
Statistica Sinica 8(1998), 647-667

DETECTION OF DIFFERENTIAL ITEM FUNCTIONING

USING LAGRANGE MULTIPLIER TESTS

C. A. W. Glas

University of Twente, Enschede, the Netherlands

Abstract: In the present paper it is shown that differential item functioning can

be evaluated using the Lagrange multiplier test or Rao’s efficient score test. The

test is presented in the framework of a number of IRT models such as the Rasch

model, the OPLM, the 2-parameter logistic model, the generalized partial credit

model and the nominal response model. However, the paradigm for detection of

differential item functioning presented here also applies to other IRT models. Two

examples are given, one using simulated data and one using real data.
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1. Introduction

When a new test is constructed, it is important to find empirical evidence
that contributes to the construct validity of the test (AERA, APA and NCME
(1985)). Part of this process may be to show that the test fits a unidimensional
item response theory (IRT) model, which means that the observed responses can
be attributed to item and person parameters that are related to some unidimen-
sional latent dimension. Construct validity is supported if the construct to be
measured is also unidimensional and if the ordering of item difficulties imposed
by the construct is reflected in the ordering of item parameters on the latent
scale. Further, if it can be shown that the latent ability is unidimensional, a
meaningful unidimensional variable for measuring the underlying construct can
be created, and the respondent can be assigned a value on some scale. So the
IRT model validates the scoring rule of the test. Construct validity implies that
the construct to be measured is the same for all respondents of the population
the test is aimed at. This is where the problem of differential item function-
ing (DIF) or item bias arises. For reasons of semantic clarity, many authors
prefer the terminology “DIF” to the older term “item bias” (see, for instance,
Angoff (1993) or Cole (1993)). In the present paper this practice is complied
with. Studies of DIF deal with the question how item scores are affected by
external variables that do not belong to the construct to be measured. Usually,
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the external variable imposes a division into a small number of sub-populations,
where a sub-population refers to a set of persons that have the same value on
the external variable. If the external variable is dichotomous, one usually speaks
of the reference population, say the majority group or an advantaged group, and
the focal population, say the minority or a disadvantaged group. In DIF studies,
the null-hypothesis is that the external variable does not moderate the effect of
ability on the item scores. So the responses to a dichotomous item are subject to
DIF if, conditional on ability level, the probability of a correct response differs
over the samples from the various sub-populations (Mellenbergh (1982, 1983)).
The generalization to polytomous items is straightforward. The responses to a
polytomous item are subject to DIF if the set of probabilities of scoring in the
various response categories of the item, conditional on ability, differs between dif-
ferent sub-populations. Another, equivalent definition of DIF is that the expected
scores on the item, conditional on ability, are different for the sub-populations
under consideration (Chang and Mazzeo (1994)).

The essential problem in DIF studies is whether the response behavior of
the samples of all sub-populations can be properly described by an IRT model.
An additional problem is that the possible presence of DIF will influence the
parameter estimates of all items, and this may confound model fitting. In the
example section of this paper it will be shown that detection of DIF can be ac-
complished by an iterative process of model fitting, testing for DIF and modeling
the responses to affected items, until a fitting model for all items and all samples
of respondents is found.

Several techniques for detecting DIF have been proposed. Most of them are
based on evaluating differences in response probabilities between groups, condi-
tional on some measure of ability. The most generally used technique is based on
the Mantel-Haenszel statistic (Holland and Thayer (1988)), others are based on
log-linear models (Kok, Mellenbergh and van der Flier (1985)), on IRT models
(Hambleton and Rogers (1989)), or on log-linear IRT models (Kelderman (1989)).
In the Mantel-Haenszel, log-linear and log-linear IRT approaches, the difficulty
level of the item is evaluated conditionally on the respondents’ unweighted sum
scores. However, adopting the assumption that the unweighted sum score is a suf-
ficient statistic for ability (together with some technical assumptions, which will
seldom be inappropriate) necessarily leads to the adoption of the Rasch model
(Fischer (1974, 1993, 1995)). However, with the exception of the log-linear IRT
approach, the validity of the Rasch model is rarely explicitly tested. Therefore,
Glas and Verhelst (1995) suggested a procedure consisting of two steps:
(1) searching for an IRT model for fitting the data of the sample from the refer-

ence population, and, as far as possible, the sample from the focal population;
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(2) evaluating the differences in response probabilities between the two samples
in homogeneous ability groups.
In this paper, an approach is investigated that can be viewed as a general-

ization of the above method. In the first step, Glas and Verhelst (1995) use a
generalized version of the Rasch model where discrimination indices are imputed
for dealing with differences in discrimination between the items. This model,
known as the one parameter logistic model (OPLM), will be considered below.
These authors propose an iterative process of adjusting the discrimination in-
dices using so-called generalized Pearson statistics, until an acceptable model
fit is achieved. Evaluating the differences in response probabilities between the
samples from the reference and focal population in homogeneous ability groups
is also done using generalized Pearson statistics. The alternative approach of the
present paper is not only applicable in the framework of the Rasch model and
the OPLM, it can also be used in the context of the two-parameter logistic model
and the nominal response model. These last two models are more flexible than
the former models, but the tests for evaluating the fit to these models developed
thus far are less sophisticated, in the sense that the asymptotic distribution of
the statistics for these tests is unknown (see, for instance, Mislevy and Bock
(1990)). On the other hand, the generalized Pearson tests for the Rasch model
and the OPLM completely rely on the existence of sufficient statistics (see Glas
and Verhelst (1995)), so these tests cannot be used for performing the second
step of the above approach for the two-parameter logistic and nominal response
model. Therefore, in the present paper it will be shown that the second step can
be performed using Lagrange multiplier (LM) tests.

The remainder of this paper is organized as follows: (1) the relevant IRT
models will be discussed, (2) an estimation procedure will be described, (3) the
LM tests will be presented, and (4) two examples will be given, one using simu-
lated data and one using real data.

2. Choosing an IRT Model

In IRT models, the influence of items and persons on the observed responses
are modelled by different sets of parameters. Since DIF is defined as the oc-
currence of differences in expected scores conditional on ability, IRT modelling
seems especially fit for dealing with this problem. However, first the ques-
tion must be answered which IRT models are appropriate in this context. Be-
fore considering some significant models for studying DIF, the following defini-
tions must be introduced. Consider items where the possible responses can be
coded by the integers 0, 1, 2, 3, . . . ,mi. Let item i have mi + 1 response cate-
gories, indexed h = 0, 1, . . . ,mi. Notice that dichotomous items are the special
case where mi = 1. The response to an item will be represented by a vector
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(xil, . . . , xih, . . . , ximi), where xih is a realization of the random variable Xih de-
fined by

xih =

{
1 if a response is given in categroy h,
0 if this is not the case.

(1)

In this section, two classes of models will be considered. The first class com-
prises of exponential family IRT models, such as the unidimensional Rasch model
(UPRM) by Rasch (1960, 1961), the partial credit model (PCM) by Masters
(1982), the one-parameter logistic model (OPLM) by Verhelst and Glas (1995)
and the generalized PCM (GPCM) by Wilson and Masters (1993). The second
class comprises of generalizations of the first class of models outside the exponen-
tial family, such as the two-parameter logistic model (2-PL) by Birnbaum (1968)
and the nominal response model by Bock (1972). The motivation for making
this distinction is that there are many statistical testing procedures based on
statistics with known (asymptotical) distributions for the first class of models
and hardly any such procedures for the latter class of models. This point will be
returned to below.

In the framework of polytomous items, Rasch (1960, 1961) (see also, An-
dersen (1972, 1973b, 1977) and Fischer (1974)) has introduced several exponen-
tial family IRT models. In the model most suited for ability measurement, the
UPRM, the probability of scoring in category h of item i is given by

Pr(Xih = 1|θn, βi) =
exp(hθn − βih)

1 +
∑mi

k=1 exp(kθn − βik)
, (2)

where θn is the unidimensional ability parameter of person n, and βi is a vector
with elements βih, h = 1, . . . ,mi which are the parameters of item i. For mi = 1,
equation (2) defines the item response function of the well-known Rasch model
for dichotomous items. One of the reasons for considering this model is that it
can be derived from a set of assumptions which will often apply in the context of
ability measurement. Andersen (1977) has shown that the UPRM can be derived
from the assumption that Rn =

∑
i,h hXih is a minimal sufficient statistic for

a unidimensional ability parameter θ, local stochastic independence and some
technical assumptions. Masters (1982) develops a completely equivalent model
from an entirely different perspective. Masters’ version, the PCM, can be derived
from the assumption that every category h, h > 0, can be seen as a step that is
either passed or failed. The final score on the item is determined by the number of
steps that the respondent has successfully taken. Further, it is assumed that the
probability of scoring in category h, rather than in category h−1, is described by a
Rasch model for a dichotomous item with item parameter ηih . Glas and Verhelst
(1989) have pointed out that the PCM is a reparametrization of the UPRM,
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that is, the parameters of the UPRM are obtained by the reparametrization
βih =

∑h
g=1 ηig, h = 1, . . . ,mi.

One of the attractive features of the UPRM is the possibility of using a con-
ditional maximum likelihood method (CML) for obtaining consistent estimates
of the item parameters (see Fischer (1974), Molenaar (1995)). By conditioning
on the minimal sufficient statistics Rn a likelihood function is obtained that does
not depend on the person parameters. This has the important advantage that
computation of CML estimates does not need any assumption concerning the
distribution of ability in the population. Further, these consistent estimates can,
in principle, be obtained using any arbitrary sample of persons where the model
holds. The less attractive feature of the model is that the possible form of the
item response curve is rather restricted, for instance, for the dichotomous case
the item response curves must be parallel, in the sense that they are shifted along
the latent continuum. Fortunately, many statistical tools are available for evalu-
ating the fit of the Rasch model. The assumption that the unweighted sum score
is a minimal sufficient statistic for the person parameter and the assumption
concerning the form of the item response curves are the focus of Martin Löf’s
(1973) T-test, the R1-test (Glas (1988), Glas and Verhelst (1989)), the Ui-test
(Molenaar (1983)) and the Si- and M -tests (Verhelst and Glas (1995), Verhelst,
Glas and Verstralen (1993)). The property that the item parameters can be con-
sistently estimated on every subgroup of the population is tested by Andersen’s
likelihood ratio test (Andersen (1973a)) and the Fischer-Scheiblechner test (Fis-
cher (1974)). Finally, the assumption of unidimensionality and local stochastic
independence are the focus of the likelihood ratio test of Martin Löf (1973, 1974)
and the R2-test of Glas (1988).

The combination of the axiomatic foundation of the model and the tradition
in social research and educational measurement of working with unweighted sum
scores makes the model an attractive starting point for statistical analyses. How-
ever, the restrictive character of the model will often obstruct model fit. There
are several aspects of the Rasch model that may lead to rejection of the model.
These violations can be accounted for by defining specific generalizations of the
Rasch model. In this paper, the focus will be on models where the assumption of
the form of the item response curves is relaxed. This can be done by introducing
discrimination indices or discrimination parameters αih, h = 1, . . . ,mi, so that
equation (2) generalizes to

ψih(θn) = Pr(Xih = 1|θn, αi, βi) =
exp(αihθn − βih)

1 +
∑mi

k=1 exp(αikθn − βik)
, (3)

were αi and βi are vectors of the elements αih and βih(h = 1, . . . ,mi), respec-
tively. If the discrimination indices are viewed as known constants, this model can
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be derived from the assumption that Rn =
∑k

i=1 αihXnih is a sufficient statis-
tic for ability, local independence, and some technical assumptions (Andersen
(1977)). In the framework of known discrimination indices, Verhelst and Glas
(1995) have developed a CML estimation procedure and a procedure for evalu-
ating model fit, for the so-called OPLM, where the item categories are assumed
to have score weights αih = hαi. Recently, Glas (1997) has generalized this pro-
cedure to the more general GPCM by Wilson and Masters (1993), where item
categories are given scoring weights αih.

The discrimination indices can also be treated as unknown item parameters
to be estimated. In the framework of dichotomous items this approach is known
as the two-parameter logistic model (2-PL) by Birnbaum (1968). The nominal
response model by Bock (1972) can be viewed as a generalization of the 2-PL to
polytomous items. There are several considerations with respect to the choice
between the two approaches. The OPLM and GPCM allow for CML estimation
and have theoretically well-founded tools for testing model fit. In fact, most of
the procedures mentioned above can easily be generalized to model (3) (Verhelst
and Glas (1995), Glas (1997)). On the other hand, the nominal response model
is more flexible with respect to possible item response curves. This flexibility is
bought at the expense of needing an MML estimation procedure for obtaining
consistent estimates of the item parameters. This introduces assumptions with
respect to the distribution of ability, which, of course, introduce another source of
possible model violations that needs to be accounted for. However, attempting to
generalize the complete catalogue of tests of model fit for exponential family IRT
to non-exponential family IRT is far beyond the scope of the present paper; here
only an alternative for the DIF tests of exponential family IRT will be studied.

3. Estimation

In the present section, the well-known theory of MML estimation for IRT
models will be re-iterated. In this presentation the formalism of Glas (1992)
will be used, which, as will become apparent in the sequel, is especially suited
for introducing LM tests for DIF. Consider the case of two sub-populations. A
background variable will be defined by

yn =

{
1 if person n belongs to the focal prpulation,
0 if person n belongs to the reference population.

(4)

The absence of DIF entails that respondents of equal ability of different sub-
populations have the same expected item scores. This, of course, does not mean
that the expected item scores in the different sub-populations are the same, be-
cause it may well be the case that the ability distributions of the sub-populations
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are different. Let g(θn;λy(n)) be the density of the ability distribution of sub-
population y, with parameters λy(n)

, where y(n) = yn is the index of the sub-
population of person n. Further, if ξ′ = (α′, β′, λ′) is the vector of all item and
population parameters, the log-likelihood can be written as

lnL(ξ;X) =
∑
n

ln Pr(xn; ξ), (5)

where xn stands for the response pattern of person n and X stands for all data.
To derive the MML estimation equations, it proves convenient to introduce

the vector of derivatives

bn(ξ) =
∂

∂ξ
ln Pr(xn, θn; ξ) =

∂

∂ξ
[ln Pr(xn|θn, α, β) + ln g(θn|λy(n))]. (6)

Glas (1992) adopts an identity due to Louis (1982) to write the first order deriva-
tives of (5) with respect to ξ as

∂

∂ξ
lnL(ξ;X) =

∑
n

E(bn(ξ)|xn, ξ). (7)

This identity greatly simplifies the derivation of the likelihood equations. For
instance, using the short-hand notation ψnih = ψih(θn), it can be easily verified
that

bn(αih) = θn(xnih − ψnih) (8)

and
bn(βih) = ψnih − xnih, (9)

so the likelihood equations are given by∑
n

E(θnxnih|xn, ξ) =
∑
n

E(θnψnih|xn, ξ) (10)

and ∑
n

xnih =
∑
n

E(ψnih|xn, ξ). (11)

The choice of a distribution of ability is not essential to the theory presented here;
the test for DIF will both apply to the parametric MML framework (see Bock
and Aitkin (1981)) and in the non-parametric MML framework (see De Leeuw
and Verhelst (1986), Follmann (1988)). As an example of the parametric context,
one might assume that the ability distribution is normal with parameters µy and
σy. Then

bn(µy(n)) = (θn − µy(n))σ
−2
y(n) (12)

and
bn(σy(n)) = −σ−1

y(n) + (θn − µy(n))
2σ−3

y(n), (13)
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so the likelihood equations are

µy =
1
Ny

∑
n|y

E(θn|xn, ξ) (14)

and
σ2

y =
1
Ny

∑
n|y

E(θ2
n|xn, ξ) − µ2

y, (15)

where the right-hand summations are over the respondents in the sample from
sub-population y, and Ny is the number of respondents in this sample. Below,
this framework will be used for introducing an LM test for DIF. But first the
principle of LM tests will be described.

4. Lagrange Multiplier Tests

Applications of LM tests to the framework of IRT have been described by
Glas and Verhelst (1995). The principle of the LM test (Aitchison and Silvey
(1958)), and the equivalent efficient-score test (Rao (1948)) can be summarized
as follows. The arrangement of the LM test is the same as the arrangement of the
likelihood-ratio test and the Wald test; all these three tests are used for testing
a special model against a more general alternative. Consider a null-hypothesis
about a model with parameters φ0. This model is a special case of a general
model with parameters φ. In the present case the special model is derived from
the general model by fixing one or more parameters to known constants. To
avoid problems beyond the scope of this paper, it will be assumed that these
parameters are not fixed at points on a boundary of the parameter space. Let
φ0 be partitioned as φ′0 = (φ′01, φ′02) = (φ′01, c), where c is a vector of postulated
constants. Let h(φ) be the partial derivatives of the log-likelihood of the general
model, so h(φ) = (∂/∂φ) lnL(φ). This vector of partial derivatives gauges the
change of the log-likelihood as a function of local changes in φ. Let H(φ, φ) be
defined as −(∂2/∂φ∂φ′) lnL(φ). Then the LM statistic is given by

LM = h(φ0)′ H(φ0, φ0)−1h(φ0). (16)

If (16) is evaluated using the ML estimate of φ01 and the postulated values of c,
it has an asymptotic chi-square distribution with degrees of freedom equal to the
number of parameters fixed.

An important computational aspect of the procedure is that at the point of
the ML estimates φ̂01 the free parameters have a partial derivative equal to zero.
Therefore, (16) can be computed as

LM(c) = h(c)′W−1h(c) (17)
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with
W = H(c, c) −H(c, φ̂01) H(φ̂01, φ̂01)−1 H(φ̂01, c). (18)

Note that H(φ̂01, φ̂01) also plays a role in the Newton-Raphson procedure for
solving the estimation equations and in computation of the observed information
matrix, so its inverse will generally by available at the end of the estimation
procedure anyway. Further, if the validity of the model of the null-hypothesis
is tested against various alternative models, the computational task is relieved
because the inverse of H(φ̂01, φ̂01) is already available and the order of W is equal
to the number of parameters fixed, which must be small to keep the interpretation
of the outcome tractable.

The interpretation of the outcome of the test is supported by observing that
the value of (17) depends on the magnitude of h(c), that is, on the first order
derivatives with respect to the parameters φ02 evaluated in c. If the absolute
values of these derivatives are large, the fixed parameters are bound to change
once they are set free, and the test is significant, that is, the special model is
rejected. If the absolute values of these derivatives are small, the fixed parameters
will probably show little change should they be set free, that is, the values at
which these parameters are fixed in the special model are adequate and the test
is not significant, that is, the special model is not rejected.

The rationale for using LM tests rather than likelihood ratio tests and Wald
tests is based on the fact that LM tests only need ML estimates of the parameters
of the special model. In many instances, the parameters of the general model will
be quite complicated to estimate. But even if this is not the case, this procedure
still has the advantage that many alternatives can be considered without needing
repeated estimation of all these alternatives. In the sequel it will be shown that
the hypothesis of DIF can be tested for one item at a time. If this was done using
a Wald or likelihood ratio test, this would require computing new estimates for
every tested item. Further, DIF is just one of the many possible violations
that may be of interest. Scanning the whole spectrum of violations of a non-
exponential family IRT model without repeated estimation presents a promising
direction for further research, but this is beyond the scope of the present paper.

5. Lagrange Multiplier Tests for DIF

In section 3, the case of two sub-populations labeled y = 0 and y = 1, was
considered. As a generalization of the model defined by (3) consider

Pr(Xih = 1|yn, θn, αi, βi, γi, δi)=
exp(αihθn − βih + yn(γihθn − δih))

1 +
∑mi

k=1 exp(αikθn − βik + yn(γikθn − δik))
.

(19)
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This model implies that the responses of the reference population are properly
described by (3), but that the responses of the focus population need additional
location parameters δih, additional discrimination parameters γih, or both. In
the dichotomous case, the first instance covers so-called uniform DIF, that is, a
shift of the item response curve for the focal population, while the latter two cases
are often labelled non-uniform DIF, that is, the item response curve for the focal
population is not only shifted, but it also intersects the item response curve of
the reference population (Mellenbergh (1982, 1983)). Application of the LM test
boils down to postulating a special model where γih and δih are equal to zero and
testing against the alternative that either γih, h = 1, . . . ,mi, δih, h = 1, . . . ,mi,
or both sets of parameters are non-zero.

The rest of this section will be devoted to the derivation and the inter-
pretation of the expressions for the LM statistic. As with the derivation of the
estimation equations, also for the derivation of the matrix of second order deriva-
tives the theory by Louis (1982) can be used. Using Glas (1992), it follows that
the matrix of second order derivatives for the special model,

H(ξ, ξ) =
∂2 lnL(ξ;X)

∂ξ∂ξ′
(20)

evaluated using MML estimates, is given by

H(ξ, ξ) =
∑
n

[E(Bn(ξ, ξ)|xn, ξ) + E(bn(ξ)bn(ξ)|xn, ξ)], (21)

where

Bn(ξ, ξ) =
∂2 ln Pr(xn, θn; ξ)

∂ξ∂ξ′
. (22)

Note that the expressions for the second of the two right-hand terms of (21) can
be directly derived from (8), (9), (12) and (13). The expressions for evaluating
Bn(ξ, ξ) for some item i are listed in Table 1. From (8) and (9) it is easily seen
that the expressions for Bn(ξ, ξ) involving two different items i and j are all equal
to zero.

Table 1. Expressions for Bn(ξ1, ξ2) for the paramters of item i

ξ1, ξ2 αih αig βih βig

αih −θ2nψnih(1 − ψnih) θ2nψnihψnig −θnψnih(1 − ψnih) θnψnihψnig

αig θ2nψnigψnih −θ2nψnig(1 − ψnig) θnψnigψnih −θnψnig(1 − ψnig)
βih −θnψnih(1 − ψnih) θnψnihψnig −ψnih(1 − ψnih) ψnihψnig

βig θnψnigψnih −θnψnig(1 − ψnig) ψnigψnih −ψnig(1 − ψnig)

Inserting these structural zero’s and the expressions of Table 1 into (21)
gives the expression for H(ξ, ξ) as far as the free item parameters are con-
cerned. Further, from (6) it follows that for any population parameter λy,
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y= 0, 1, Bn(αih,λy) =Bn(βih, λy) = 0. Continuing the example of a normal abil-
ity distribution with parameters µy and σy, it follows that Bn(µy, µy) = −σ−2

y ,

Bn(σy, σy)=σ−2
y −3(θn−µy)2σ−4

y , and Bn(µy, σy)=−2(θn−µy)σ−3
y . This concludes

the derivation of the expressions for H(ξ, ξ) for the free parameters in ξ.
The fixed parameters emerge from a general model, where it is assumed that

for the focal population additional location δih and discrimination parameters γih

have to be postulated. Under the null-hypothesis, these additional parameters
are fixed at zero. For these fixed parameters, it can easily be shown that

bn(γih) = ynθn(xnih − ψnih) (23)

and
bn(δih) = yn(ψnih − xnih), (24)

so the entries of the vector h(c) of the general LM statistic (17) are given by

h(γih) =
∑
n

ynxnihE(θn|xn, ξ) −
∑
n

ynE(θnψnih|xn, ξ) (25)

and
h(δih) =

∑
n

ynE(ψnih|xn, ξ) −
∑
n

ynxnih. (26)

Note that the right-hand side of (26) is the difference between the expected and
observed number of persons in the focal group scoring in category h of item i. So
for dichotomous items the right-hand side of (26) is the difference between the
observed number correct in the focal group and its expectation, computed using
parameter estimates obtained in both groups simultaneously. Since a test based
on (26) is aimed at the hypothesis that there is no specific additional difficulty
δih present, it should be sensitive to uniform DIF, that is, a shift of the item
response curve for the focal population. As a result of this shift, the observed
number correct score for item i in the focal group will not be properly predicted
if item parameter estimates obtained using both groups simultaneously will be
used. This inconsistency between the observed and the predicted number correct
score for item i in the focal group is exactly what is reflected in the difference at
the right hand side of (26). If this difference is too large, the entry h(δih) of h(c)
will be large and the test will be significant. Also (25) is a difference between the
expected and observed number of persons in the focal group scoring in category
h of item i, but here the individual observations and expectations are weighted
with θ. Therefore differences in the extremes of the ability range carry more
weight than differences in the middle of the ability range. This is in accordance
with the fact that the differences on the right-hand side of (25) arise when a test
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is derived for the hypothesis that the slope of the regression of the responses on
θ is the same for all groups.

For computation of the LM statistic, the matrix of second order derivatives
with respect to the fixed and free parameters must be evaluated. Using equa-
tion (19) the reader can easily verify that for the fixed parameters Bn(γih, γig) =
ynBn(αih, αig), Bn(γih, δig) = ynBn(αih, βig) and Bn(δih, δig) = ynBn(βih, βig). In
the same manner, it can also be derived that the second order derivatives with
respect to fixed and free parameters are equal to Bn(γih, αig) = ynBn(αih, αig),
Bn(γih, βig) = ynBn(αih, βig), Bn(δih, αig) = ynBn(βih, αig), and Bn(δih, βig) =
ynBn(βih, βig). Again, inserting these expressions into (23) gives the desired ex-
pressions for the elements of H(ξ, ξ).

6. Some Examples

In this section, various examples of LM tests for DIF will be presented.
These examples must be viewed as an illustration of the technique, not as an
exhaustive power study. The first example concerns data simulated with the
Rasch model for dichotomous items. The second example concerns a data set
that was recently analyzed using the OPLM in combination with CML estimates
and generalized Pearson tests (Glas and Verhelst (1995)). This example will be
re-analyzed here using MML estimates and LM tests, both for the OPLM and
the nominal response model.

Table 2. A simulated example for the Rasch model for dichotomous items
100 replications

True Parameters Estimated Parameters and LM Tests

i αi γi βi δi β̂i Se(β̂i) LM(γi) Pr Nr LM(δi) Pr Nr LM(γi, δi) Pr Nr

1 1.0 −1.0 −.95 .066 2.79 .32 20 2.61 .30 27 4.85 .27 27

2 1.0 −0.5 −.45 .063 1.94 .37 17 2.06 .38 19 3.70 .33 20

3 1.0 0.0 .05 .062 1.36 .45 9 1.95 .34 20 3.32 .36 21

4 1.0 0.5 .56 .062 1.59 .42 12 1.62 .38 11 3.82 .33 22

5 1.0 1.0 1.07 .064 1.38 .45 10 1.51 .42 12 3.87 .34 20

6 1.0 −1.0 −.96 .066 2.29 .36 21 1.66 .39 14 4.02 .31 25

7 1.0 0.0 0.0 0.5 .31 .062 3.05 .31 26 20.21 .00 100 21.83 .00 99

8 1.0 0.5 0.0 0.0 .04 .062 9.05 .02 87 2.86 .27 31 11.90 .02 91

9 1.0 0.5 0.0 0.5 .27 .062 7.58 .03 76 12.41 .00 97 23.31 .00 100

10 1.0 1.0 1.07 .064 1.39 .42 7 1.87 .36 16 4.19 .29 28

y µy µ̂y Se(µ̂y)

0 0.5 .60 .056

1 0.0 .00 .000

y σy σ̂y Se(σ̂y)

0 1.0 .99 .039

1 1.0 1.06 .040
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To illustrate the possibilities of the technique, a number of simulation stud-
ies were carried out using data simulated for a test of 10 dichotomous Rasch
items. The data for each replication consisted of 1000 response patterns for the
reference group and 1000 response patterns for the focal group. The responses
of the reference group were generated according to a Rasch model, the item pa-
rameters used are given in the second and fourth columns of Table 2. These
columns are labeled “αi” and “βi”, respectively. For the focal group, the items
1 through 6 and 10 were generated using the same Rasch model as for the ref-
erence group, but the responses for the items 7, 8 and 9 were generated using
(19); the additional discrimination parameter γi and difficulty δi are given in
the third and fifth columns of Table 2. The response patterns in the study were
generated using normal ability distributions. To keep the illustration realistic,
it was assumed that the means of the ability distribution of the reference group
and the ability distribution of the focal group differed: the actual values used
for generating the data are shown in the second column of the last four rows of
Table 2. The remaining columns of this table give results of analyses averaged
over 100 replications. For each replication, MML estimates and their standard
errors were computed. The means of the estimates of the item parameters are
shown in the sixth and seventh columns; these columns are labeled “β̂i” and
“Se(β̂i)”, respectively. The means of the estimates of the population parame-
ters are shown in the last two columns of the four bottom lines of Table 2. In
each replication, for each item three LM statistics were computed: LM(γi) to
test whether γi departed from zero, LM(δi) to test whether δi, departed from
zero, LM(γi, δi) to test whether γi and δi simultaneously departed from zero.
The results are given in the last nine columns of Table 2. The columns labeled
“LM(γi)”, “LM(δi)” and “LM(γi, δi)” contain the means of the test statistics,
the columns labels “Pr” contain the mean probability levels of the statistics and
the columns labeled “Nr” contain the number of times that the test was signif-
icant at the 5%-level. From the first columns of this table, it can be seen that
the responses to item 7 are subject to uniform DIF only, that is, δi �= 0, item 8 is
subject to non-uniform DIF only, that is, γi �= 0, and item 9 both shows uniform
and non-uniform DIF, so here both and δi �= 0 and γi �= 0. The results show that
the LM tests are indeed sensitive to the various forms of DIF imposed. For the
items 8 and 9, the mean significance probabilities of LM(γi) are below 0.02 and
0.03, respectively. Further, the test is significant at the 5%-level in 87 and 76
replications. The LM(δi) test for the items 7 and 9 has a probability level below
0.001 and 0.004 and the hypothesis of no uniform DIF is rejected at the 5%-level
in 100 and 97 percent of the cases. Finally, for all three items, LM(γi, δi) is
significant at the 5%-level in 99, 91 and 100 percent of the replications, the mean
significance probabilities are below 0.003, 0.024 and 0.001, respectively. The DIF
imposed on the three items does, of course, result in some bias in the parame-
ter estimates of the other items, which, in turn, results in an augmentation of
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the number of erroneously significant LM tests. However, the consequences of
this effect must not be exaggerated: it can be seen that the mean outcomes and
probability levels of the tests for the items not affected by DIF are substantially
different from the same indices for the items where the responses are subject to
DIF. Therefore, it is advisable to adopt a procedure where the items with the
most extreme outcomes are handled first, either by removing them or by mod-
elling the responses to these items further; an example will be given below. For
the present example, removing the items with DIF resulted in rejection rates of
the hypothesis of no DIF for the other items at the proper chance level.

The second example entails a data set recently analyzed by Glas and Verhelst
(1995) using the OPLM and generalized Pearson statistics. The objective of the
present analysis is to investigate whether the DIF detected by these two authors
will also be detected if LM tests are used, first in combination with the OPLM
and then using the nominal response model. The example comprises a part of an
examination of the business curriculum for the Dutch higher secondary education,
the HAVO level. The example was part of a larger study of gender based DIF in
examinations in secondary education. Since the objective, both here and in the
Glas and Verhelst (1995) paper, is to illustrate the statistical procedures rather
than to give an account of the findings with respect to gender based DIF, no
actual examples of items with DIF will be shown. For a detailed report of the
findings one is referred to Bügel and Glas (1991). The analyses were carried
out using a sample of 1000 boys and 1000 girls from the complete examination
population. For convenience of presentation the example is limited to 10 items.
The items are open ended questions, the number of score points that could be
obtained ranged from mi = 2 to mi = 3; the exact numbers of score points of
the items can be seen in Table 3, in the column labeled “h”.

In the first analysis, the OPLM was used. Glas and Verhelst (1995) have
fitted an OPLM to the data used here. The discrimination indices that proved
adequate are shown in Table 3 in the column labeled “ai”. These indices were
also used in the present analyses. MML estimates were computed under the
assumption of different normal ability distributions for the boys and the girls.
The results of this MML estimation procedure are given in the columns labeled
“β̂ih”, “Se(β̂ih)”, “µ̂y”, “Se(µ̂y)”, “σ̂y” and “Se(σ̂y)” under the heading “Analy-
sis 1”. Glas and Verhelst (1995) have pointed out that the adequacy of the chosen
scoring weights can be evaluated using an LM statistic for testing whether the
value at which αi is fixed is acceptable. This test, denoted by LM(αih), was
computed for every category within an item, that is, for every category h of item
i it was tested whether the hypothesis αih = hαi had to be rejected. The results
of this test are displayed in the columns labeled “LM(αih)” and “Prob”. It can
be seen that the items 3 and 9 do not fit the model. However, at this point
it is unclear whether this lack of fit is due to DIF, since it might well be the
case that the chosen discrimination index was inappropriate for boys and girls
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alike. Therefore, the LM statistics proposed in this paper were computed for
testing whether non-zero shift parameters δih, h = 1, . . . ,mi, had to be added
for the girls. The test was performed per item for all item category parameters
simultaneously, therefore the test is labeled LM(δi). The results are shown in
the columns labeled “LM(δi)” and “Prob” of Table 4. It can be seen that the
test is highly significant for the items 3 and 9.

Table 3. Parameter estimates and model fit for the OPLM

Analysis 1 Analysis 4
no items splitted items 3 and 9 splitted

i h ai β̂ih Se(β̂ih) LM(αih) Prob β̂ih Se(β̂ih) LM(αih) Prob
1 1 2 .27 .059 1.51 .219 .23 .060 .34 .544

2 .49 .072 .00 .977 .43 .074 .00 .957
2 1 3 −1.25 .069 .09 .758 −1.34 .069 1.10 .293

2 −.35 .098 2.01 .156 −.49 .100 2.11 .146
3 .24 .121 1.91 .167 .10 .124 1.77 .183

3 1 4 −.70 .072 1.42 .232 −1.48 .103 .01 .892
2 −.18 .105 6.96 .008 −1.14 .139 2.99 .083

4 1 2 .63 .066 2.48 .115 .59 .067 1.20 .273
2 .39 .073 .14 .708 .32 .074 .66 .414
3 1.86 .107 .00 .973 1.79 .109 .00 .977

5 1 2 −3.8 .073 .68 .406 −.44 .073 .00 .949
2 .36 .101 .65 .418 .26 .102 .82 .363
3 −1.12 .090 2.24 .134 −1.24 .092 1.64 .199

6 1 3 .00 .067 .02 .880 −.07 .068 .67 .412
2 .08 .087 .03 .854 −.02 .090 .07 .791

7 1 3 .60 .066 .81 .366 .54 .067 2.11 .146
2 .98 .089 1.96 .161 .90 .092 1.39 .237

8 1 3 −.58 .077 .41 .520 −.67 .078 .00 .976
2 −1.01 .094 .44 .505 −1.16 .096 .44 .507
3 −.55 .118 .19 .660 −.73 .122 .04 .839

9 1 4 .35 .074 8.47 .004 .04 .101 .73 .390
2 .49 .104 5.94 .015 −.01 .134 .31 .577

10 1 4 .33 .094 .72 .394 .21 .095 .17 .679
2 −.06 .121 .08 .771 −.27 .124 .18 .666
3 −1.00 .143 .66 .415 −1.25 .149 .81 .367

3∗ 1 4 −.22 .093 2.11 .146
2 .42 .129 1.33 .249

9∗ 1 2 .68 .088 2.92 .087
2 .54 .092 3.16 .075

y µ̂y Se(µ̂y) σ̂y Se(σ̂y) µ̂y Se(µ̂y) σ̂y Se(σ̂y)
1 .25 .015 0.35 .011 −0.08 .017 .34 .011
1 .00 .000 0.34 .012 0.00 .000 .35 .011
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Table 4. Testing DIF using the OPLM

Analysis 1 Analysis 2 Analysis 3 Analysis 4
no items splitted item 9 splitted item 3 splitted both splitted

i LM(δi) Prob LM(δi) Prob LM(δi) Prob LM(δi) Prob
1 6.04 .048 4.93 .085 3.54 .170 2.49 .287
2 5.66 .129 5.19 .158 2.32 .508 2.92 .404
3 100.98 .000 108.65 .000
4 7.04 .070 4.81 .186 4.79 .188 2.93 .401
5 4.80 .187 3.80 .283 3.44 .328 2.86 .414
6 3.89 .142 2.04 .360 2.34 .310 1.19 .551
7 4.57 .101 2.26 .323 1.79 .408 .21 .900
8 1.47 .687 .95 .813 3.24 .355 4.44 .218
9 15.15 .000 25.65 .000
10 10.63 .013 8.13 .043 3.58 .310 1.44 .696

However, the test is also significant at a 5% level for the items 1 and 10.
Interestingly, these results are similar to the results of the Glas and Verhelst
(1995) analysis: also there the items 3 and 9 were highly significant and the
items 1 and 10 moderately significant. As already noted above, the presence of
DIF can bias the estimates of the parameters of items that are not influenced by
DIF. Therefore, it is advisable to try to model DIF for the highly significant items
before drawing conclusions for the other items. The following additional analyses
were carried out. First, item 9 was entered into the analysis as a different item for
boys and girls, that is, it was assumed that the item parameters βih were different
for these two groups. However, from computation of the LM(αih) statistics it
had to be concluded that the scoring weights αi also differed across the two
groups; this result was also encountered in the Glas and Verhelst (1995) analysis.
Changing this weight from 4 to 2 resulted in non-significant LM(αih) tests. In
this analysis, also the LM(δi) statistics were computed, the results are shown
under the heading “Analysis 2” in Table 4. The LM(δi) statistic could not be
computed for item 9 since it was split into two so-called conceptual items. Note
that the test for item 1 is no longer significant at 5% level. Next, this procedure
was repeated first with item 3 split up into two conceptual items and then with
both the items 3 and 9 split up. The results are displayed under the heading
“Analysis 3” and “Analysis 4” in Table 4. It can be seen that in the last analysis
all LM(δi) statistics are non-significant. In Table 3, the parameter estimates and
the LM(αih) statistics for the last analysis are shown. Inspection shows that also
these last statistics are no longer significant at the 5% level. So after splitting up
the items 3 and 9 into different conceptual items for the two groups, an OPLM
could be fitted to the data. This result is consistent with the results of the Glas
and Verhelst (1995) analyses.
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Table 5. Parameter estimates for the nominal response model

Analysis 1 Analysis 4
no items splitted items 3 and 9 splitted

i h α̂ih Se(α̂ih) β̂ih Se(β̂ih) α̂ih Se(α̂ih) (β̂ih) Se(β̂ih)
1 1 1.99 .184 .26 .056 1.99 .177 .22 .056

2 4.21 .201 .51 .060 4.10 .199 .44 .061
2 1 2.77 .191 −1.23 .065 2.79 .182 −1.31 .065

2 6.27 .234 −.29 .082 6.28 .231 −.42 .082
3 8.95 .235 .26 .088 8.83 .237 .10 .089

3 1 3.53 .205 −.66 .060 3.61 .267 −1.41 .093
2 8.26 .263 −.06 .073 7.95 .384 −1.05 .109

4 1 1.99 .227 .63 .063 1.99 .218 .59 .063
2 3.94 .190 .38 .060 3.87 .186 .31 .060
3 6.23 .228 1.93 .087 6.16 .224 1.85 .088

5 1 1.71 .219 −.34 .070 1.77 .205 −.40 .071
2 4.25 .326 .37 .093 4.28 .316 .27 .094
3 6.19 .245 −1.10 .070 6.01 .242 −1.23 .070

6 1 2.96 .207 .00 .060 2.95 .200 −.06 .060
2 5.96 .21 .08 .064 5.82 .243 −.02 .064

7 1 3.27 .216 .62 .060 3.22 .211 .55 .060
2 5.82 .237 .93 .064 5.73 .240 .84 .065

8 1 2.91 .240 −.57 .073 2.96 .224 −.68 .073
2 6.12 .214 −1.02 .074 6.12 .210 −1.17 .075
3 9.11 .237 −.55 .082 8.99 .240 −.74 .083

9 1 3.43 .255 .39 .062 3.82 .352 .04 .090
2 7.33 .297 .49 .066 8.32 .434 .02 .097

10 1 3.75 .388 .35 .087 3.77 .357 .24 .087
2 8.10 .402 −.09 .089 8.16 .398 −.29 .090
3 12.30 .405 −1.00 .080 12.15 .414 −1.26 .081

3∗ 1 3.70 .292 −.21 .084
2 8.41 .362 .54 .104

9∗ 1 1.53 .274 .68 .084
2 4.42 .278 .62 .085

y µ̂y Se(µ̂y) σ̂y Se(σ̂y) µ̂y Se(µ̂y) σ̂y Se(σ̂y)
0 .23 .015 0.32 .010 −0.10 .016 .33 .010
1 .00 .000 0.33 .010 0.00 .000 .35 .011

Finally, it was investigated how the procedure would perform if the nominal
response model was used instead of the OPLM. From the previous analyses it
is already apparent that the OPLM fits the data quite well, so the nominal
response model should give results close to the previous results. In Table 5 the
parameter estimates are shown for two analyses with the same arrangement as
the analysis labeled “Analysis 1” and “Analysis 4” in Table 3. It can be seen
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that the estimates of the scoring weights αih are in accordance with the weights
αi postulated for the OPLM. Also the estimates of βih differ little between the
two models.

In Table 6 the values of the LM(γi, δi) statistics are shown for four analyses
comparable to the four analysis of Table 4. The LM(γi, δi) statistic is used to
test the simultaneous hypotheses that the parameters γih and δih, h = 1, . . . ,mi

are all equal to zero. It can be seen that also in the present case the items 3
and 9 show DIF. However, in this case the tests for the items 4 and 10 were also
significant in the first analysis. As with the previous analyses, this significant
result vanished when the items 3 and 9 were split into conceptual items for boys
and girls. Again, this shows that it is important to investigate the items one at
a time, starting with the items that seem to show the most serious DIF, because
DIF in one item may affect the estimates of the parameters of the other items in
such a way that the LM tests produce spurious results.

Table 6. Testing DIF using the nominal response model

Analysis 1 Analysis 2 Analysis 3 Analysis 4
no items splitted item 9 splited item 3 splitted both splitted

i LM(γi, δi) Prob LM(γi, δi) Prob LM(γi, δi) Prob LM(γi, δi) Prob
1 5.47 .242 7.15 .128 5.62 .229 2.83 .587
2 7.44 .114 7.11 .130 2.93 .570 3.66 .453
3 130.10 .000 141.90 .000
4 11.28 .024 6.28 .179 7.40 .116 4.37 .359
5 5.56 .234 4.48 .345 2.98 .560 2.35 .672
6 5.45 .244 1.61 .808 2.54 .638 .55 .969
7 5.72 .221 2.46 .652 2.78 .596 .32 .989
8 .37 .985 3.04 .552 3.17 .530 5.69 .224
9 18.93 .001 34.53 .00
10 13.43 .009 10.10 .039 3.69 .449 1.92 .751

7. Discussion

In the present paper a method for detection of DIF is proposed that is based
on a test statistic with a known asymptotical distribution. In the simulated ex-
ample, it is shown that the method cannot only be used to detect DIF, it can
also be used to distinguish between uniform and non-uniform DIF. The validity
of the procedure is further supported with a real data example, where the re-
sults obtained are in agreement with the results obtained using the OPLM, in
combination with CML estimates and generalized Pearson statistics. However,
a choice between the two methods is not straightforward. The LM procedure
can handle a wider array of IRT models than the procedure based on generalized
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Pearson statistics, which can only be applied in the framework of exponential
family IRT models. On the other hand, the latter procedure can be embedded
in a procedure where various sources of model violations can be systematically
evaluated, whereas evaluation methods of model fit for non-exponential family
IRT are still rather unsophisticated. This is the more serious because estimation
in non-exponential family IRT relies on assumptions about the ability distribu-
tion. These assumptions are an integral part of the model and should be tested
also. In summary, there is no clear answer to the question which method is to
be preferred.

In the present paper the LM method for detection of DIF is worked out for
the OPLM and the nominal response model with normal ability distributions.
However, the procedure does not only apply to these models, it also applies to
other unidimensional IRT models, such as for instance the models proposed by
Samejima (1969, 1972) and to multidimensional models such as the model pro-
posed by Glas (1992) and Adams and Wilson (1995). Further, the assumption of
one or more normal ability distributions can be replaced with the assumption of
the non-parametric MML method that the distribution of ability can be repre-
sented by one or more step-functions (De Leeuw and Verhelst (1986), Follmann
(1988)). These applications remain a topic for further research.
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