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Abstract: In educational testing contexts, the relative comparability of scores on

two tests is commonly established using the equipercentile method, which equates

scores based on the corresponding percentile ranks in test score distributions. Be-

cause of security or disclosure considerations, data collection for a comparability

study is often conducted using an incomplete-data design, that is, the two tests

are given to two non-random groups at slightly different time points, and a set

of common items is included in the test administration to allow some statisti-

cal adjustments for possible sample-selection bias. In the literature, researchers

have made the missing-at-random assumption when estimating population score

distributions using the common-item scores. This assumption can be violated in

various ways, especially when the groups differ in ages or when the tests are ad-

ministered a few months apart. In this study a general model is proposed for

estimating score distributions using incomplete data; the model considers back-

ground information (e.g., gender, ethnicity) together with common-item scores as

possible predictors of sample-selection bias, and allows nonresponse to depend on

missing scores. The model parameters are estimated using the maximum-likelihood

method and a Bayesian procedure. The standard errors of comparable scores are

also derived under the proposed model. The use of the model is illustrated in two

applications.
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1. Introduction

Two educational tests measuring similar content are typically highly corre-
lated and it has become a common practice to address the question “What score
on Test-X is comparable to what score on Test-Y?” For instance, concordance
tables were built for scores on the American College Testing (ACT) Assessment
and the College Board’s Scholastic Aptitude Test (SAT) (Marco, Abdel-Fattah
and Baron (1992)) such that relative competence could be determined between
applicants taking different tests for college admission; similarly, equivalent scores
were found for the 1988 and standard versions of the Armed Services Vocational
Aptitude Battery (ASVAB) such that the scores could be compared between tak-
ers of the new version and those of the older versions (Little and Rubin (1994),
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Thomasson, Bloxom and Wise (1994)). In testing practice, the term “test equat-
ing” has been commonly refered to as the scaling of two equivalent forms of the
same test (e.g., different versions of the ASVAB) to achieve score comparabil-
ity. This study will adopt the general term “comparability studies” to include
the scalings of target tests that measure similar content but are not necessarily
equivalent forms (e.g., the ACT assessment and the SAT).

The equipercentile method (Angoff (1984)) defines a function e, such that
G[e(x)] = F(x) and F[e−1(y)] = G(y) for all x and y scores on the respective
target tests X and Y, where F and G denote the distribution functions of x and
y in the reference population; by definition, e(x) and x are comparable scores on
Y and X, respectively. In many testing programs, distributing tests to randomly
equivalent groups before estimating F and G is not feasible because of security or
disclosure considerations. A conventional data-collection design is to administer
separate tests to two non-random groups at different time points. Because the two
groups represent possibly different populations, a set of common items measuring
content similar to the target tests is also included in the test administration to
allow for some adjustments. Conventionally, the comparability study using the
common-item scores relies on the missing-at-random (MAR; see Rubin (1976))
or ignorable missing assumption. In other words, the subpopulations the two
groups represent are assumed to have the same target-score distribution when
the common-item score is held constant (Braun and Holland (1982), Holland and
Thayer (1989), Liou and Cheng (1995a), Rubin (1976)). This assumption is likely
to fail when the two groups differ substantially in ages or abilities. In a few testing
programs, information such as ethnicity, educational levels, and grades in school
are also collected for takers of target tests; these background variables are useful
for estimating missing scores. In the literature, certain background information
has been recommended for matching subpopulations in comparability studies
when common-item scores have small correlation with target-test scores (Wright
and Dorans (1993)).

This research considers a generalized log-linear model to estimate missing
distribution functions for takers of target tests; the model considers background
information (e.g., gender, ethnicity, school grades, etc.) together with common-
item scores as possible predictors of sample-selection bias, and allows nonresponse
to depend on missing scores. The approach of treating nonignorable missingness
considered herein builds on work by Little (1985), Little and Rubin (1987), Fay
(1988), and Baker and Laird (1988) by adding a grouping variable for takers
of either one of the tests to the model. In the next section, a brief review of
the equipercentile method and its recent development is given, followed by an
introduction to the generalized log-linear model for estimating missing score dis-
tributions. The model parameters are estimated using the maximum-likelihood
(ML) method and a Bayesian procedure. Finally, the standard errors of estimat-
ing comparable scores are derived and the effectiveness of the model is examined
in two applications.
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2. The Equipercentile Method

In the equipercentile method, a score on Test-Y is comparable to a score on
Test-X if

ξ̂ ≡ ê(x) = Ĝ−1[F̂(x)], (1)

where ξ̂ or ê(x) denotes the score on Test-Y corresponding to a score x on Test-X,
and F̂ and Ĝ are sample estimates of the population distribution functions. Be-
cause test scores are integers, a monotone transformation of F̂ and Ĝ is required
so that the function in (1) be well defined. This study follows the convention
of assuming that the frequency attached to an integer score i is uniformly dis-
tributed in the interval [i − 0.5, i + 0.5). Then the asymptotic standard error of
ξ̂ in (1) can be expressed as

Se(ξ̂) ∼= {Var [F̂(x)] + Var [Ĝ(ξ)] − Cov [F̂(x), Ĝ(ξ)]} 1
2 /g(ξ)|ξ=ξ̂ (2)

(Liou and Cheng (1995b)), where Var [F̂(x)] and Var [Ĝ(ξ)] are the sample vari-
ances of the distribution estimates; Cov [F̂(x), Ĝ(ξ)] is the covariance; g(ξ) is the
density at ξ. The use of (2) has been recommended for samples containing at
least 1,000 examinees.

For small samples, estimates of population distributions are subject to sub-
stantial sampling errors. Therefore, a parametric smoothing on the sample distri-
bution functions has been recommended to reduce noise in comparability studies
(Rosenbaum and Thayer (1987), Hanson, (1991), Little and Rubin (1994)). A
common smoothing model for score distributions is an extension of the log-linear
model for scored multiway tables described by Haberman (1974). Let f(x) de-
note the density at x; the log-linear model for smoothing the x score distribution
assumes

f(x) = (η)(τ1)x(τ2)x
2 · · · (τq)x

q
, (3)

where τ1, . . ., τq are the parameters to be estimated and η normalizes the sum
of all f(x) to 1 (Rosenbaum and Thayer (1987)). For numerical stability, the
original raw scores can be centered by replacing x by x − I/2, for x = 0, . . ., I
before estimating the parameters. The ML estimators have the property that
the fitted and observed moments of the X distribution are still identical after
smoothing, to order q, so the smoothed distribution preserves some important
features of the original sample. In the study by Liou and Cheng (1995b), the
asymptotic formula in (2) worked reasonably well for sample sizes of 100 or more
after the sample estimates of F and G were smoothed using (3).

As mentioned earlier, the sample estimates of population distributions can be
biased through the selection of target tests takers. However, bias in comparable
scores might still be minor, provided selection of samples depends on one of the
target tests (X or Y), and all scores found in the reference population are also
found in the selected population (Little and Rubin (1994)). In testing practice,
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if selection is not symmetric in the two test taker groups (e.g., the ability of one
group is substantially higher than the other), a set of common items must be
administered to allow for possible adjustments. Let α and β denote groups of
Test-X and Test-Y respectively, and let v be a common-item score which is not
counted toward target test scores, with distribution K(v). The MAR assumption
posits that Fα(x|v) = Fβ(x|v) (Holland and Thayer (1989), Liou and Cheng
(1995a)), so F(x) can be estimated by computing

F̂(x) = ωαF̂α(x) + ωβ

∑
v

F̂α(x|v)k̂β(v), (4)

where ωα = (1−ωβ) = Nα/(Nα +Nβ), and Nα and Nβ are the sample sizes. One
can estimate G(y) in the same way. After F̂(x) and Ĝ(y) are found for all x and
y scores, comparable scores on the two tests can be established using (1).

In small samples, the joint distribution of (x, v) and of (y, v) can also be
smoothed using a model similar to (3) before estimating F and G in the ref-
erence population; some important features of the empirical distributions can
be preserved in the model, say the major moments in the marginal x, y, and v
distributions, and the cross-product moments in the bivariate (x, v) and (y, v)
distributions. The use of smoothing bivariate tables for comparability studies
has been empirically supported by Hanson (1991), Livingston (1993) and Allen,
Holland and Thayer (1994). Alternatively, the estimation of the distribution
in (4) and parameters in the smoothing model can be combined into an EM
algorithm–the E-step computes the sufficient statistics for estimating τ ’s based
on the MAR assumption and the M-step solves for τ ’s in the likelihood equations.
It was shown (Liou and Cheng (1995a)) that the EM algorithm yields more effi-
cient estimates of F and G and gives more stable estimates of comparable scores
when the MAR assumption holds.

Conventionally, comparability studies using common-item scores have esti-
mated the (x, v) and (y, v) distributions in the reference population; for example,
the two distributions were estimated separately by implementing the EM algo-
rithm twice in the study by Liou and Cheng (1995a). This study will focus on
a general model for imputing the joint (x, y, v) distribution based on incomplete
data and we allow nonresponse to depend on missing scores. The general model
makes an examination of the XY interaction tenable and simplifies the estimation
of Cov (F̂ , Ĝ) in (2).

3. Approaches to Estimating Population Distributions

Two missing-data patterns emerge from comparability studies: (i) Group α
has observed F̂α(x), K̂α(v), possible background variables, and missing Ĝα(y); (ii)
Group β has observed Ĝβ(y), K̂β(v), possible background variables, and missing
F̂β(x). This section elaborates on different approaches to estimating F(x) and
G(y) based on the observed data.
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3.1. A general model

In a comparability study, there are at least three test variables (X, Y, and
common item V scores), and one grouping variable C (α and β ). Let f(i, j, k, c)
= f(x = i, y = j, v = k,C = c) for i = 0, . . ., I, j = 0, . . ., J, k = 0, . . ., K, and
c = α and β. The incomplete-data likelihood can be expressed as follows:

L =
{ ∏

i

∏
k

[
∑
j

f(i, j, k, α)]n(i,.,k,α)
}{ ∏

j

∏
k

[
∑

i

f(i, j, k, β)]n(.,j,k,β)
}
, (5)

where n(i, ., k, α) and n(., j, k, β) are the observed marginal counts of the in-
completely classified data in Groups α and β , respectively. For simplicity, let
γC̄ = (τC

α )/(τC
β ), γXC̄

i = (τXC
iα )/(τXC

iβ ) and so on, where τ ’s are parameters to be
estimated. Under the saturated model, the odds pertaining to C can be expressed
as

ΩC̄
ijk· = γC̄γXC̄

i γYC̄
j γVC̄

k γXYC̄
ij γXVC̄

ik γYVC̄
jk γXYVC̄

ijk , where (6)

ΩC̄
ijk· = f(i, j, k, α)/f(i, j, k, β), and

∏
i γ

XC̄
i =

∏
j γYC̄

j =
∏

k γVC̄
k = · · · = 1. In the model, there are totally 2IJK − 1

parameters, and the incomplete data have IK + JK − 1 degrees of freedom for
estimating them. Obviously, the model cannot be identified without more con-
straints. Table 1 contains five different models and their corresponding numbers
of parameters.

Table 1. Hierarchical models for the 2×I×J×K table

Nonresponse Fitted Marginals Number of
Models Parameters

1. {XV,YV,VC} IK+JK−1
2. {YV,XVC} IK+JK−1+(I−1)K
3. {XV,YV,XC,VC} IK+JK−1+(I−1)
4. {XVC,YVC} IK+JK−1+(I+J−2)K
5. {XV,YV,XC,YC,VC} IK+JK−1+(I+J−2)

The models in Table 1 contain at least IK+JK−1 parameters. The XY
margin is tentatively removed from these models because X and Y were never
given to the same takers. But the XY interaction is not inestimable in the strict
sense; for example, the data contain information pertaining to the XY margin
indirectly via the V variable (Rubin and Thayer (1978), Rubin (1995)). If the XY
margin is included in these models, the number of parameters will exceed the size
of data to a greater degree. We return to the problem of identification later in
the section. In Table 1, Models 2 and 4 contain inestimable parameters because
the XV margin is not observed in Group β nor is the YV margin observed in
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Group α. In practice, if the size of the XV or YV interaction differs in Groups α
and β, information on other background variables must be collected along with
test data (Little and Rubin (1987)).

If the MAR assumption holds, (6) reduces to Model 1 as follows:

ΩC̄
ijk· = γC̄γVC̄

k , (7)

where
∏

k γVC̄
k = 1. This model contains IK + JK − 1 parameters and was rec-

ommended by Liou and Cheng (1995a) for imputing F(x) and G(y) when missing
data patterns were generated from a double-sampling scheme. Alternatively, (7)
can be described in the following equivalent form:

f(i, j, k, c) = ηXYV
ijk τC

c τVC
kc , where

ηXYV
ijk ≡ ητX

i τY
j τV

k τXV
ik τYV

jk . (8)

In the regular log-linear model, a complete marginal distribution must be pre-
served whenever it is specified in the model. For instance, the X marginal proba-
bility is constrained to be identical in the fitted and observed distributions if the
X main effect is included in the model. However, if Test-X contains 100 items,
then i = 0, . . ., 100; a complete specification of those 100 parameters for fitting
the X marginal probability seems too tedious. Because the XYV margin is a
scored three-way table (i.e., raw scores on the three tests), we may apply less
stringent constraints (Haberman (1974), Rosenbaum and Thayer (1987)) as the
smoothing model at (3), for instance,

τX
i = (τ∗

1 )i(τ∗
2 )i

2
(τ∗

3 )i
3
(τ∗

4 )i
4
, (9)

τXV
ik = (τ∗∗

1 )ik(τ∗∗
2 )i

2k(τ∗∗
3 )ik

2
, and (10)

τVC
kc = (τ∗C

1c )k(τ∗C
2c )k

2
, (11)

The X marginal probability is constrained by (9), that is, the first, second, third,
and fourth moments of the fitted and observed distributions are constrained to
be identical; furthermore, the τ∗

1 , . . ., τ∗
4 parameters in (9) remain the same with

respect to i. Similarly, the XV marginal probability is constrained by (10) so
that the cross-product moments XV, X2V, and XV2 are identical in the fitted
and observed distributions; the VC marginal probability is constrained by (11)
which specifies that the group differences on the first and second moments of
the V variable be identical in the fitted and observed distributions. In subse-
quent discussion, model (9) is denoted by 1st/2nd/3rd/4th −X, model (10) by
linear/quadratic −XV, and model (11) by 1st/2nd −VC.

If missing data are truly MAR, then the ignorable model in (7) will work
well for imputing and estimating the F and G distributions. When the missing
data do not follow the MAR assumption, some XC and YC interactions may
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be included in the model. If Groups α and β differ substantially in ability, for
instance, their X and Y scores distributions are likely different and the odds can
be expressed as

ΩC̄
ijk· = γC̄γXC̄

i γYC̄
j γVC̄

k , (12)

where
∏

i γ
XC̄
i =

∏
j γYC̄

j =
∏

k γVC̄
k = 1. The hypothesis in (12) corresponds to

Model 5 in Table 1 and has more parameters than degrees of freedom in the data.
Therefore, some properties of scored multiway tables must be considered as was
done at (9) through (11). The model in (12) is only one example of nonignorable
missingness. Other cases arise in which the XV (likewise YV) interactions differ
in the two groups. For instance, a subset of common items might have been
given to a group in the past and scores on these items do not count toward total
test scores. If the identification of these common items is known to some takers
at the second time points, these takers tend to do worse on the common items,
and the correlation between X and V in the second group tends to be lower.
As was mentioned, the parameters pertaining to the XVC and YVC margins
are inestimable. In applications, the cross-classifications of samples on some
background variables (e.g., grades in school and socioeconomic status) might
also be available. Let B be the cross-classification of samples on the background
variables. If the XVB and YVB margins are included in the hierarchical response
models, the XVC and YVC interactions can possibly be estimated (Little and
Rubin (1987), Baker and Laird (1988)). The background variables might also
increase the efficiency of estimating F(x) and G(y) if they are highly correlated
with test scores.

3.2. The ML estimates of parameters

In comparability studies, the principal interest is in making inference about
the X and Y margins based on the combined data from Groups α and β. The
ML estimates of model parameters in (5) can be evaluated via the EM algorithm.
The complete-data sufficient statistic for estimating these τ parameters can be
expressed as follows:

S =
∑
ijkc

isjtkugvñ(i, j, k, c), (13)

where g is the code assigned to the c-th group (e.g., α = −1 and β = 1), and s,
t, u and v take on integer values as they are specified in the marginal model (for
instance, the sufficient statistic for estimating τ∗∗

2 in (10) has s = 2, t = 0, u = 1,
and v = 0); ñ(i, j, k, c) denotes the estimated counts for the completely classified
data. Specifically, the EM cycle in the q-th iteration consists of the following
steps:
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E-Step.

S(q) =
∑
ijkc

isjtkugvñ(q)(i, j, k, c), where

ñ(q)(i, j, k, α) = {f̃(q)(i, j, k, α)/f̃(q)(i, ., k, α)}n(i, ., k, α) and
ñ(q)(i, j, k, β) = {f̃(q)(i, j, k, β)/f̃(q)(., j, k, β)}n(., j, k, β).

This step adjusts the values of the sufficient statistics to the provisional n(i, ·, k, α),
n(·, j, k, β), and the current parameter τ̃ (q) estimates, and in these equations
f̃(q)(i, ., k, α) and f̃(q)(., j, k, β) are the estimates of the XV and YV marginal
probabilities from the q-th iteration in Groups α and β, respectively.

M-Step. ∑
ijkc

isjtkugv f̃(q+1)(i, j, k, c) = S(q)/N.

This step solves for the parameter τ̃ (q+1) estimates using the adjusted values of
the sufficient statistics from the latest E-step. The EM cycles are repeated until
the sequence of iterates τ̃ (q) becomes stable. The ML estimates of F(x) and G(y)
can be calculated using ñ(i, j, k, c) from the stopped EM cycle.

A model’s goodness-of-fit is normally measured by the likelihood ratio statis-
tic, that is,

LR = 2
{ ∑

ik

n(i, ., k, α) log[n(i, ., k, α)/ñ(i, ., k, α)]

+
∑
jk

n(., j, k, β) log[n(., j, k, β)/ñ(., j, k, β)]
}
. (14)

The degrees of freedom for LR are IK + JK − (number of estimable τ parameters
fit). When data are incomplete and some τ parameters are not strictly estimable
(e.g., the correlation between X and Y), the LR statistic may not work well
for selecting between ignorable and nonignorable models. Experience suggests
that a model with a small LR can produce unsatisfactory F and G estimates.
In practice, other criteria are also useful for selecting between models, such as
bivariate plottings of x scores vs. their comparable scores on Y, or of x scores vs.
the standard error of their comparable scores. The issue of using LR to select
between models will be discussed later in the context of applications.

3.3. A Bayesian procedure

Selecting between ignorable or nonignorable models can cause controversy.
Rather than selecting one model for data analyses, a compromise on all possible
solutions would assume a smoother nature for the missing-data mechanism. Ru-
bin and Schafer (1988) suggest assigning a low a priori probability to the presence
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of higher-order interactions in the saturated log-linear model. This prior distri-
bution pulls the τ estimates toward a parsimonious model rather than toward
an ignorable or a nonignorable model (Rubin (1995)). A simple family of prior
distributions that accomplish this aim can be illustrated via a few examples as
follows:

τX
i ∼ N(0, σ2) (15)

τXV
ik ∼ N(0, σ2/λ) (16)

τXVC
ikc ∼ N(0, σ2/λ2) for σ2 > 0, and λ > 1 (17)

where the τ ’s represent the first-, second-, and higher-order interactions in the
saturated log-linear models, and are assumed to be independently distributed.

This Bayesian procedure applied to the saturated model will be more robust
than any ignorable model when the MAR assumption is seriously violated (Ru-
bin and Schafer (1988)). As mentioned earlier, a complete specification of the
saturated model is unnecessarily tedious for scored tables. For the use of com-
parability studies, this family of prior distributions can be applied to a reduced
model which includes all useful parameters for estimating the X and Y margins.
The EM algorithm can also be applied to the log-posterior distribution of τ ’s as
easily as to the log-likelihood function at (5).

4. Asymptotic Standard Error of Comparable Scores

For notational simplicity let p ≡ F(x) and

ẽ(x) = G̃−1(p̃), (18)

where p̃ and G̃ denote the F and G estimates computed using ñ(i, j, k, c) from
the stopped EM cycle. Based on the uniform assumption, the first derivatives of
F and G exist almost everywhere. Then by the Bahadur theorem (1966), G̃ can
be expressed as follows:

G̃−1(p) = ξ +
p − G̃(ξ)

g(ξ)
+ RN, (19)

where 0 < p < 1, and N is the sample size. Moreover, it can be shown that
RN = op(N− 1

2 ) (e.g., Ghosh (1971)). Thus (18) can be written as

ξ̃ ≡ G̃−1(p̃) = G−1(p̃) +
p̃ − G̃[G−1(p̃)]

g[G−1(p̃)]
+ RN. (20)

which yields

G̃−1(p̃) ∼= G−1(p) +
p̃ − p

g(ξ)
+

{
p̃ − G̃[G−1(p) +

p̃ − p

g(ξ)
+ · · ·]

}
/g(ξ)

∼= G−1(p) +
p̃ − p

g(ξ)
+

{
p̃ − G̃(ξ) − p̃ − p

g(ξ)
[
∂G̃(t)

∂t
|t=ξ ]

}
/g(ξ). (21)
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With some simplification, (21) can be reduced to

G̃−1(p̃) = ξ +
p̃ − p

g(ξ)
+

p − G̃(ξ)
g(ξ)

[1 + o(1)]

∼= ξ +
p̃ − G̃(ξ)

g(ξ)
. (22)

According to (22), the asymptotic standard error of ξ̃ can be estimated by

Se(ξ̃) =
{
Var [F̃(x)] + Var [G̃(ξ)] − 2Cov [F̃(x), G̃(y)]

} 1
2 /g(ξ)|ξ=ξ̃ , (23)

where g(ξ̃) is the ML estimate. In (23), both F̃(x) and G̃(y) are functions of τ ’s;
the variances of these functions of random variables can be estimated by

Var [F̃(x)] = [
∂F(x)

∂τ
] Cov (τ̃)[

∂F(x)
∂τ

]T|τ=τ̃ , (24)

Var [G̃(ξ)] = [
∂G(ξ)

∂τ
] Cov (τ̃)[

∂G(ξ)
∂τ

]T|τ=τ̃ , and (25)

Cov [F̃(x), G̃(ξ)] = [
∂F(x)

∂τ
] Cov (τ̃)[

∂G(ξ)
∂τ

]T|τ=τ̃ , (26)

where T denotes the transposition of a matrix; τ denotes the vector of parameters
and Cov (τ̃) is the variance-covariance matrix of the estimates. The last matrix
can be estimated by the inverse of the observed information matrix. The observed
information matrix can itself be derived either by using the supplemented EM
algorithm (Meng and Rubin (1991)) or by taking the second derivative of the
incomplete-data log-likelihood in (5). If F(x) and G(y) are estimated via the
Bayesian procedure, Cov (τ̃) can be approximated by taking the inverse of the
posterior information.

5. Examples

5.1. The NAEP reading test

The reading test scores were collected for the 1990 National Assessment of
Educational Progress (NAEP) across different age samples. The Age 13/Grade 8
Form contained 34 multiple-choice (MC) items and was given to 1,248 takers; on
the other hand, the Age 17/Grade 12 Form contained 33 MC items and was given
to 1,180 takers; an additional fourteen common items were given to the two age
groups. We denote the Age 13/Grade 8 Form as X, the Age 17/Grade 12 Form
as Y, and the common-items as V. In order to make a comparison of reading
performance between age groups, comparable scores had to be found for the two
forms (the scaling of different age forms to achieve score comparability has been
termed vertical equating in educational testing). For each test taker, the study
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computed two scores: one on the common items and one on the appropriate
target test (scores were simply the number of correct answers). Let x, y and v be
scores on the target forms and common items, respectively. The basic statistics
for these scores were (i) mean x = 19.93, mean y = 23.55, mean vα = 5.83 (Age
13/Grade 8 samples), mean vβ = 8.22 (Age 17/Grade 12 samples); (ii) standard
deviation x = 6.87, standard deviation y = 6.27, standard deviation vα = 2.71,
standard deviation vβ = 3.10. The correlation between x and v was .708 in the
Age 13/Grade 8 sample, and that between y and v was .725 in the Age 17/Grade
12 sample. Because of the difference in age, common-item score distributions
had different shapes and locations.

Table 2. Model comparisions for the NAEP reading data

Response Models No. of Par. LR
N1. {XV,YV,XY,C}

Nla linear −XY,−YV,−XY 18 1237.550
N2b linear/quadratic −XV,−YV,−XY 24 1184.612

N2. {XV,YV,XY,VC}
linear/quadratic −XV,−YV,−XY+
N2a. 1st/2nd/3rd −VC 27 793.336
N2b. 1st/2nd −VC 26 793.526
N2c. 1st/3rd −VC 26 793.444

N3. {XV,YV,XY,XC}
linear/quadratic −XV,−YV,−XY+
N3a. 1st/2nd −XC 26 808.140
N3b. 1st/3rd −XC 26 806.719

N4. {XY,YV,XY,YC}
linear/quadratic −XV,−YV,−XY+
N4a. 1st/2nd −YC 26 793.855
N4b. 1st/3rd −YC 26 794.022

N5. {XV,YV,XY,YC,VC}
linear/quadratic XV,YV,XY+
N5a. 1st −YC,−VC 26 803.489
N5b. 1st −YC+3rd−VC 26 792.842

N6. {XV,YV,XY,XC,YC,VC}
linear/quadratic −XV, −YV,−XY+
N6a. 3rd −XC,−VC+1st/2nd−YC 28 789.810
N6b. 1st/3rd −XC,−VC+1st/2nd−YC 31 775.335

Note: All these models fit the first five moments of X and Y, and the first
four moments of V

Table 2 contains the LR statistics for fitting different response models to the
NAEP reading data. Model N1 fits all possible two-way interactions between X,
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Y and V and assumes that the three variables have no interaction with C. This
model contains two submodels; in Model N1a, linear relationships are preserved
for those two-way interactions, and in Model N1b, both the linear and quadratic
relationships are preserved (see section 3.1 for the specification of parameters
in the model). The results suggest that the linear/quadratic −XV, −YV and
−XY model has smaller LR value than the linear model (1184.612 vs. 1237.550).
Models N2 through N6 are extensions of Model N1b. In Table 2, N1 and N2
are ignorable models in which the XC and YC interactions are not considered.
The XC and YC interactions are successively included in Models N3 through
N6. The marginal X, Y, V and C contains 15 parameters to be estimated for
all the models in Table 2 (except for N1a). The total number of parameters
equals 15 plus parameters for estimating the two-way interactions; for instance,
the number of parameters in Model N6a equals 15 + 9 (for XV, YV, XY) + 2
(for XC, VC) + 2 (for YC).

The Age 13/Grade 8 Form Scores
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Figure 1. The equipercentile functions between scores on the Age 13/Grade
8 and Age 17/Grade 12 Forms for different models in Table 2.

Figure 1 plots the equipercentile functions based on the different models in
Table 2. The parameters in Model N4a were also estimated by the Bayesian
procedure with σ2 = 30, 10 and λ = 2, respectively. The values of σ2 and λ

were selected such that the Bayesian estimates would not drastically change the
shapes of the score distributions derived from those of their ML counterparts.
In other applications, different criteria could be used for specifying the σ2 and
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λ values. Figure 1 also presents the equipercentile functions based on these
Bayesian estimates. Interestingly, Model N2c (i.e., the ignorable model) tends to
have larger comparable scores on Y across the x-score range as compared with
other models. The equipercentile functions for Models N5b and N6a coincide with
each other even though the two models fit the data differently (LR = 792.842 and
789.810). Model N4a tends to have larger comparable scores at the lower tail.
The Bayesian procedure pulls the Model N4a function downward at the lower
end. Figure 2 plots the standard errors of comparable scores based on (23), for
different models. The ignorable model has the smallest standard errors across
the score range. Model N6a has larger standard errors as compared with other
models. The Bayesian estimates for Model N4a have smaller standard errors than
their ML counterparts, particularly for those comparable scores at the lower and
upper tails.

The Age 13/Grade 8 Form Scores
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Figure 2. The standard errors of comparable scores for different models in Table 2.

The standard error plots suggest that the ignorable model yields smaller stan-
dard errors across the score range than do other nonignorable models. Figure A1
in Appendix plots the observed and fitted X and Y distributions from Model N2c.
According to Figure A1 − (a), the observed distribution in the Age 13/Grade 8
sample was mildly right-skewed; the fitted distribution after including imputed
scores from the Age 17/Grade 12 sample becomes slightly left-skewed. In Figure
A1 − (b), however, the fitted distribution after including adjustments with scores
from younger students (the larger sample) still possesses a similar shape as the
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observed distribution. Intuitively, we would expect a greater portion of samples
having lower y scores. Figure A2 plots the fitted distribution based on Model
N4a − the model yields a similar shape of the fitted X distribution as that of
Model N2c; however, it shifts the mode of the Y distribution to a lower score. For
this particular example, the nonignorable model yields score distributions that
are intuitively more appealing as compared with those from the ignorable model,
even though the likelihood ratio statistics suggest that these models fit the data
equally well (i.e., 793.444 and 793.855). Figure A3 presents the Bayesian esti-
mates of the X and Y distributions with σ2 = 30 and λ = 2 for Model N4a. The
Bayesian procedure provides smoother estimates than does its ML counterpart
for the two marginal distributions.

If the two forms were equally difficult, the equipercentile function would
have been closer to a standard line with a slope of 1 and an intercept of 0.
Another criterion for selecting between the models in Table 2 would come from
evaluating the equipercentile functions in Figure 1 against this standard line.
Notably, Model N2c yields comparable scores that all lie above the standard line
across the x-score range. Accordingly, an x score on the Age 13/Grade 8 Form is
comparable to a larger y score on the harder form. Intuitively, we would expect
the opposite to occur. The N4a function lies above the standard line at the lower
tail, but its Bayesian counterparts lie below the standard line across the x-score
range. The two other nonignorable models also yield functions which lie below
the standard line at the lower tail and closer to the standard line at the upper
tail. A choice between these models must also take into account other issues; for
instance, an analysis can be done to compare the relative difficulty between the
two forms. In general, we would prefer the nonignorable models in Figure 1 to
the ignorable model.

5.2. The Spanish language tests

Comparable scores were found for two Spanish language tests developed for
a placement service. The tests were distinct and each contained 39 MC items and
three constructed-response (CR) questions. Comparable scores on the MC items
were well-established for the two tests from earlier studies. Therefore, the MC
tests were assumed to be interchangeable for test takers once their raw scores on
the tests were rescaled into comparable scores. Rescaled scores on the MC items
are denoted as V. The CR questions scored from 0 to 52 and were considered the
target tests in the comparability study. Sample scores on the Spanish language
tests were collected from 1993 through 1994 and there were 142 takers for Test-X
together with 103 takers for Test-Y available for the study. The basic statistics
for test scores were: (i) mean x = 34.51, mean y = 31.51, mean vα = 24.88
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(Test-X Group), and mean vβ = 23.95 (Test-Y Group); (ii) standard deviation
x = 7.85, standard deviation y = 10.32, standard deviation vα = 7.51, and
standard deviation vβ = 7.47. The correlation between x and v was .698 in the
Test-X Group, and that between y and v was .797 in the Test-Y Group.

Table 3. Model comparisions for the Spanish language tests.

Response Models No. of Par. LR
S1. {XV,YV,XY,L,C}

linear −XV,−YV,−XY 14 1247.126

S2. {XVL,YVL,XYL,C}
1st −VL, −XL,−YL+
linear −XV,−YV,−XY+
linear −XVL, −YVL, −XYL 20 1201.319

S3. {XVL,YVL,XYL,VC}
1st −VL, −XL, −YL+
linear −XV,−YV,−XY+
linear −XVL,−YVL,−XYL+
1st −VC 21 1200.250

S4. {XVL,YVL,XYL,XC,YC}
1st −VL, −XL, −YL+
linear −XV,−YV,−XY+
linear −XVL,−YVL,−XYL+
1st −XC,−YC 22 1200.004

S5. {XVL,YVL,XYL,XVC,YVC}
1st −VL, −XL, −YL+
linear −XV,−YV,−XY+
linear −XVL,−YVL,−XYL+
S5a. linear −XVC,−YVC 22 1198.590
S5b. 1st −XC,−YC+linear −XVC,−YVC 24 1186.658

Note: All these models fit the first three moments of X, Y and V.

Additionally, the background information on “language learned as child
(Spanish vs. others)” was also available for all samples. Those test takers who
spoke Spanish as children tended to score higher on the tests than those who did
not. Let L be a classification of test takers on language groups (Spanish = −1,
others = 1). Table 3 contains the LR statistics for fitting different response mod-
els to the Spanish language data. Because the incomplete-data distributions for
both tests were sparse due to the small sample sizes, this study simply fitted the
X, Y, and V marginal probabilities by preserving the first three univariate mo-
ments of these margins in order to compromise between the biases and standard
errors in F̃(x) and G̃(y) (it was found that the model preserving the first three
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sample moments yielded the least mean-squared difference between sample and
population comparable scores in small samples; see Livingston (1993)). Accord-
ing to the LR statistics, the interactions between L and test variables significantly
reduce the fit statistics (Model S1 vs. Model S2). After the difference between
the two test groups on X, Y and V have been accounted for by L, the interactions
between C and other variables do not further reduce the fit statistic. Figure 3
plots the equipercentile functions based on different models. The parameters in
Model S5a were estimated using the Bayesian procedure with σ2 = 30, 10 and
λ = 2, respectively. Figure 3 also plots the equipercentile functions based on the
Bayesian estimates.
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Figure 3. The equipercentile functions between scores on Tests- X and Y for
different models in Table 3.

Obviously, the missing-at-random assumption does not raise an issue for
the model-data fitting of the Spanish language data because the ignorable and
nonignorable models provide similar comparable scores across the x-score range.
However, the small sample size causes trouble. Figure A4 plots the X and Y
distributions based on Model S5a. Notably, the observed data provide no score
information at the lower tail in the X distribution. The log-linear model slightly
improves the data sparsity occurring at the lower tail, but not too much. For
x = 0, . . . , 6, therefore, comparable scores on Y are almost zero. Figure 4 plots the
standard errors of comparable score for different models. Clearly, the standard
errors corresponding to smaller x scores are larger than is desirable. The Bayesian
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procedure works much better than its ML counterpart in terms of estimating
comparable scores at the lower tail. Figure A5 plots X and Y distributions based
on the Bayesian estimates with σ2 = 10, and λ = 2. As indicated in Figures
3 and 4, the Bayesian procedure provides reasonable estimates of comparable
scores at the lower tail, and significantly reduces the standard errors for those
comparable scores as well.
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Figure 4. The standard errors of comparable scores for different models in
Table 3.

6. Conclusion

The fittings of the NAEP reading data suggest that the ignorable model
has more difficulty in shifting the mode of the Y distribution to a lower score
than the nonignorable model does. The fittings of the Spanish language data
suggest that the L variable works even better than the C variable for predicting
sample-selection bias. In applications, when common items are not sensitive to
substantial bias in test taker groups, comparability studies will benefit highly
from adding background variables to the imputation models. The nonignorable
models can also be considered for correcting bias in test taker groups when useful
background data are not available. The proposed parametric approach of imput-
ing score distributions requires more computer memory and the EM convergence
can sometimes be too slow. So far, the application of the log-linear model is
limited to short tests and a small number of background variables. In this study,
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plotting complete-data distributions is recommended as a useful device for model
selection because a valid model must yield score distributions that at least make
intuitive sense. The Bayesian procedure is a compromise between ignorable and
nonignorable models; it has been proposed in this study as a tool for small-sample
applications. Empirical studies also suggest that the procedure is particularly
useful for smoothing the tails of score distributions. Although the values of σ2

and λ can be chosen arbitrarily, the plottings of equipercentile functions and the
standard error of comparable scores can be used as devices for deciding the σ2

and λ values in applications. In conclusion, this study recommends the use of
the generalized log-linear model for comparability studies.
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Figure A1. The observed and fitted score distributions corresponding to
model N2c in Table 2 for the (a) Age 13/Grade 8 and (b) Age 17/Grade 12
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Figure A2. The observed and fitted score distributions corresponding to
model N4a in Table 2 for the (a) Age 13/Grade 8 and (b) Age 17/Grade 12
Forms.
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