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Abstract: Latin hypercube designs have recently found wide applications both in

design of experiments and in numerical integration. An important property of this

class of designs is that they achieve uniformity in each univariate margin. In this

article we study the use of correlation criteria to select a Latin hypercube. We in-

troduce the polynomial canonical correlation of two vectors and argue that a design

which has a small polynomial canonical correlation for each pair of its columns is

preferred. An algorithm for reducing polynomial canonical correlations of a Latin

hypercube is developed. The implementation of the algorithm is discussed, and its

performance investigated. Comparison with Owen’s algorithm is also made.
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1. Introduction

Latin hypercube sampling was introduced by McKay, Conover and Beckman
(1979) for numerically evaluating a multiple integral. Its key property is strati-
fying each univariate margin, due to which it has also found wide applications in
computer experiments (Welch et al. (1992)). In this article, a Latin hypercube is
considered as an n×m matrix of which each column is a permutation of 1, . . . , n.
Each Latin hypercube enjoys the property of achieving uniformity in each of the
m univariate margins. Our definition of a Latin hypercube is slightly different
from that of a Latin hypercube sample and in fact is in agreement with that of
a lattice sample (Patterson (1954)).

In many applications, other properties besides univariate uniformity are also
required of a Latin hypercube. We then need to select a Latin hypercube using
some appropriate criterion. A design with its points uniformly scattered in the
design region is widely accepted especially in situations where little knowledge
is known about the function to be modeled. The maximin distance criterion
((Johnson, Moore and Ylvisaker (1990)) has the effect of spreading design points
uniformly in the design region and has been used for the selection of a Latin
hypercube by Morris and Mitchell (1992) and Tang (1994). Morris and Mitchell
approached the selection problem through an algorithm based on simulated an-
nealing while Tang provided a theoretical result for a special case. Another work
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along this line is that of Tang (1993), who constructed a subclass of Latin hyper-
cubes using orthogonal arrays. These orthogonal array based Latin hypercubes
achieve uniformity in each r-variate margin when an orthogonal array of strength
r is used for construction.

In this article, we examine the use of correlation criteria for selecting a Latin
hypercube. We introduce the polynomial canonical correlation of two vectors
using the idea of canonical correlation, and argue that a Latin hypercube design
with a small value of polynomial canonical correlation for each pair of its columns
is preferred. Iman and Conover (1982) and Owen (1994) have considered reducing
the (ordinary) correlations of a Latin hypercube. Main effect regression models
are employed to motivate our approach, although other arguments for preferring
Latin hypercubes with low correlations exist (Iman and Conover (1982), Owen
(1994)). An algorithm for reducing the polynomial canonical correlations of a
Latin hypercube is developed, its implementation discussed, and its performance
examined. Our algorithm has some bearing on Owen’s algorithm (1994).

We organize the article as follows. Section 2 introduces main effect regres-
sion models and polynomial canonical correlation. It is argued that a design with
small polynomial canonical correlations is preferred. In section 3, we develop an
algorithm for reducing the polynomial canonical correlations of a Latin hyper-
cube, and also discuss the computing costs and implementation of the algorithm.
The performance of the algorithm is investigated in Section 4. Some further
remarks on the algorithm are given in Section 5.

2. Main Effect Model and Polynomial Canonical Correlation

2.1. Main effect polynomial regression

Consider the following main effect model in which for each regressor variable
xj, its main effect can be represented by a polynomial of order q

y = β0 +
m∑

j=1

(βj1xj + · · · + βjqx
q
j) + ε. (1)

Here for simplicity the same order q is chosen and in fact our arguments apply
quite generally to the case where polynomials of different orders are considered.
Suppose n independent observations from the model are available. In the data
setting, model (1) can be expressed as

yi = β0 +
m∑

j=1

(βj1xij + · · · + βjqx
q
ij) + εi,

for i = 1, . . . , n. It is more convenient to work with the following centered version

yi = ȳ +
m∑

j=1

[
βj1(xij − x̄j) + · · · + βjq(x

q
ij − x̄q

j)
]
+ εi, (2)
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where ȳ =
∑n

i=1 yi/n, and x̄j =
∑n

i=1 xij/n, . . . , x̄q
j =

∑n
i=1 xq

ij/n. Corresponding
to the model in (2), the full design matrix is given by

(1,X1, . . . ,Xm), (3)

where 1 is the vector of all ones, and the sth column of the matrix Xj is given by
the vector (xs

1j − x̄s
j, . . . , x

s
nj − x̄s

j)
t, s = 1, . . . , q. Suppose that a Latin hypercube

design is used to estimate the main effects βj = (βj1, . . . , βjq)t, j = 1, . . . ,m. It is
desirable that the main effects βj , j = 1, . . . ,m, can be uncorrelatedly estimated.
(This does not exclude the possibility that the estimates of the components of
each βj be correlated.) We can achieve this if X1, . . . ,Xm are mutually orthogo-
nal, that is, (Xj1)

tXj2 = 0, for 1 ≤ j1 < j2 ≤ m, where 0 denotes the zero matrix
of order q. However, for a Latin hypercube design, the condition (Xj1)

tXj2 = 0,
for 1 ≤ j1 < j2 ≤ m, can almost never be strictly satisfied. Instead, we would
like to find a Latin hypercube such that for any j1 < j2, Xj1 and Xj2 are as
orthogonal as possible. Rather than working with the entire matrix (Xj1)

tXj2,
it is convenient to deal with a single numerical value that is able to assess the
degree of orthogonality of the two matrices, Xj1 and Xj2 . The idea of canonical
correlation will be employed to address this issue. Full details are given below.

2.2. Polynomial canonical correlation

We first introduce canonical correlation. For a detailed account, the reader
can refer to, for example, Jobson (1992), vol. II, pp 181-190. Given two sets of
vectors U = (U1, . . . , Up) and V = (V1, . . . , Vq), where Ui and Vj are all vectors
in Rn, the canonical correlation is the maximal correlation between linear com-
binations of U and linear combinations of V . That is, the canonical correlation
of U and V is defined to be

ρ(U, V ) = max
α1,α2

Cov(αt
1U,αt

2V )/[Var(αt
1U)]1/2[Var(αt

2V )]1/2.

It is clear that ρ(U, V ) = 0 implies that for any α1, α2, αt
1U and αt

2V are uncor-
related. Let SUV be the covariance matrix of U and V , and SUU , SV U and SV V

are similarly defined. Then there is a simple formula for calculating the ρ(U, V ).
In fact, ρ(U, V ) is the square root of the largest eigenvalue of the matrix (Jobson
1992))

S−1
UUSUV S−1

V V SV U . (4)

Now for two vectors U1 = (u1, . . . , un)t and V1 = (v1, . . . , vn)t, let Uj =
(uj

1, . . . , u
j
n)t and Vj = (vj

1, . . . , v
j
n)t, for j = 1, . . . , q. Then we refer to the

canonical correlation between U = (U1, . . . , Uq) and V = (V1, . . . , Vq) as the
polynomial canonical correlation of order q between the two vectors U1 and V1.
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Now consider the model in (2) and the full design matrix in (3). It is evident
that if the polynomial canonical correlation of order q between the two vectors
xj1 = (x1j1 , . . . , xnj1)

t and xj2 = (x1j2 , . . . , xnj2)
t is zero, then (Xj1)

tXj2 = 0.
Thus it is desirable to find a Latin hypercube in which for any two columns, the
polynomial canonical correlation of order q is minimized. It is the objective of
this paper to develop an algorithm to reduce the polynomial canonical correlation
of any pair of columns for a Latin hypercube design. Although the algorithm
naturally generalizes to polynomial canonical correlation of any order, we will
henceforth be concerned with polynomial canonical correlation of order 2, referred
to as quadratic canonical correlation. The notion of (ordinary) correlation is in
line with polynomial canonical correlation of order 1. In fact, for two vectors
the polynomial canonical correlation of order 1, henceforth referred to as linear
canonical correlation, is the absolute value of the (ordinary) correlation.

It is worth noting that though we consider the model where main effects are
represented by polynomials, the idea also applies to the case where each main
effect is a linear combination of other functions of the corresponding variable.

3. An Algorithm for Reducing Quadratic Canonical Correlations

3.1. The algorithm

Iman and Conover (1982) developed a method for reducing correlations of
a Latin hypercube using the Cholesky decomposition. Owen (1994) proposed
another method for this purpose using the Gram-Schmidt orthogonalization and
showed that a considerable improvement can be achieved by his method. Here we
describe Owen’s algorithm, based on which we develop our algorithm for reducing
the quadratic canonical correlations of a Latin hypercube. Let rank(x) be the
ranks of the components of the vector x. (Here “ranks” takes the meaning as
rank statistics.) The notation takeout(y, x) denotes the vector of residuals from
the simple linear regression y = β0 + β1x + ε. Then for a given initial Latin
hypercube L = (l1, . . . , lm), Owen’s algorithm proceeds by alternating between
the forward and backward steps in the following. The forward step is

• for j = 1, . . . ,m−1, and for k = j +1, . . . ,m, set lk =rank(takeout(lk , lj)).
The backward step is

• for j = m, . . . , 2, and for k = j − 1, . . . , 1, set lk =rank( takeout(lk , lj) ).
The central idea here is that for fixed j, k, we want to update lk such that
the new lk has a small correlation with lj . It is clear that rk = takeout(lk , lj)
has zero correlation with lj. As each column of a Latin hypercube must be a
permutation of 1, . . . , n, and the vector rk does not satisfy this requirement, we
take lk = rank(rk). The correlation between lk = rank(rk) and lj should be
small.
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The vector of residuals from the regression y = β0 +β1x+β2x
2 +ε is denoted

by Res(y, x). Using the idea of Owen’s algorithm, we propose our algorithm for
reducing the quadratic canonical correlations of a Latin hypercubes as follows.

Algorithm. For a given initial Latin hypercube L = (l1, . . . , lm), the algorithm
proceeds by alternating between the forward and backward steps, where the
forward step is

• for j = 1, . . . ,m − 1, and for k = j + 1, . . . ,m, set lk =rank( Res(lk, lj) ),
and the backward step is

• for j = m, . . . , 2, and for k = j − 1, . . . , 1, set lk =rank( Res(lk, lj) ).

3.2. Some remarks on our algorithm

Obviously, the linear canonical correlation of two vectors does not exceed
their quadratic canonical correlation. Therefore, if we reduce the quadratic
canonical correlations of a Latin hypercube design, then its linear canonical cor-
relations will automatically be controlled. Thus using our algorithm instead of
Owen’s is advantageous, at least in principle. Furthermore, our algorithm im-
proves on Owen’s only at a little extra computing cost. To see this, consider the
two algorithms for fixed j and k. Computing the residuals from the regression
y = β0 + β1x + ε and from the regression y = β0 + β1x + β2x

2 + ε requires
2n and 4n operations, respectively, which are both of order O(n). This is so
because for either regression the matrix (XtX)−1 in the least squares solution,
β̂ = (XtX)−1Xty, is the same for different j and k, depending only on n, and
thus can be computed in advance. (This will be explained below.) However,
either algorithm calls the subroutine “rank” requiring O(n log n) comparisons.
Thus the cost for computing the ranks is higher than computing the residuals
for whichever regression. For moderately large n, the difference in cost for com-
puting the residuals from the two regressions, relative to the cost for computing
the ranks, is negligible.

The actual implementation of our algorithm is rather easy. A subroutine
“rank” is written to compute the ranks for a vector. As mentioned in the
last paragraph, before starting the forward and backward steps, the computer
code first calculates the matrix (XtX)−1 in the least squares solution, β̂ =
(XtX)−1Xty, which will be used throughout the progression of the algorithm.
For the regression y = β0 + β1x + β2x

2 + ε in our algorithm, we have

XtX =




n
∑n

i=1 xi
∑n

i=1 x2
i∑n

i=1 xi
∑n

i=1 x2
i

∑n
i=1 x3

i∑n
i=1 x2

i

∑n
i=1 x3

i

∑n
i=1 x4

i


 .

Since x1, . . . , xn is a permutation of 1, . . . , n, we have
∑n

i=1 xi =
∑n

i=1 i = n(n +
1)/2,

∑n
i=1 x2

i =
∑n

i=1 i2 = n(n + 1)(2n + 1)/6, and so on. This illustrates
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why we can calculate (XtX)−1 in advance. The computer code is written in C
programming language, and is available to the reader upon request.

4. Performance of the Algorithm

In this section, we study the performance of our algorithm given in Section
3. To do this, we need a criterion for evaluating a Latin hypercube. For a Latin
hypercube with m columns L = (l1, . . . , lm), denote the quadratic canonical
correlation between column i and column j by ρij(L). Since q = 2, the matrix
in (4) of Section 2 is a square matrix of order 2. Therefore, its largest eigenvalue
and hence ρij(L) can easily be calculated. A sensible criterion for assessing L is

ρ(L) =
∑

1≤i<j≤m

ρij(L). (5)

More conservatively, we can also use the criterion φ(L) = maxi<j ρij(L). We
are aiming at selecting a Latin hypercube with small ρ or φ value. But in the
reminder of the paper, we only use ρ(L) in (5) to examine the performance of
the algorithm.

4.1. Convergence of the algorithm

Theoretical investigation of the convergence properties of the algorithm ap-
pears difficult and perhaps unrealistic. Instead, we examine the algorithm em-
pirically here. We have experimented extensively with the algorithm and the
following empirical behaviours have been observed. For convenience, the totality
of a forward step and its immediately following backward step is referred to as
one iteration. For an initial Latin hypercube, consider the sequence of designs
generated by the algorithm. After some iterations, we have found that one of
the following three situations must occur: (i) the same design always shows up,
which is the case especially when m is small relative to n, (ii) the ρ values of
the sequence of designs stabilize and fluctuate around a certain value, and (iii)
two designs show up alternatingly for each forward and backward step. How-
ever, situation (iii) rarely occurs. We will use the word “stabilize” to describe
all the three situations. In any case, the ρ values drop rapidly in the first several
iterations and almost always stabilize within ten iterations. Once the ρ values
have stabilized, we can then stop the algorithm, and pick the design with the
smallest ρ value. Typical behaviours of the sequence are graphically represented
in Figures 1 and 2, which correspond to situations (i) and (ii), respectively.
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Figure 1. The ρ values of the sequence of designs generated by the algorithm
for n = 20 and m = 3. In the plot, ρ(0) is the ρ value of the initial design,
chosen at random and ρ(2k − 1) and ρ(2k) are the ρ values of the designs
given by the forward and backward steps in the kth iteration, respectively.
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Figure 2. The ρ values of the sequence of designs generated by the algorithm
for n = 40 and m = 10. In the plot, the sequence ρ(k), k = 0, 1, . . . , 40 is
similarly defined as in Figure 1.

We note from Figure 1 that even for situation (i) the design with the smallest ρ

value is not necessarily the limiting design.
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4.2. Effect of initial designs

We have also studied empirically the effect of initial designs on the results of
the algorithm. To this end, several random initial Latin hypercubes are chosen
for fixed n and m, and the algorithm is then run. We have found that for small n
and m, initial designs have a large effect on the results. As n and m are getting
larger, the effect of using different initial designs tends to diminish. Figures 3
and 4 illustrate this phenomenon.

Thus it is advisable that several random initial designs be chosen for a small
problem, and then take the design with the smallest ρ value from the pool of
good designs given by different initial designs. This discovery is encouraging
rather than disturbing because we can afford to run the algorithm several times
for small values of n and m. For problems of small size, an extra loop will enable
the algorithm to cope with several random initial designs, provided that for each
initial design we run the algorithm for some specified number I of iterations.
Denote the number of initial designs that are to be used by P . Then the algorithm
can be modified to
1. for p = 1, . . . , P , do steps 2 through 4,
2. obtain an initial Latin hypercube randomly,
3. run the algorithm I iterations,
4. obtain the design Lp with the smallest ρ value for pth initial design,
5. finally, select the design L with the smallest ρ value from the ρ designs

L1, . . . , Lp.

k

rh
o

v
a
lu

e
s

0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3. The ρ values of the sequence of designs generated by the algorithm
for n = 25 and m = 4. Four initial Latin hypercubes are used here, which
are all randomly chosen. The large effect of using different initial designs is
evident.
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Figure 4. The ρ values of the sequence of designs generated by the algorithm
for n = 100 and m = 15. Five initial Latin hypercubes are used here, which
are all randomly chosen. The effect of using different initial designs is only
marginal.

Here choosing the number of iterations to be 10 is sufficient since the ρ values of
the sequence of designs almost always stablize within 10 iterations, as mentioned
in Section 4.1.

5. Concluding Remarks

Although the rationale for reducing the quadratic canonical correlations of
a Latin hypercube is motivated by considering the main effect polynomial model
in (1) of Section 2, using a Latin hypercube with small quadratic correlations
for its pairs of columns in numerical integration is also advantageous. This can
be demonstrated along the same line as Owen (1994) did for the case of linear
canonical correlation. Some details are given in Appendix A.

As briefly commented in Section 3, our algorithm is able to control the linear
canonical correlations of a Latin hypercube while reducing its quadratic canon-
ical correlations. However, Owen’s algorithm does not have any control on the
quadratic canonical correlations. Figure 5 illustrates this point. For the given
initial design in Figure 5(a), Owen’s algorithm produces a Latin hypercube in
Figure 5(b), which has linear and quadratic canonical correlations 0.033 and
0.977, respectively. This can be very disturbing when quadratic canonical cor-
relation is important for a problem. However, just in terms of reducing linear
canonical correlations, our experience indicates that Owen’s algorithm generally,
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though not always, does better than our algorithm. This is intuitively under-
standable because our algorithm is designed to achieve more. So, if small linear
canonical correlation is the only concern for a problem, using Owen’s algorithm
is recommended.
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Figure 5. The same initial Latin hypercube, given in (a), is used for both
Owen’s and our algorithm. Owen’s algorithm produces a Latin hypercube
in (b), which has linear and quadratic canonical correlations 0.033 and 0.97,
respectively. Our algorithm produces a Latin hypercube in (c) having linear
and quadratic canonical correlations 0.033 and 0.196, respectively.

Table 1. The ρ values of some Latin hypercubes constructed using the algo-
rithm. Those entries with 2m + 1 > n have been left blank. This is because
for q = 2 in model (1), the condition 2m + 1 ≤ n is necessary in order that
the parameters in the model can be estimated.

n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
m = 2 0.015 0.010 0.005 0.004 0.003 0.002
m = 3 0.066 0.039 0.022 0.012 0.008 0.006
m = 4 0.154 0.068 0.035 0.020 0.018 0.016
m = 5 0.109 0.055 0.035 0.021 0.019
m = 7 0.172 0.066 0.049 0.033 0.024
m = 9 0.235 0.089 0.060 0.042 0.032

m = 12 0.108 0.068 0.049 0.033
m = 15 0.133 0.069 0.050 0.034
m = 19 0.157 0.076 0.054 0.035
m = 23 0.170 0.086 0.055 0.036
m = 28 0.099 0.057 0.037
m = 35 0.112 0.061 0.037
m = 50 0.069 0.037
m = 70 0.080 0.038

m = 100 0.040
m = 150 0.048

We have constructed a list of Latin hypercubes using our algorithm, with
n ranging from 10 to 500, and m from 2 to 150. Table 1 gives some typical
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values of n and m for which Latin hypercubes have been constructed. In the
table, for each entry we also provide the corresponding ρ value, which is the
average of the quadratic canonical correlations of all pairs of columns of a design.
Several initial designs have been used for small n and m in the table. Table 1
shows the capability of the algorithm. Finally, we remark that on an IBM RISC
System/6000 workstation, one iteration of the algorithm runs approximately five
seconds for n = 100 and m = 20, and 20 minutes for n = 500 and m = 150.
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Appendix A: Numerical Integration Using Latin Hypercubes with
Small Quadratic Correlations

Let y = f(x), where y ∈ R and x = (x1, . . . , xm) ∈ Rm. The objective here
is to evaluate µ =

∫
[0,1]m f(x)dx. Suppose that x1, . . . ,xn are drawn IID from

Unif[0,1]m. Then the estimate of µ given by Monte Carlo is Ȳ = n−1 ∑n
i=1 f(xi).

Here we look at the situation where the n points x1, . . . ,xn are derived from the
n rows of a Latin hypercube sample L = (lij) via

xi = (xi1, . . . , xim) with xij = (lij − 0.5)/n. (A.1)

Let u(t) = t− 1/2 and w(t) = t2 − 1/3. Note that
∫ 1
0 u(t)dt =

∫ 1
0 w(t)dt = 0.

Now let v(t) = w(t) − cu(t) with c =
∫ 1
0 w(t)u(t)dt/

∫ 1
0 u2(t)dt. We see that∫ 1

0 v(t)dt = 0 and that
∫ 1
0 u(t)v(t)dt = 0. Let u1(t) = u(t)/[

∫ 1
0 u2(t)dt]1/2 and

v1(t) = v(t)/[
∫ 1
0 v2(t)dt]1/2. Then we have

∫ 1
0 u2

1(t)dt =
∫ 1
0 v2

1(t)dt = 1. For
notational brevity, we again use, in what follows, u(t) to denote u1(t) and v(t)
to denote v1(t). Define the residual function r(x) via

f(x) = µ +
m∑

j=1

αj(xj) +
∑
j<k

βjk(xj , xk) + r(x), (A.2)

where
αj(xj) =

∫
[f(x) − µ]

∏
k �=j

dxk

βjk(xj , xk) = ajku(xj)u(xk) + bjku(xj)v(xk) + cjkv(xj)u(xk) + djkv(xj)v(xk)
(A.3)
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with

ajk =
∫

[f(x) − µ]u(xj)u(xk)dx, bjk =
∫

[f(x) − µ]u(xj)v(xk)dx

cjk =
∫

[f(x) − µ]v(xj)u(xk)dx, djk =
∫

[f(x) − µ]v(xj)v(xk)dx.

We note that all the terms on the right hand side of equation (A.2) are orthogonal.
For each βjk(xj , xk), the four terms on the right hand side of equation (A.3) are
also orthogonal. Combining (A.1), (A.2), and (A.3), we obtain

Ȳ = µ +
m∑

j=1

n−1
n∑

j=1

αj(xij) +
∑
j<k

ajkAjk +
∑
j<k

(bjkBjk + cjkCjk + djkDjk)

+n−1
n∑

j=1

r(xi), (A.4)

where

Ajk = n−1
n∑

j=1

u(xij)u(xik) Bjk = n−1
n∑

i=1

u(xij)v(xik)

Cjk = n−1
n∑

j=1

v(xij)u(xik) Djk = n−1
n∑

i=1

v(xij)v(xik).

Note that the absolute value |Ajk| of Ajk is essentially the linear correlation
between column j and column k of the Latin hypercube L = (lij). As argued
in Owen (1994), if Ajk is op(n−1/2), then

∑
j<k ajkAjk in (A.4) is filtered out.

For the same reason, if the quadratic correlations among the columns of L are
op(n−1/2), then

∑
j<k(ajkAjk + bjkBjk + cjkCjk + djkDjk) in (A.4) is filtered

out. This is because |Ajk|, and similarly |Bjk|, |Cjk| and |Djk| cannot exceed the
quadratic correlation between column j and column k of the Latin hypercube
L = (lij).
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