail with probability 1−x,
then random assignment is a cost effective strategy. This did not occur in any of
the simulation conditions; however for Simulations 22-27 (Table 2) the ISE rate
is certainly approaching 2 (0.5)(0.5) = 0.50.

8. Concluding Remarks

There are a number of potentially useful results of this research. First,
for tests in which the number of initial failers and passers are approximately
equal, the most efficient strategy is to only rescore examinees near the cutscore.
Second, for tests in which almost all examinees are expected to pass, the total
misclassification rate after rescoring is minimized by only rescoring those who fail.
These two findings have immediate implications for rater allocations. Additional
findings in this research also suggest that when the error associated with scoring
a subjective item dominates the variability in the true scores that (a) it may
not pay to score at all yielding a strategy to pass everyone, and (b) random
assignment of the pass/fail condition may lead to lower error rate (and certainly
lower cost) than the use of the test scores.
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