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Abstract: The analysis of censored data presents several problems including infinite

maximum likelihood estimates and biased estimates. In this paper we consider

modifying the score equation for the maximum likelihood estimate so that the bias

is reduced, following Firth (1993). This method is considered for the case of right

censored failure time data having an exponential distribution and the means of the

observations are given by a log-linear model. For some situations the modified score

equations can be integrated and the method is equivalent to a penalised maximum

likelihood approach. We additionally show that the estimates are finite under weak

conditions. A small sample study indicates that the modified estimates have good

properties and have mean square error behaving like 1/n.
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1. Introduction

Several problems arise with the analysis of censored data including infinite
maximum likelihood estimates and biased estimates. An additional problem
concerns the degrees of freedom associated with censored observations: in one
extreme case observations can be practically completely missing while in the
other they can be almost uncensored. Here we follow an approach which is to
modify the maximum likelihood estimating equations so that the bias is reduced
and in some cases finite estimates are guaranteed. For some cases the modified
estimating equations can be used to obtain the estimates as maximisers of a
penalised likelihood. We extend the ideas of Firth (1993) to investigate the
adjustment to the likelihood score which reduces the bias of resulting estimates
in a sampling theory framework. When it exists the penalty function can be
interpreted as a Bayesian prior or, in a sampling framework, as available prior
data.

A motivation for penalising the likelihood might be to ensure finite estimates.
There is considerable literature on this topic. For example, it is well known
that infinite likelihood estimates can occur with discrete, censored and gener-
ally incomplete data (see, for example, Clarkson and Jennrich (1991), Geyer and
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Thompson (1992), Haberman (1974), Hamada and Tse (1988), Silvapulle and
Burridge (1986), Verbeek (1989)). (By an “infinite maximum likelihood esti-
mate”, it is meant in this paper that the likelihood takes a supremum by letting
a parameter tend to plus or minus infinity. Some authors refer to this situa-
tion by saying that the maximum likelihood estimate does not exist but Verbeek
(1989) considers the compact parameter space [−∞,∞]K allowing for formal
use of the expression “infinite maximum likelihood estimate”.) One approach
to the problem involves the idea of “extended maximum likelihood estimation”
due to Haberman (1974) and more recently Clarkson and Jennrich (1991). The
latter authors’ idea is to provide a method by which finite maximum likelihood
estimates can be found from a subset of the cases in the sample resulting then,
inevitably, in aliasing of effects or non-identifiability problems. Some param-
eters have infinite maximum likelihood estimates and for these parameters no
attempt is made to make any inferences. Pettitt (1996) illustrates some practi-
cal problems of interpretation and inference which arise if the ideas of extended
maximum likelihood estimation are applied to the analysis of fractional factorial
experiments with incomplete data. If one is fitting a sequence of nested models it
is then disconcerting that parameter estimates which are finite for smaller models
become infinite for larger models.

Specific results are given in this paper for right censored data modelled by
an exponential distribution. For estimation of the mean, it is found that the
bias reducing penalty function for censored identically distributed variables is
equivalent to knowing that one observation is less than a common censoring
point (whereas the information from a right censored observation is knowing
that it is greater than the censoring point). For the general log-linear model,
an estimating equation is found and it does not appear possible to define a
corresponding penalty function.

The results of a small simulation study are reported for the log-linear model.
Two estimates are considered: the maximum likelihood estimator and the new
bias corrected estimate. Generally it was found that the modified estimate had
substantially smaller bias and variance than the maximum likelihood estimate
when the latter existed. For those situations where there was a substantial chance
of obtaining an infinite maximum likelihood estimate, the modified estimate had
good bias properties irrespective of the existence or otherwise of the maximum
likelihood estimate.

We give an example of how the modified estimate can be used and suggest the
bootstrap can be used to find confidence intervals for the parameters of interest.

In Section 2 we derive the appropriate penalty function for right censored
data and Section 3 the results are extended to the log-linear regression model.
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In Section 4 simulation results are given and Section 5 gives an example. Finally
appendices give mathematical results on the derivation of the estimates and prove
finiteness.

2. Adjustments for Right Censored Data

The basic idea in Firth (1993) is to modify the score equation U(θ) =
∂
∂θ �(θ) = 0, where �(θ) is the log likelihood to give

U∗(θ) = U(θ) + A(θ), (1)

where A(θ) is chosen to remove the bias of O(1/n) of the maximum likelihood
estimate as determined by expanions in 1/n. Firth gives an expression for A(θ)
involving expected values of derivatives of the log likelihood (his equation (4.1)).
Additionally, A(θ) can be calculated using expected or observed information.
From equation (1), it may be possible to integrate with respect to θ to obtain a
modified log likelihood and therefore modified likelihood or penalised likelihood
function L∗(θ) = L(θ) p(θ), where p(θ) is the penalty function. For θ being the
canonical parameter of an exponential family distribution, the method leads to
the penalty function being equal to ‖i(θ)‖1/2, where i(θ) is the expected informa-
tion matrix, which is identical to Jeffreys’ invariant prior. Because the method
is based upon bias reduction, the penalty function is not invariant to non-linear
reparameterisation as a Bayesian prior would be.

Let us suppose we make observations upon independent Y1, . . . , Yn, each of
which is subject to right censoring at y = c, say, that is Type I censoring. We
assume also that each Y has an exponential distribution with mean µ. Condi-
tional on knowing which observations are censored and which are uncensored,
the likelihood is given by

Lc(µ) =
{ ∏

j:uncen

e−yj/µ

µ

}{ ∏
j:cen

e−c/µ
}
, (2)

and this would normally be the likelihood that would be considered (see, for
example, Cox and Oakes (1984)). However this formulation does not give a sam-
pling distribution for each Y suitable for bias calculations. Only the uncensored
observations have a distribution. We therefore consider a distribution for each Y

which is unconditional on knowing whether censoring has taken place, and this
is given by

dF (y) =




e−y/µ

µ
dy 0 < y < c

e−y/µ y = c,

(3)
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giving L(µ) =
∏n

j=1 dF (yj), which simplifies to (2) when the censoring informa-
tion is known.

Under this distribution the mean of Y is µ{1−e−c/µ} rather than µ when no
censoring is considered. Such distributions are considered in estimating equation
approaches to censored data (see, for example, Buckley and James (1979)).

We note that the maximum likelihood estimate derived from equation (2) is
µ̂ =

∑n
i=1 yi/nu, where nu is the number of uncensored observations and when

nu ≥ 1. When nu = 0 then µ̂ = ∞. The event nu = 0 occurs with probability
e−nc/µ under model (3). A consistent estimate, µ̃, of µ is given by solving the
estimating equation (which only implicitly uses the censoring information)

n∑
i=1

[
yi − µ

{
1 − e−c/µ

}]
= 0

or ȳ = µ{1 − e−c/µ}.
Provided ȳ < c the solution µ̃ is finite but for ȳ → c, µ̃ → ∞. Although

the probability of obtaining infinite estimates µ̂ and µ̃ is e−nc/µ, which becomes
negligible for reasonable sample sizes and obviously goes to zero for n → ∞, there
is a considerable chance of obtaining infinite estimates if one were considering
several small samples.

The bias reduction idea can be first applied to the parameter µ. Routine
calculations then give the modified score function

U∗(µ) = U(µ) − c

µ2{ec/µ − 1} (4)

using the expected information. Integration of (4) then gives

L∗(µ) = L(µ)
{
1 − e−c/µ

}
. (5)

The penalty function 1 − e−c/µ corresponds to the information that one obser-
vation is known to be in the interval (0, c), whereas knowing an observation is
right censored is equivalent to knowing that it lies in (c,∞).

If we were to interpret the function 1 − e−c/µ as a prior density for µ then
this prior is improper since as µ → ∞ the function behaves like 1/µ. But the
function does have interpretation as providing prior sample information, in the
sense, as stated above, that 1−e−c/µ is the likelihood of obtaining an observation
in (0, c). So an alternative way of interpreting Firth’s idea within the sampling
context is that of thinking of the penalty function (when it exists) introducing
prior imaginary sample information with a corresponding likelihood.

The modified likelihood L∗(µ), equation (5), can be seen, when all obser-
vations are censored (the situation that gives rise to µ̂ = ∞) to be equiva-
lent to the likelihood for n + 1 binary observation Z with pr(Z = 0) = e−c/µ,
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pr(Z = 1) = 1 − e−c/µ, and there is one 0 observation and n observations equal
to 1.

Following earlier work on extended maximum likelihood, for example Clark-
son and Jennrich (1991), it is straightforward to show L∗(µ) takes its maximum
for µ < ∞.

To demonstrate the dependence on the parameterisation consider now θ =
− log µ, a natural parameterisation for extension to incorporate covariates.

Straightforward application of Firth’s method to this model now gives

U∗(θ) = U(θ) − 1
2

+
ceθ

eceθ − 1
.

Integrating this and exponentiating then gives the modified likelihood as L∗(θ) =
L(θ)e−θ/2(1 − e−ceθ

) with penalty function

p(θ) = e−θ/2(1 − e−ceθ
). (6)

The penalty function p(θ), equation (6), is equivalent to the additional informa-
tion that one observation is known to be in the interval (0, c) and the measure
e−θ/2 for −∞ < θ < ∞ which has no direct sample interpretation.

The likelihood L(θ) achieves a supremum as θ → −∞ when all cases are
right censored so that the behaviour of p(θ) as θ → −∞ determines whether
L∗(θ) can take a supremum as θ → −∞. Now, as θ → −∞, p(θ) ∼ eθ/2 so that,
as L(θ) is bounded above, L∗(θ) → 0 as θ → −∞ and achieves a finite maximum
for all possible data. The penalty function p(θ) is bounded above and tends to 0
for ‖θ‖ → ∞.

When p(θ) is interpreted as an unnormalised prior density for θ we find the
normalising constant is given by

∫
e−θ/2

(
1 − e−ceθ

)
dθ = 2

{
ecex−x/2 − e−x/2 +

1
2
πcφ(

√
2cex)

}
,

where φ is the standard normal density. This gives the normalised density as
p(θ)/(2πc1/2).

3. Estimation and Extension for Log Linear Models

3.1. Regression model

Here we consider the more practically important and more interesting log-
linear model for µi with log µi = −xT

i β. Here β has p components, β1, . . . , βp.
Now the score for βr (r = 1, . . . , p) is given by

Ur =
∑

i

(
1 − δi − yi

µi

)
xir (7)
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with δi defined to be 0 if 0 < y < c and 1 if y = c; also log µi = −xT
i β. Using

expected information, the modified score U∗
r is given by U∗

r = Ur + AE
r where

AE
r =

1
n

∑
i

∑
u,v

κu,vxirxiuxiv

{ c

µiec/µi
− 1

2
(1 − e−c/µi)

}
, (8)

and κu,v is the inverse of the expected information matrix κu,v which is given by
1/n(XT WX) in matrix notation. Here W is the diagonal matrix with diagonal
term (1 − e−c/µi) and X is the n by p model matrix {xir}. Using ideas similar
to Firth (1993), Section 3, let hi be the ith diagonal element of the (expected)
‘hat’ matrix H = W 1/2X(XT WX)−1XT W 1/2; then AE

r can be written as (see
Appendix for more details)

AE
r =

∑
i

hi

{ c

µi(ec/µi − 1)
− 1

2

}
xir, (9)

so that U∗
r is given by

U∗
r =

∑
i

[
(1 − δi − hi

2
) − 1

µi
{yi − c hi

ec/µi − 1
}
]
xir.

Comparing Ur with U∗
r , yi is adjusted by the amount

c hi

ec/µi − 1

and δi by the amount hi/2.
As is well known, the score equations Ur = 0, r = 1, . . . , p can be solved by

iteratively reweighted least squares by taking adjusted dependent variable

(1 − δi − yi/µi)
(1 − e−c/µi)

and weight matrix W with diagonal element 1 − e−c/µi .
The equation U∗

r = 0, r = 1, . . . , p, can be solved for β by applying Newton-
Raphson but hi is assumed to be constant, independent of β. Details are given
later in Section 4.1.

3.2. Finite estimates

Two specific cases of the log-linear model can be investigated simply. These
are (i) the situation where all observations have the same mean and dealt with
earlier, and (ii) the situation where all observations have different means or,
equivalently, p = n and the model matrix X is of full rank, equal to n. For the
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latter case where all observations have different means − log µj = θj the penalty
function p(θ) is the product of functions given by equation (6), namely

p(θ) =
n∏

j=1

e−θj/2(1 − e−ceθ
j ).

Since the deviation of the adjustment is based on bias and bias is invariant under
linear transformation, β∗ is finite if and only if the θ∗j are finite.

There remains the task of demonstrating that the estimate β∗ is finite always
for 1 < p < n. This is considered in detail in Appendix 2. However some
preliminary remarks are given here. Consider the penalised likelihood L(β) p(β).
Then if log p(β) is strictly concave and unbounded below as |β| → ∞, and �(β) is
strictly concave and bounded above then it follows that the maximum penalised
likelihood estimate β∗ exists and is unique. Now p(β) is strictly concave if

∂2

∂β′∂β
log p(β) < 0

for all possible β. If p(β) exists then

∂2

∂βs∂βr
log p(β) =

∂

∂βS
AE

r

and this matrix is symmetric.
Upon differentiation of AE

r with respect to βS we obtain a quantity such
that, in general,

∂AE
r

∂βs
�= ∂AE

s

∂βr
. (10)

The inequality (10) then implies that there is no function p(β) which satisfies

AE
r =

∂

∂βr
log p(β), r = 1, . . . , p.

The situation is analogous to the non-existence of the quasi-likelihood function
(see McCullagh and Nelder (1989), Section 9.3.2, for example). Further details
are considered in the Appendix 2 where finiteness is proved.

4. Computational Details and Small Sample Study

4.1. Introduction

We carried out a small simulation study to investigate the small sample
properties of the modified estimate. The theoretical development is based on
asymptotic series expansions in 1/n and needs to be validated for small samples.
Additionally our theoretical developments provide no information on the variance
of the estimates. Two simple log-linear models were investigated. These were
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(i) regression model, log µi = β1 + β2xi with xi = 2i−2n−1
2n−1 , i = 1, . . . , n

(ii) factorial model, log µi = β1 + β2x2i + β3x3i, with x2 = (0, 0, 1, 1), x3 =
(0, 1, 0, 1), i = 1, . . . , n.
Observations yi were generated to have an exponential distribution with

mean µi and censored at a fixed point e−c. For the regression model n was
taken to be 5, 10, 20. For the factorial model n was taken to be 4 and the design
replicated twice to produce the n = 8 design. The censoring point e−c was chosen
to take the values 0.01, 0.1, 0.2 and 0.5 for all choices of n and model. The true
value of (β1, β2) was (0, 1) for the regression model and that of (β1, β2, β3) for
the factorial model was (0, 0, 0).

For each generated sample it was possible that the maximum likelihood esti-
mate could be infinite and this possibility was tested for by using the technique
of Hamada and Tse (1989) implemented in their FORTRAN code. In the case of
an infinite maximum likelihood estimate, the modified estimate was found and
the cases carefully investigated to check convergence of the modified estimate.
The two estimates can be compared for bias and variance when the maximum
likelihood estimate is finite, otherwise we just consider the bias and variance of
the modified estimate.

To find β∗ we investigated two schemes. First, we used an iterative scheme
based on applying Newton-Raphson to U∗

r = 0, as in the standard approach to
solving Ur = 0 to give the maximum likelihood estimates, with the exception that
hi, the ‘hat’ matrix element, is assumed to vary slowly with β, that is ∂

∂β hi = 0.
The second approach is to solve U∗

r = 0 using a standard root finding algo-
rithm such as the NAG Fortran Library Routine C05NBF (The Numerical Al-
gorithms Group Limited (1993)) which uses an adjustment to the Powell (1970)
hybrid method for solving a system of non-linear equations fi(x1, . . . , xn) = 0,
i = 1, . . . , n.

4.2. Results

The results of the limited simulation study are given in Tables 1 and 2.
Where infinite maximum likelihood estimates have been obtained, the bias, vari-
ance and mean square error of the maximum likelihood estimates, β̂ and modified
estimates, β∗ are given conditional on the maximum likelihood estimates being
finite. However, for β∗ we can give the simulation summary statistics for all
cases, whether or not the maximum likelihood estimate is finite. (That is, un-
conditionally on what property the maximum likelihood estimate has.) These
estimates are denoted by β̂(cond’l), β∗(cond’l), and β∗(uncond’l).
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Table 2. Bias, variance and MSE for parameter estimates, conditional and
unconditional, for the factorial model.

n = 4 n = 8

exp(−c) pr(∞) Bias Var MSE pr(∞) Bias Var MSE

0.01 0.0005 β̂1(cond’l) 0.373 1.226 1.365 0 β̂1 0.192 0.496 0.533

β∗
1 (cond’l) 0.029 0.821 0.821 β∗

1 0.027 0.421 0.421

β∗
1 (uncond’l) 0.028 0.824 0.825

β̂2(cond’l) 0.010 1.698 1.698 β̂2 −0.002 0.683 0.683

β∗
2 (cond’l) 0.009 1.038 1.038 β∗

2 −0.003 0.566 0.566

β∗
2 (uncond’l) 0.009 1.041 1.041

β̂3(cond’l) 0.006 1.720 1.720 β̂3 0.007 0.668 0.668

β∗
3 (cond’l) 0.004 1.049 1.049 β∗

3 0.006 0.553 0.553

β∗
3 (uncond’l) 0.005 1.052 1.052

0.1 0.036 β̂1(cond’l) 0.326 1.410 1.516 0.0005 β̂1(cond’l) 0.129 0.612 0.629

β∗
1 (cond’l) 0.116 0.829 0.843 β∗

1 (cond’l) 0.036 0.456 0.458

β∗
1 (uncond’l) 0.066 0.985 0.989 β∗

1 (uncond’l) 0.035 0.460 0.461

β̂2(cond’l) 0.020 2.033 2.033 β̂2(cond’l) 0.001 0.849 0.849

β∗
2 (cond’l) 0.012 1.124 1.124 β∗

2 (cond’l) 0.000 0.622 0.622

β∗
2 (uncond’l) 0.020 1.309 1.310 β∗

2 (uncond’l) 0.001 0.625 0.625

β̂3(cond’l) 0.007 2.025 2.025 β̂3(cond’l) −0.010 0.835 0.835

β∗
3 (cond’l) 0.005 1.126 1.126 β∗

3 (cond’l) −0.008 0.611 0.611

β∗
3 (uncond’l) 0.007 1.306 1.306 β∗

3 (uncond’l) −0.008 0.614 0.615

0.2 0.1282 β̂1(cond’l) 0.339 1.485 1.599 0.0068 β̂1(cond’l) 0.072 0.748 0.753

β∗
1 (cond’l) 0.206 0.843 0.885 β∗

1 (cond’l) 0.039 0.523 0.525

β∗
1 (uncond’l) 0.062 1.226 1.230 β∗

1 (uncond’l) 0.029 0.553 0.553

β̂2(cond’l) 0.016 2.070 2.070 β̂2(cond’l) 0.001 1.002 1.002

β∗
2 (cond’l) 0.012 1.133 1.133 β∗

2 (cond’l) 0.000 0.690 0.690

β∗
2 (uncond’l) 0.001 1.651 1.651 β∗

2 (uncond’l) 0.005 0.718 0.717

β̂3(cond’l) 0.011 2.096 2.096 β̂3(cond’l) 0.005 1.026 1.026

β∗
3 (cond’l) 0.005 1.147 1.147 β∗

3 (cond’l) 0.004 0.706 0.706

β∗
3 (uncond’l) 0.012 1.626 1.626 β∗

3 (uncond’l) 0.002 0.737 0.736

0.5 0.5586 β̂1(cond’l) 0.659 1.274 1.708 0.1907 β̂1(cond’l) 0.022 0.803 0.804

β∗
1 (cond’l) 0.652 0.679 1.104 β∗

1 (cond’l) 0.160 0.488 0.514

β∗
1 (uncond’l) 0.055 1.715 1.718 β∗

1 (uncond’l) −0.013 0.824 0.824

β̂2(cond’l) −0.015 1.867 1.867 β̂2(cond’l) 0.028 1.223 1.223

β∗
2 (cond’l) −0.008 0.959 0.959 β∗

2 (cond’l) 0.023 0.752 0.752

β∗
2 (uncond’l) 0.002 2.625 2.625 β∗

2 (uncond’l) 0.005 1.182 1.182

β̂3(cond’l) −0.024 1.783 1.784 β̂3(cond’l) 0.004 1.233 1.233

β∗
3 (cond’l) −0.018 0.914 0.914 β∗

3 (cond’l) 0.003 0.758 0.758

β∗
3 (uncond’l) 0.018 2.593 2.593 β∗

3 (uncond’l) −0.006 1.208 1.208
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The results show for the regression model that for negligible censoring (e−c =
0.01), the modified estimates have negligible bias while the maximum likelihood
estimates have substantially more bias. Surprisingly, as Firth’s (1993) theory
predicts otherwise, the variance of the modified estimate is less than that of the
maximum likelihood estimate, but this difference decreases, as expected, with
increasing n. Generally for larger values of e−c = 0.1, 0.2 and 0.5, the modified
estimate is better than the maximum likelihood estimate in terms of both bias
and variance when samples are restricted to those cases where the maximum
likelihood estimate is finite. A curious exception is the case n = 5 and e−c = 0.5
when there is about a 27 percent probability the maximum likelihood is infinite,
the maximum likelihood estimate of the intercept, β1 has smaller bias than the
modified estimate, but unconditionally, the modified estimate has negligible bias,
demonstrating the effectiveness of the bias correction. Of course, unconditionally
the maximum likelihood estimate has infinite bias and variance. Unexpectedly,
when the conditional modified estimate is compared with the unconditional mod-
ified estimate it is sometimes observed that the latter has smaller bias than the
former, particularly when the probability of infinite estimates is high, whereas
the variance of the former is always smaller. This is a finite sample property that
the theory appears not to be able to explain, as asymptotically, infinite maximum
likelihood estimates occur with zero probability.

Overall, the modified estimate has substantially smaller bias and variance
than the maximum likelihood estimate, but this advantage, as predicted by the
theory, reduces as the sample size increases. The conclusion is that the modifi-
cation is worthwhile.

For the factorial model with n = 4 the modified estimate is better in terms
of bias and variance than the maximum likelihood estimate. For the main effects
parameters β2 and β3, bias is negligible for the two estimates but the modified
estimate has somewhat smaller variance. For the intercept parameter β1, bias
is substantial for both estimates but the modified estimate has smaller bias and
variance. For n = 8, the situation is similar to that for n = 4 but as expected
biases and variances are relatively smaller. This is clearly shown in Figure 1
which shows the values of the beta estimates of β1, β2, and β3 obtained under
the original and modified score for n = 8, and e−c = 0.5. Again the exception
arises in the case n = 8 and e−c = 0.5 when the maximum likelihood estimate
of the intercept β1, has smaller bias (but larger variance) than the modified
estimate, but the unconditional modified estimate has negligible bias.

Implementation of the root finding procedure to solve U∗
r = 0 resulted in

only two cases (n = 10, e−c = 0.2 and 0.5), over all 200 000 simulations where
a solution could not be found. These were extreme samples where the final
observation was the only uncensored one, and this close to zero. Similar situations
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arose where initial efforts did not reveal a solution, and each was thoroughly
examined to eventually reveal convergence. On incrementing the uncensored
observation, thereby producing a new sample each time, and attempting to solve
U∗

r = 0 for this sample, a value of the uncensored observation was eventually
found for which the score could be resolved. By starting the problematic cases
at this solution, the root finding procedure converged to a reasonable solution.
For the two remaining unresolved cases, the weights became zero (according to
machine precision) and iteration could not continue due to division by zero. This
was considered to be a problem with machine precision, rather than a problem
with the theory. Using weighted least square software, the number of cases
unresolved was considerably higher, due to reduced precision. Both approaches
otherwise produced comparable estimates.

(a) Original Score
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Figure 1. Count of beta estimates from the (a) original score and (b) modified
score for n = 8 and e−c = 0.5.

In general it appears that the modified estimate has good small sample prop-
erties and its mean square error behaves like 1/n, whereas the maximum likeli-
hood estimate depends upon its finiteness for reasonable properties.

5. Illustration

To illustrate the method, we consider the 29−5 fractional design and censor-
ing pattern presented by Hamada and Tse (1992) in their Table 2 (see also Table
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3 of this paper). For the purpose of illustrating the techniques presented in this
paper, we simulate a sample of size 16 from the unit exponential distribution.
Although Hamada and Tse (1992) assume an exponential regression model, we
require the exponential assumption to be true in order to compare the properties
of our estimators. The censoring pattern is kept since the censoring and design
configuration determine the finiteness, or otherwise, of the maximum likelihood
estimates (Hamada and Tse (1992)). To obtain the censoring pattern, the largest
four observations generated from the unit exponential distribution are associated
with the censoring cases (in the order they were generated), and the remainder
with the uncensored cases (again in the order they were generated). The censor-
ing point is then the mid-point between the fourth and fifth largest observations,
in this case c = 1.547. The censored data set can be found in Table 3.

Table 3. Design and data for the example of Hamada and Tse (1992)

Design
Data Censored A B C D E F G H I
1.547 1 1 1 1 1 1 1 1 1 1
0.229 0 1 1 1 −1 1 −1 −1 −1 −1
1.488 0 1 1 −1 1 −1 −1 −1 1 −1
1.547 1 1 1 −1 −1 −1 1 1 −1 1
0.991 0 1 −1 1 1 −1 −1 1 −1 −1
1.547 1 1 −1 1 −1 −1 1 −1 1 1
1.547 1 1 −1 −1 1 1 1 −1 −1 1
1.491 0 1 −1 −1 −1 1 −1 1 1 −1
0.129 0 −1 1 1 1 −1 1 −1 −1 −1
0.838 0 −1 1 1 −1 −1 −1 1 1 1
0.553 0 −1 1 −1 1 1 −1 1 −1 1
0.046 0 −1 1 −1 −1 1 1 −1 1 −1
0.471 0 −1 −1 1 1 1 −1 −1 1 1
0.448 0 −1 −1 1 −1 1 1 1 −1 −1
0.374 0 −1 −1 −1 1 −1 1 1 1 −1
0.127 0 −1 −1 −1 −1 −1 −1 −1 −1 1

When a main effects model is fitted to the data using the log-linear model
of Section 3.1 then infinite estimates result for the intercept and effects A, F and
I. The modified estimates of Section 3.1 are given by the values in Table 4.

In reality the infinite estimates are not reported as such in any statistical
package but just large and negative and the value depending upon any stopping
criteria. Therefore it is often difficult to detect infinite estimates from the result-
ing estimates. The corresponding modified estimates for the effects with infinite
maximum likelihood estimates are negative and have similar values, except for
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A. The maximum likelihood and modified estimates for other effects are similar.
In Figure 2 we have plotted the data values against the two levels for each of the
factors A, F and I. Taking into account the log-linear model used, this explains
in part why the A effect is larger in absolute size than the I effect, and, in turn,
larger than the F effect.

Table 4. Maximum likelihood and modified estimates for the factorial data
of Table 3 using a log-linear model. Parametric simulation inferences based
on 100 samples are also given.

Parametric Simulation Results
Estimates 95% confidence

Effect MLE Modified Mean S.E. limit
constant −∞ −0.1717 −0.0851 0.3074 −0.6777 0.4485

A −∞ −1.0627 −1.0184 0.3104 −1.5840 −0.4420
B 0.0435 0.0342 −0.0012 0.3474 −0.8117 0.6155
C −0.1489 −0.0720 −0.1290 0.3681 −0.7250 0.6929
D −0.2564 −0.1776 −0.1454 0.3219 −0.8382 0.4093
E 0.0316 0.0094 −0.0089 0.3197 −0.5914 0.5824
F −∞ −0.4653 −0.4725 0.3548 −1.2047 0.1107
G −0.5556 −0.3865 −0.3446 0.3384 −1.0210 0.3813
H −0.2834 −0.2293 −0.1616 0.3485 −0.8040 0.6029
I −∞ −0.7758 −0.6990 0.3170 −1.3908 −0.2042
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Figure 2. Plot of response on y-axis against factor levels for A, F and I. Note:
X denotes uncensored, O censored; y-values are jittered.

In order to obtain standard errors for these estimates we could derive these
from the information matrix evaluated at the modified estimates, rather than the
infinite maximum likelihood estimate. However, there does not appear to be any



BIAS CORRECTION FOR CENSORED DATA 955

theoretical reason for this and it would appear better to use a method based on
the bootstrap.

A parametric method is to generate residuals ε from the standard exponential
distribution, set y∗ = εµ̂ and censor at c if y∗ > c. This was done and 95 percent
confidence intervals are given in Table 4 using 100 samples. The true values of the
parameters are all zero and there are approximately ten uncorrelated estimates.
We find two of the confidence intervals do not include zero being for effects A
and I which both have infinite maximum likelihood estimates. The constant and
effect F have infinite maximum likelihood estimates but the confidence interval
includes zero. This demonstrates that some sensible inference can be made using
the methods of this paper where maximum likelihood breaks down.

6. Further Comments

Some obvious extensions of the results of Sections 2 and 3 include one to
the Weibull distribution and the second to right and left censored data from
accelerated failure time studies. Another extension, which is trivial to implement
for the results of Section 3.1, is to the case where each individual observation
is censored at a different value ci, say. This would enable the results to be
extended to the situation of random censoring provided the censoring did not
yield information about the parameters of the lifetime variable (see, for example
Cox and Oakes (1984), Section 1.3).

We have used the expected, rather than observed, information form of the
modified score equation. Firth (1993) shows that by using the observed infor-
mation form second order efficiency is improved. The observed information ad-
justment involves off-diagonal elements of the ‘hat’ matrix H and it is somewhat
more computationally intensive to obtain β∗ with the observed version.

The methods are motivated by sampling theory ideas and reduction in bias
and we also expect to produce finite estimates under all circumstances. An
alternative approach would be Bayesian where a prior distribution is introduced
(see Dellaportas and Smith (1993)). Provided the prior is strictly log concave,
posterior distributions which are proper result and have finite modes. However,
for any data set where the maximum likelihood estimates are infinite the posterior
distributions for those parameters would be very sensitive to prior distributions
as the likelihood is essentially flat over a wide interval of values. The approach
here does allow for objective non-informative prior information to be introduced
at least in modifying the score equation and hence finding a posterior mode.

The main motivation of this paper is to find a reasonable method of estima-
tion when infinite maximum likelihood estimates occur with censored data and
the modified estimates are shown to have excellent bias reduction and variance
properties in small samples.
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Appendix 1.

We give explicit results for regression model considered in Section 3. The
adjustment is given by Firth (1993), Section 4.1. For the log-linear model write
the loglikehood �(β) as follows:

�(β) =
n∑

i=1

{ − exT
i βyi + (1 − δi)iβyi + (1 − δi)xT

i β}.

So, with ηi = xT
i β,

Ur =
∂

∂βr
�(β) =

n∑
i=1

n∑
i=1

{ − eηiyi + (1 − δi)}xir

Urs =
∂2

∂βr∂βs
�(β) = −

n∑
i=1

xirxise
ηiyi

Urst =
∂3

∂βr∂βs∂βt
�(β) = −

n∑
i=1

xirxisxite
ηiyi

and

κr,s =
1
n

E(UrUs) = − 1
n

E(Urs), κrst =
1
n

E(Urst), κr,st =
1
n

E(UrUst).

Expectations that are required are, with µi = e−ηi , E(yi) = µi(1 − ec/µi) and
E[{µi(1 − δi) − yi}2] = µ2

i (1 − e−c/µi).
We then obtain κr,s = 1

n

∑n
i=1 xirxis(1−e−c/µi) or, in matrix notation, κrs =

1
n(XT WX)r,s where W is an n × n diagonal matrix, W = diag(1 − e−c/µi) and
X is the n × p model matrix. Also

κrst = − 1
n

∑
i

xirxisxit(1 − e−c/µi),

κr,st = − 1
n

∑
i

xirxisxit(1 − e−c/µi − c

µi
e−c/µi),
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from which κr,s,t + κr,st = κs,rt − κt,rs and equals

1
n

∑
i

xirxisxit

{ 2c
µiec/µi

− (1 − e−c/µi)
}

and AE
r = 1

2

∑
u,v κu,v(κr,u,v + κr,uv).

With Wi = diag(1− e−c/µi) we note that the value hi of the hat matrix
W

1
2 X(XT WX)−1XT W

1
2 is given by 1

n

∑
u,v κu,vxiuxivWi. Thus

AE
r =

1
n

∑
i

∑
u,v

xirκ
u,vxiuxivWiW

−1
i

{ c

µiec/µi
− 1

2
(1 − e−c/µi)

}
.

This gives

AE
r =

∑
i

hi

{ c

µi(ec/µi − 1)
− 1

2

}
xir

as in equation (9).

Appendix 2.

In this appendix we show that the modified estimate is always finite.

Proposition. Let U∗
r = U∗

r (β) be defined by the Section 3.1 above and Ũ(β) =
(U∗

1 (β), . . . , U∗
p (β))T . Let B={β∗ : β∗=(β∗

1 , . . . , β∗
p)T be the solution of Ũ(β∗)=

0}. We assume that there does not exist a non-zero vector γ=(γ1, . . . , γp)T ∈Rp

(1≤p≤n) such that xτ
i γ≤0 holds for all 1≤ i≤n. Then

(a) For 1 < p < n, the solution β∗ is necessarily finite if there exists at least a
β∗ such that B is non-empty.
(b) For p = 1 or p = n, the B above is non-empty and bounded. Furthermore,
the solution β∗ is uniquely defined.

Proof. Without loss of generality, we assume that c = 1 throughout this ap-
pendix.
(a) For any non-zero vector γ = (γ1, . . . , γp)T ∈ Rp and any k > 0, we define the
objective function S as follows.

S(β + kγ, γ) = Ũ(β + kγ)T γ =
p∑

r=1

U∗
r (β + kγ)γr

=
n∑

i=1

(1 − δi − 0.5hi(β + kγ))xT
i γI(xT

i γ �= 0)

+
n∑

i=1

φ(xT
i β + kxT

i γ)hi(β + kγ)xT
i γI(xT

i γ < 0)

+
n∑

i=1

φ(xT
i β + kxT

i γ)hi(β + kγ)xT
i γI(xT

i γ > 0)
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+
n∑

i=1

yie
xT

i βekxT
i γ(−xT

i γ)I(xT
i γ < 0)

−
n∑

i=1

yie
xT

i βekxT
i γxT

i γI(xT
i γ > 0) =

5∑
j=1

Jj(β + kγ, γ), (11)

say, where

φ(x) =
ex

eex − 1
> 0

for every x ∈ (−∞,+∞), and φ(−∞) = 1 and φ(+∞) = 0, hi(β) is the ith diago-
nal element of the expected ’hat’ matrix with the W (β) = diag(w1(β), . . . , wn(β))

and wi(β) = 1 − exp(−exT
i

β

) defined by Section 3.1 above.
Using matrix theory, we know that the trace tr(H) =

∑p
i=1 hi(β) = p for any

vector β ∈ Rp. In this appendix, we assume that the matrices H(β) and G(β, γ)
below exist for any given β ∈ Rp and γ ∈ Rp. If the inverse matrices involved in
H(β) and G(β, γ) do not exist, they can be replaced by the generalized inverses
or the Moore-Penrose inverses.

It is obvious that for any non-zero vector γ, as k → +∞

wi(β + kγ) = (1 − e−exT
i

βekxT
i

γ

)I(xT
i γ > 0) + (1 − e−exT

i
βekxT

i
γ

)I(xT
i γ < 0)

+(1 − e−exT
i

β

)I(xT
i γ = 0)

→ I(xT
i γ > 0) + (1 − e−exT

i
β

)I(xT
i γ = 0) = vi(β, γ) (12)

and

hi(β + kγ) → gi(β, γ) (13)

say, where 0 < vi(β, γ) ≤ 1 for all 1 ≤ i ≤ n and all β and γ ∈ Rp, 0 ≤ gi(β, γ) ≤ p

is the ith diagonal element of the matrix G(β, γ) = V (β, γ)1/2X(XT V (β, γ)X)−1

XT V (β, γ)1/2 with V (β, γ) = diag(v1(β, γ), . . . , vn(β, γ)).
Now, by the conditions of the Proposition we have

lim
k→+∞

J1(β + kγ, γ) =
n∑

i=1

(1 − δi − 0.5gi(β, γ))xT
i γI(xT

i γ �= 0), (14)

lim
k→+∞

J2(β + kγ, γ) =
n∑

i=1

gi(β, γ)xT
i γI(xT

i γ < 0), (15)

lim
k→+∞

J3(β + kγ, γ) ≥ 0, (16)
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lim
k→+∞

J4(β + kγ, γ) ≥ 0, (17)

lim
k→+∞

J5(β + kγ, γ) = −∞, (18)

and

5∑
j=1

Jj(β + kγ, γ) = J5(β + kγ, γ)
(
1 +

∑4
j=1 Jj(β + kγ, γ)
J5(β + kγ, γ)

)
→ −∞ (19)

uniformly over the {xi} and n ≥ 1. The fact that the speed of ex

x → +∞ is very
fast as x → +∞ is used in equation (19). Thus, by equations (11) and (19) we
find that there exists at least an r such that as k → +∞

U∗
r (β + kγ) → +∞ (or −∞) (20)

when limk→+∞ U∗
r (β +kγ) exists for any non-zero vector γ. If there exists a non-

zero vector γ0 such that some of the limits {limk→+∞ U∗
r (β + kγ0), 1 ≤ r ≤ p}

do not exist, then it is obvious that β + kγ0 as k → +∞ is not the solution of
Ũ(β∗) = 0.

Therefore, the solution β∗ of Ũ(β∗) = 0 is necessarily finite when the B is
non-empty. This completes the proof of Proposition (a).

(b) Based on knowing which observations are censored and which are uncen-
sored the likelihood is given by

Li(β) = {µ−1
i e−yiµ

−1
i }(1−δi) · {e−cµ−1

i }δi = e(1−δi)xT
i βe−yie

xT
i

β

and

L(β) =
n∏

i=1

Li(β) = e
∑n

i=1
(1−δi)x

T
i βe−

∑n

i=1
yie

xT
i

β

. (21)

On the other hand, by Section 3.2 above, we know that the following p(β) exists
when p = 1 or p = n

p(β) =
n∏

i=1

e−0.5xT
i β(1 − e−exT

i
β

) = e−0.5
∑n

i=1
xT

i β
n∏

i=1

(1 − e−exT
i

β

). (22)

Now, the penalised likelihood function L∗(β) and l∗(β) = log L∗(β) are

L∗(β) = L(β)p(β) = e
∑n

i=1
(0.5−δi)xT

i βe−
∑n

i=1
yie

xT
i

β
n∏

i=1

(1 − e−exT
i

β

) (23)
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and

l∗(β) = log L∗(β) =
n∑

i=1

cix
T
i β −

n∑
i=1

yie
xT

i β +
n∑

i=1

log(1 − e−exT
i

β

), (24)

where ci = 0.5 − δi.
In the following, we show that

m(β) = −l∗(β) = −
n∑

i=1

cix
T
i β +

n∑
i=1

yie
xT

i β −
n∑

i=1

log(1 − e−exT
i

β

) (25)

is a strictly convex function with respect to β ∈ C, an open convex subset of Rp.
It is obvious that m(β) is a twice continuously differentiable real-valued

function on C. By Theorem 4.5 of Rockafeller (1970) in order to show that m(β)
is strictly convex, it suffices to show that the matrix below

M(β) = (m′′
jk(β))1≤j,k≤p (26)

is positive definite for every β ∈ C.
By a simple calculation, we obtain for all 1 ≤ j, k ≤ p

m′′
jk(β) =

n∑
i=1

yie
xT

i βxijxik +
n∑

i=1

q(xT
i β)xijxik =

n∑
i=1

r(xT
i β)xijxik, (27)

where r(xT
i β) = yie

xT
i β + q(xT

i β) and

q(x) =
1

(eex − 1)2
· ex[eex{ex − 1} + 1]. (28)

It is obvious that q(−∞) = q(+∞) = 0. In the following, we only need to justify
that q(x) > 0 for every x ∈ (−∞,+∞). In order to prove this, it suffices to show
(note (8)), that

q1(x) = eex{ex − 1} + 1 > 0 (29)

for every x ∈ (−∞,+∞), which follows from

q1(−∞) = 0 and q′1(x) = eex
e2x > 0 (30)

for every x ∈ (−∞,+∞).
Thus, we get for all 1 ≤ i ≤ n and every β ∈ Rp

r(xT
i β) > 0. (31)

Hence, for any non-zero vector b = (b1, . . . , bp)T we have

bT M(β)b =
p∑

j=1

p∑
k=1

n∑
i=1

r(xT
i β)xijxikbjbk =

n∑
i=1

r(xT
i β)(xT

i b)2 > 0, (32)
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where xi = (xi1, . . . , xip)T .
Therefore the matrix M(β) is positive definite for every β ∈ C. Furthermore,

the continuity of m(β) implies that m(β) is lower semicontinuous. Thus, m(β)
is a proper closed convex function of β ∈ Rp.

In order to apply Theorem 27.2 of Rockafeller (1970) to show that the con-
clusion of the Proposition holds, it suffices to show that for any non-zero vector
γ = (γ1, . . . , γp)T ∈ Rp and k → +∞

m(β + kγ) → +∞. (33)

By the conditions of Proposition (a), we have xT
i γ > 0 for some i and every

non-zero vector γ ∈ Rp. Now observe that

m(β + kγ) = −
n∑

i=1

cix
T
i (β + kγ) +

n∑
i=1

yie
xT

i (β+kγ) −
n∑

i=1

log(1 − e−exT
i

(β+kγ)

)

= −
n∑

i=1

cix
T
i β +

n∑
i=1

yie
xT

i βI(xT
i γ=0) −

n∑
i=1

log(1 − e−exT
i

β

)I(xT
i γ=0)

−k
n∑

i=1

cix
T
i γI(xT

i γ �= 0) +
n∑

i=1

yie
xT

i βekxT
i γI(xT

i γ > 0)

+
n∑

i=1

yie
xT

i βekxT
i γI(xT

i γ < 0)

−
n∑

i=1

log(1 − e−exT
i

β

)I(xT
i γ > 0) −

n∑
i=1

log(1 − e−exT
i

β

)I(xT
i γ < 0)

=
8∑

l=1

ml(β + kγ), (34)

say, where {mi(β + kγ), i = 1, 2, 3} are independent of k.
Since yi > 0 for all 1 ≤ i ≤ n, we know that as k → +∞
5∑

l=1

ml(β + kγ)

=
n∑

i=1

yie
xT

i βekxT
i γI(xT

i γ > 0)
(
1 +

∑4
l=1 ml(β + kγ)∑n

i=1 yie
xT

i βekxT
i γI(xT

i γ > 0)

)
→ +∞ (35)

uniformly over n ≥ 1, which is because the speed of ex/x → +∞ is very fast as
x → +∞.

Also, we obtain

lim
k→+∞

m6(β + kγ) = lim
k→+∞

n∑
i=1

yie
xT

i βekxT
i γI(xT

i γ < 0) ≥ 0 (36)
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uniformly over n ≥ 1.
On the other hand, we get

lim
k→+∞

m7(β + kγ) = − lim
k→+∞

n∑
i=1

log(1 − e−exT
i

βekxT
i

γ

)I(xT
i γ > 0) ≥ 0 (37)

uniformly over n ≥ 1, and as k → +∞

m8(β + kγ) = −
n∑

i=1

log(1 − e−exT
i

βekxT
i

γ

)I(xT
i γ < 0) → +∞ (38)

uniformly over n ≥ 1.
This concludes the proof of (33). Thus m(β) does not have a direction of

recession which implies that B is a non-empty bounded set by applying Theorem
27.2 of Rockafeller (1970). The uniqueness of β∗ follows from the strict convexity
of m(β).
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