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Abstract: In this paper a new method of selecting the smoothing parameter in

nonparametric regression called median cross validation (MCV) is suggested. This

method is applied to choose the number of nearest neighbors used in estimating
the regression function by local sample medians. Uniform strong consistency is

obtained under reasonable conditions. MCV is effective in dealing with outliers in

the data. Simulation results are given to demonstrate its superiority over other

methods.
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1. Introduction

Consider the nonparametric regression model

Yi = g(xi) + ei, i ≥ 1, (1.1)

where g(·) is a smooth function to be estimated; {xi, i ≥ 1} are non-random
design points in the interval [0, 1]; {ei, i ≥ 1} are i.i.d. random errors and Yi is
the observation at xi (i ≥ 1). Take a subseries {Yi, 1 ≤ i ≤ n} from the infinite
series {Yi, i ≥ 1}, and let x

(n)
i(j) denote the jth nearest neighbor of xi, i.e., x

(n)
i(j) is

a member of {x1, . . . , xn} satisfying the following relation: |xi − x
(n)
i(j)| is the jth

smallest value among |xi − xi′ |, i′ = 1, . . . , n. Later on, the superscript (n) will
be dropped if there is no confusion. We define

g̃n,h(xi) = m(Yi(1), . . . , Yi(h)) = median of Yi(1), . . . , Yi(h) (1.2)

as the nearest neighbor median estimator of g(xi). The number h of neighbors
plays the role of a smoothing parameter, which has to be selected properly. To
obtain asymptotic normality results, one usually needs the condition h = O(nλ)
, for some λ ∈ (0, 1). Stute (1986) considered the case λ = 2

3 , while Bhattacharya
and Mark (1987) studied the case λ = 4

5 . Although in most theoretical studies, h

is deterministically specified, in practice it is better to choose h based on informa-
tion from the data. One of the most common methods of choosing the smoothing
parameter h is cross-validation. Li (1984) proved the consistency for the L2 cross-
validated nearest neighbor estimator in nonparametric regression. Marron (1987,
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1989) gave a detailed review of various methods for selecting the smoothing pa-
rameter. Yang and Zheng (1992) introduced the L1 cross-validation method and
obtained the weak consistency of the L1 cross-validated nearest neighbor me-
dian estimator under the existence of the first moment of ei. Gangopadhyay
and Sen (1990) also suggested the L1 cross-validation method. The condition
E(e2

i ) < ∞ (respectively, E(|ei|) < ∞) is necessary for establishing of weak and
strong consistency for L2 (respectively, L1) cross-validated estimators. However,
when there are outliers in the Y observations (or if the distribution of random er-
rors has a heavy tail so that E(|ei|) = ∞), then it becomes very difficult to obtain
good asymptotic results for the L2(L1) cross-validation criterion. To overcome
such disadvantages, a new method called median cross-validation (abbr. MCV)
is introduced. In this paper, the uniform strong consistency of MCV will be
established under very mild conditions.

In Section 2, the motivation of median cross validation is presented and
some simulation results are given to demonstrate the superiority of the MCV
method over the L1criterion. The main theoretical results are given in Section
3. Technical proofs are given in the Appendix.

2. Motivations and Simulations

In constructing g̃n,h, the number h of neighbors plays an important role.
One way of choosing h is by minimizing the asymptotic mean squared error of
the estimate g̃n.h. Under some regularity conditions, Yang (1996) obtained the
following Bahadur type representation

g̃n,h(x) = g(x) +
1
2
g′′(x)M(x)

(
h

n

)2

+
1

hf(0)

h∑
i=1

(
1
2
− I{ei(x)≤0}) + Rnh, (2.1)

where maxh∈Hn(a,b) |Rnh| = o(n−1/2log n) + O(n−3β/4 log n) + o(n−2(1−β)), a.s.,
Hn(a, b) = {k : k0 = [anβ ] ≤ k ≤ [bnβ] = k1}, 0 < a < b < ∞, 0 < β <

1,M(x) > 0, is a function dependent on the design points satisfying 0 < m =
infx∈[0,1] M(x) ≤ supx∈[0,1] M(x) = M < ∞, x ∈ [0, 1], f(x) is the density func-
tion of ei, f(0) > 0 and the median of ei is 0. Ignoring the remainder term Rnh in
(2.1), we get the asymptotic mean squared error (AMSE) of the nearest neighbor
median estimate

AMSE(h) = AMSE(g̃n,h(x) − g(x))2

= (g′′(x))2M2(x)(h/n)4/4 + 1/(4f2(0)h). (2.2)

From (2.2), we see that, theoretically,

hn(x) = n4/5(4f2(0)(g′′(x))2M2(x))−1/5
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is the optimal choice of h, which minimizes the AMSE of the estimator g̃n,h(x).
But it cannot be directly applied because it depends on unknown quantities such
as f(0), g′′(x).

For practical use, it is often preferable to have a data-driven h. One such
method is to select h by the cross-validation technique.

The motivation behind cross validation is easily understood (see, Allen (1974),
Stone (1974)). In recent years, results on its statistical properties have become
available. In density estimation, Chow, Geman and Wu (1983) and Hall (1982)
established some asymptotic results for cross validated kernel estimates. In non-
parametric regression, Wong (1983), and Li (1984) proved the consistency of
the cross validated estimates, for the kernel and the nearest neighbor estimates
respectively. (For more references on smoothing parameter selection, see Mar-
ron (1987, 1989) and Härdle and Chen(1995)). All the aformentioned results
are based on the L2 norm. On the other hand, Ganganbongan and Sen (1990)
suggested the use of the L1-cross-validation technique to select the smoothing
parameter. Yang and Zheng (1992) also considered the L1-cross validation tech-
nique. They proved the weak consistency for L1-cross-validated nearest neighbor
median estimates under the assumption of the finite first moment of the random
error.

Let Hn be an index set which will be specified later. The L2 cross-validated
choice of h ∈ Hn for the nearest neighbor median estimates, based on the average
squared prediction error, denoted by h∗

2 = h∗
2(n), is the minimizer of

inf
h∈Hn

cv2(h) = inf
h∈Hn

1
n

n∑
i=1

[g(xi) − g̃n,h,−1(xi)]2,

where g̃n,h,−1(xi) is the delete-one estimate of g(xi), i.e. g̃n,h,−1(xi) = m(Yi(2),

. . . , Yi(h)). The cross-validation function cv2(h) measures the average ability of
g̃n,h,−1(xi) to predict the “new” observation Yi(1) = Yi.

The L1-cross-validation criterion is defined as follows. Let cv1(h) =
1
n

∑n
i=1 |g(xi) − g̃n,h,−1(xi)|. Choose h∗

1 that minimizes cv1(h), i.e., h∗
1 =

arg minh∈Hn cv1(h).
If E(e2

i ) = ∞, (E(|ei|) = ∞, respectively), then cv2(h) → ∞(cv1(h) → ∞,

respectively) in probability for all h ∈ Hn. Therefore, it is difficult to give a
consistency result for L2(L1, respectively)-cross-validation.

But recall that the consistency of the deterministically chosen nearest neigh-
bor estimate g̃n,h(x) dose not require the error to have finite first moment.
Thus both L1 and L2 cross-validation criteria are not entirely appropriate. One
alternative is to consider the median cross validation criteria defined as fol-
lows: Let cvm(h) = m(|Y1 − g̃n,h,−1(x1)|, . . . , |Yn − g̃n,h,−1(xn)|) and select h∗

n

by h∗
n = arg infh∈Hn cvm(h).
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A simulation was carried out to show the differences among the three criteria.
In Figure 1, the circles denote the data and the solid curve denotes the true curve.
The data (x1, Y1), . . . , (x200, Y200) come from the nonparametric regression model
Yi = g(xi) + ei, 1 = 1, . . . , 200, where the true curve is

g(x) =




100x3, 0 ≤ x ≤ 0.3,
2.7 − 8(x − 0.3), 0.3 < x ≤ 0.6,
3 − 67.5(x − 0.8)2, 0.6 < x ≤ 1,

xi = i/200, i = 1, . . . , 200, and the observation errors ei are assumed to be
i.i.d. (1 − ε)Φ(x) + εΦ( x

10) with ε = 2(1 − Φ(1)) = 0.317, where Φ(x) is the
standard normal distribution function.

A Monte Carlo simulation was carried out to compare the three criteria. We
present the 3 nearest neighbor median estimates with smoothing parameter h∗

selected by the L2, L1 and MCV criterion respectively. In Figure 2 and Figure 3
the estimates are obtained by L2 and L1 criteria for this data set, respectively,
and in Figure 4 the curve is fitted by the MCV criterion. For this example, MCV
appears better than the L2 and L1 criteria for most of the curve.

Figure 1. Data and true curve g(x) Figure 2. true g(x) and L2-cv estimate

Figure 3. true g(x) and L1-cv estimate Figure 4. true g(x) and MCV estimate
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We repeat this experiment 1000 times. A summary of the result is given in
table 1. Here,

d(h∗) = max
1≤i≤200

|g(xi) − g̃nh∗(xi)|, pr = P{d(h∗) > r}.

Table 1. Comparison of the L2-, L1-cv and MCV criteria when the error is
(1 − 0.317)N(0, 1) + 0.317N(0, 102)

criteria Ed(h∗) stdd(h∗) p0.6 p0.8 p1 p1.2 p2

L2−cv 1.653 1.514 0.998 0.904 0.694 0.476 0.151
L1−cv 1.220 0.674 0.997 0.880 0.609 0.366 0.056
MCV 1.147 0.508 0.991 0.863 0.565 0.312 0.035

Table 2. Comparison of L2-, L1-cv and MCV criteria when the error is
N(0, 1)

criteria Ed(h∗) stdd(h∗) p0.6 p0.8 p1 p1.2 p2

L2−cv 0.811 0.171 0.919 0.485 0.148 0.024 0
L1−cv 0.829 0.173 0.937 0.515 0.164 0.030 0
MCV 0.897 0.234 0.941 0.612 0.268 0.087 0.002

The MCV criterion is better than the L2- and L1- CV criteria in gauging the
heavy tail distributions. We also study the case that the error follow the standard
normal distribution. Table 2 shows that as expected, the L2-criterion is the best.

3. Main Results

The following are conditions for model (1.1):
(I) e1, e2, . . . are i.i.d. random variables defined on probability space (Ω,F , P )

with a common distribution function F , f(x) = F ′(x) is continuous and
positive on R = (−∞,∞), F (0) = 1

2 , and f(x) is symmetric about 0 and
nonincreasing on [0,∞). There exist positive numbers c1 and δ(< m(|e|))
such that f(x) − f(y) ≥ c1(y − x) for all x < y, x, y ∈ U, where U =
(m(|e|) − δ,m(|e|) + δ) and m(|e|) stands for the median of |e|;

(II) the function g(x) satisfies a Lipschitz condition of order α (α ∈ (0, 1]), i.e.,
there exists an L > 0 such that |g(x)− g(y)| ≤ L|x− y|α for all x, y ∈ [0, 1];

(III) there exists c2 > 0 such that max1≤i≤n |xi − xi(h)| ≤ c2n
−1h ln n, 1 ≤ h ≤

n, n ≥ 2;
(IV) Hn = {2, 3, . . . , µn}, µn = n/(bn ln n) → ∞, bn → ∞;

Theorem 2.1. Under conditions (I)-(IV), there exists a positive constant µ

such that for almost all ω ∈ Ω, h∗
n ≥ hn for all n sufficiently large, where hn =

[µ(n(ln n)−2)α/(2α+1)], and [x] denotes the integer part of x.
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Theorem 2.2. Under conditions (I)-(IV), the following holds for the Maximum
Error (ME) of the cross-validated estimate g̃n,h∗

n
,

ME(h∗
n)∆= max

1≤i≤n
|g̃n,h∗

n
(xi) − g(xi)| → 0 a.s. n → ∞.

The conditions of Theorem 2.2 are weaker than the conditions for consistency
of the L2 and L1 cross validation methods but the conclusion is stronger since in
the L2( or L1) criterion the consistency is defined by 1

n

∑n
i=1(g(xi)−g̃n,h∗(xi))2 →

0, or 1
n

∑n
i=1 |g(xi) − g̃n,h∗(xi)| → 0, which is weaker than max1≤i≤n |g(xi) −

g̃n,h∗(xi)| → 0.

Remark 1. According to Cheng’s results (1984), if x1, x2, . . . ∼ i.i.d. U [0, 1],
condition (III) is satisfied for almost all sequences of sample x1, x2, . . .

Remark 2. Condition (IV) is weaker than the algebraic order µn = nλ, λ ∈
(0, 1).
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Appendix. Proof of Theorem 2.1 and Theorem 2.2.

Let

ai(j) = g(xi(j)) − g(xi), 1 ≤ i ≤ n, j ∈ Hn,

Bi,h = m(ai(1) + ei(1), . . . , ai(h) + ei(h)),

Bi,h,−1 = m(ai(2) + ei(2), . . . , ai(h) + ei(h)).

Using this notation, we obtain

|Yi − g̃n,h,−1(xi)| = |ei − m(ai(2) + ei(2), . . . , ai(h) + ei(h))| = |ei − Bi,h,−1|.

Let Ai,h and Ai,h,−1 be the unique root of following equations respectively,

h∑
j=1

F (Ai,h − ai(j)) = hF (0),
h∑

j=2

F (Ai,h,−1 − ai(j)) = (h − 1)F (0).

Lemma A.1. (Yang and Zheng (1992)) Let e1, e2, . . . ∼ i.i.d. F with its density
function f(x) satisfying the following condition: f is bounded away from zero on
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any compact set, (i.e., for every bounded K, there exists δ = δK > 0 such that
f(x) > δ for all x ∈ K). Then for every M > 0, there exists c0 = c0(M) > 0
such that

P{|m(e1 + a1, . . . , en + an) − An| ≥ ε} ≤ 2 exp{−c0ε
2n} (A.1)

holds for all ε > 0, |ai| ≤ M , i = 1, . . . , n, n ≥ 1, where An is the unique solution
of the following equation

∑n
i=1 F (x − ai) = nF (0).

Lemma A.2. Under conditions (I)-(IV), there exists a series {h′
n : n ≥ 1, h′

n ∈
Hn}, such that cv(h′

n) → m(|e1|). a.s.

Proof. Note that

|cv(h) − m(|e1|)| = |m(|Yi − g̃n,h,−1(xi)|, i = 1, . . . , n) − m(|e1|)|
= |m(|ei − Bi,h,−1|, i = 1, . . . , n) − m(|e1|)|
≤ |m(|ei|, i = 1, . . . , n) − m(|e1|)|

+ max
1≤i≤n

|Bi,h,−1 − Ai,h,−1| + max
1≤i≤n

|Ai,h,−1|. (A.2)

By the property of the median, we know that

|m(|ei|, i = 1, . . . , n) − m(|e1|)| → 0. a.s. (A.3)

Taking h′
n = [(ln n)2], where [x] denotes the integer part of x, in view of (A.1),

for every ε > 0, we have

∞∑
n=2

P
{

max
1≤i≤n

|Bi,h′
n,−1 − Ai,h′

n,−1| > ε
}
≤

∞∑
n=2

n max
1≤i≤n

P{|Bi,h′
n,−1 − Ai,h′

n,−1| > ε}

≤
∞∑

n=2

n max
1≤i≤n

2 exp{−c0ε
2(ln n)2} < ∞,

which implies, by the Borel-Cantelli lemma,

max
1≤i≤n

|Bi,h′
n,−1 − Ai,h′

n,−1| → 0, a.s. (A.4)

Also, by the definition of Ai,h′
n,−1 and conditions (II) and (III), we have

max
1≤i≤n

|Ai,h′
n,−1| ≤ max

1≤i≤n
max

1≤j≤h′
n

|g(xi) − g(xi(j))|
≤ max

1≤i≤n
max

1≤j≤h′
n

L|xi − xi(j)|α

= max
1≤i≤n

L|xi − xi(h′
n)|α ≤ L

(
c2n

−1h′
n ln n

)α

= Lcα
2

(
n−1(ln n)3

)α → 0. (A.5)
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(A.2)-(A.5) show that cv(h′
n) = cv([(ln n)2]) → m(|e1|), a.s., which completes

the proof.

Lemma A.3. Under conditions (I)-(IV),

h∗
n → ∞, a.s., n → ∞. (A.6)

Proof. Set A = {ω : h∗
n(ω) → ∞}. Suppose that, on the contrary, (A.6) does

not hold, i.e., P (Ac) > 0, where Ac is the complement of A. Thus, for every
ω ∈ Ac, there exists a monotonic increasing index sequence nk(ω) satisfying
h∗

nk(ω)(ω) ≤ M(ω) for a certain constant M , i.e., {h∗
nk(ω)(ω), k ≥ 1} is a bounded

subsequence. Without loss of generality, we assume that h∗
nk(ω)(ω) → M(ω),

where M(ω) is a function with range {2, 3, · · ·} and domain Ac. It is easy to
verify

cv(h∗
nk(ω)(ω)) = m{|Yi − m(Yi(2), . . . , Yi(h∗

nk(ω)
(ω)))|, i = 1, . . . , n}

→ m(|ei − m(ei(2), . . . , ei(M))|)|M=M(ω) a.s., on Ac.

In view of Lemma A.2, we know that there exists an h′
n ∈ Hn(n ≥ 2) such

that cv(h′
n) → m(|e1|) a.s. From the definition of h∗

nk
, we have cv(h′

nk(ω)(ω)) ≥
cv(h∗

nk(ω)(ω)), which shows that

m(|e1|) ≥ m(|e1 − m(e2, . . . , eh)|)|h=M(ω), on Ac. (A.7)

Using condition (I) and Andersons’s lemma (Anderson (1955) or Ibragimov and
Has’minskii (1981), p.155), we obtain m(|e1|) < m(|e1 − m(e2, . . . , eh)|), for all
h ≥ 2, which contradicts with (A.7). Therefore (A.6) holds.

Lemma A.3 only shows that h∗
n tends to infinity and does not reflect the

rate of the convergence. Intuitively, if g(x) �≡ constant, the number of nearest
neighbors h should be neither too small nor too large. If h is too small, the
influence of the random error plays the main role in the estimator g̃n,h(x); on the
contrary, if h is too large, the deviation of g(x) at the neighbor of x will have
influence on the value of the estimator. Theorem 1 gives the lower bound of h∗

n.

Lemma A.4. Under condition (I), there exists a constant c3 > 0 such that

P{|e1 − m(e2, . . . , eh)| ≤ m(|e1|)} ≤ 1/2 − c3/h for all h sufficiently large.

Proof. Let ξh = 2f(0)
√

hm(e2, . . . , eh) and Φh be the distribution function of
ξh. By the Central Limit Theorem (CLT) of a median (Serfling (1980), p.77,
Corollary A), we have Φh → Φ, as h → ∞, where Φ is the distribution function
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of standard normal random variable. The following inequalities complete the
proof,

1/2 − P{|e1 − m(e2, . . . , eh)| ≤ m(|e1|)}
=

∫ ∞

−∞

(
P {|e1| ≤ m(|e1|)} − P

{∣∣∣e1 − x/(2f(0)
√

h)
∣∣∣ ≤ m(|e1|)

})
dΦh(x)

≥ c1

∫
0≤x/(2f(0)

√
h)≤δ

dΦh

∫ m

m−x/(2f(0)
√

h)

x

2f(0)
√

h
dt

=
c1

4f2(0)
1
h

∫ 2δf(0)
√

h

0
x2dΦh(x) ≥ c1

4f2(0)
1
h

∫ 2δf(0)

0
x2dΦh(x)

≥ c1

8f2(0)
1
h

∫ 2δf(0)

0
x2dΦ(x), for large enough h.

Lemma A.5. Under conditions (I)-(IV), there exist hn ∈ Hn and K(n) > 0
such that ∞∑

n=2

P{cv(hn) ≥ m(|e1|) + K(n)} < ∞. (A.8)

Proof. Observe that for every h ∈ Hn, we have

cv(h) = m{|ei − Bi,h,−1|, 1 ≤ i ≤ n}
≤ m{|ei|, 1 ≤ i ≤ n} + max

1≤i≤n
|Ai,h,−1 − Bi,h,−1| + max

1≤i≤n
|Ai,h,−1|. (A.9)

By the definition of Ai,h,−1, we have

max
1≤i≤n

|Ai,h,−1| ≤ max
1≤i≤n

max
2≤j≤h

|g(xi(1)) − g(xi(j))|

≤ max
1≤i≤n

max
2≤j≤h

L|xi(1) − xi(j)|α ≤ Lcα
2

(
n−1h ln n

)α
. (A.10)

Also, by lemma A.1, for every bn > 0,
∞∑

n=2

P{ max
1≤i≤n

|Ai,h,−1 − Bi,h,−1| ≥ bn}

≤
∞∑

n=2

n max
1≤i≤n

P{|Ai,h,−1 − Bi,h,−1| ≥ bn} ≤
∞∑

n=2

2n exp{−c0b
2
nh}. (A.11)

To insure the convergence of the series on both sides of (A.11), we select h, bn such
that n exp{−c0b

2
nh} = n−1−β for all n sufficiently large, where β is a positive

constant. Taking bn =
√

(2 + β)c−1
0 h−1ln n, we obtain from (A.11) that for

almost all sample series, and large enough n,

max
1≤i≤n

|Ai,h,−1 − Bi,h,−1| ≤ bn =
√

(2 + β)c−1
0 h−1ln n. (A.12)
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By the property of the median (Serfling (1980), p.96, Lemma B), we obtain

|m{|ei|, 1 ≤ i ≤ n} − m(|e1|)| ≤ 2/(f(m(|e1|)))
√

n−1ln n

for all n sufficiently large. Therefore

m{|ei|, 1 ≤ i ≤ n} ≤ m(|e1|) + 2/(f(m(|e1|)))
√

n−1ln n. (A.13)

In view of (A.9)-(A.13), for all sufficiently large n, we have

cv(h) ≤ m(|e1|) + 2/(f(m(|e1|)))
√

n−1ln n + Lcα
2 (n−1ln n)αhα

+
√

(2 + β)/c0 ln n/
√

h. (A.14)

When

h = hn = ((2 + β)/(4c0))
1/(2α+1) (Lαcα

2 )−2/(1+2α) n2α/(1+2α)(ln n)(1−2α)/(1+2α) ,

(A.15)
the right hand side of (A.14) reaches the minimum value

m(|e1|) + 2/(f(m(|e1|)))
√

n−1ln n + c4n
−α/(1+2α)(ln n)2α/(1+2α),

where

c4 = c4(α, β, c0, c2) = (2 + α−1)(Lα)1/(1+2α)((2c2 + βc2)/(4c0))2α/(1+2α) .

Therefore

cv(hn) ≤ m(|e1|) + 2/(f(m(|e1|)))
√

n−1ln n + c4n
−α/(1+2α)(ln n)2α/(1+2α)

= m(|e1|) + K(n), for all n sufficiently large,

where

K(n) = 2/(f(m(|e1|)))
√

n−1ln n + c4n
−α/(1+2α)(ln n)2α/(1+2α). (A.16)

In fact, by checking (A.10), (A.11) and (A.13) (see Serfling (1980), p.96), we
obtain the following inequalities

∞∑
n=2

P
{
m(|ei|, 1 ≤ i ≤ n) ≥ m(|e1|) + 2/(f(m(|e1|)))

√
n−1ln n

}
< ∞, (A.17)

∞∑
n=2

P
{

max
1≤i≤n

|Ai,hn,−1 − Bi,hn,−1| + max
1≤i≤n

|Ai,hn,−1| ≥ c4n
− α

1+2α (ln n)
2α

1+2α

}
< ∞.

(A.18)
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From (A.9), (A.17) and (A.18),

∞∑
n=2

P
{
cv(hn) ≥ m(|e1|) + K(n)

}
< ∞,

where hn and K(n) are defined by (A.15) and (A.16) respectively.

Proof of Theorem 2.1. It suffices to verify

∞∑
n=2

P{h∗
n ≤ hn} < ∞.

Put Sn = {cv(hn) ≥ m(|e1|) + K(n)}, where hn and K(n) are determined by
(A.15) and (A.16) respectively. Note that

∞∑
n=2

P{h∗
n ≤ hn} ≤

∞∑
n=2

P{h∗
n ≤ hn, Sc

n} +
∞∑

n=2

P{h∗
n ≤ hn, Sn}.

By Lemma A.5, we need only show that
∑∞

n=2 P{h∗
n ≤ hn, Sc

n} < ∞. By the
definition of h∗

n,

∞∑
n=2

P{h∗
n≤hn, Sc

n} ≤
∞∑

n=2

P{ min
2≤h≤hn

cv(h) ≤ cv(hn), Sc
n}

≤
∞∑

n=2

hn∑
h=2

P{cv(h) ≤ cv(hn), Sc
n}

=
∞∑

n=2

hn∑
h=2

P{m(|Yi−g̃n,h,−1(xi)|, i=1, . . . , n)≤cv(hn), Sc
n}

=
∞∑

n=2

hn∑
h=2

P
{1

n

n∑
i=1

I(|ei−Bi,h,−1|≤cv(hn)) ≥ 1
2
, Sc

n

}
, (A.19)

where I{A} denotes the indicator of A. In the following we will transform
1
n

∑n
i=1 I{|ei − Bi,h,−1| ≤ cv(hn)} into the form of a sum of independent ran-

dom variables. Set

Dj = {i : xi = x(l(2h+1)+j), 1 ≤ i ≤ n, 0 ≤ l ≤ [n/(2h + 1)]}, j = 0, 1, . . . , 2h,

where x(i), i = 1, . . . , n, are order statistics of xi, i = 1, . . . , n. The index set
{1, . . . , n} becomes the union of the disjoint subsets Dj , j = 0, 1, 2, . . . , 2h,
and {|ei − Bi,h,−1|, i ∈ Dj} is a set of independent random variables for each
j ∈ {0, 1, 2, . . . , 2h}. From now on we treat n/(2h + 1) as an integer to avoid
unnecessary complications.
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Recalling (A.19), we obtain

∞∑
n=2

P{h∗
n ≤ hn, Sc

n} ≤
∞∑

n=2

hn∑
h=2

P
{ 2h∑

j=0

∑
i∈Dj

I{|ei − Bi,h,−1| ≤ cv(hn)} ≥ n

2
, Sc

n

}

≤
∞∑

n=2

hn∑
h=2

2h∑
j=0

P
{ ∑

i∈Dj

I{|ei − Bi,h,−1| ≤ cv(hn)} ≥ n

4h + 2
, Sc

n

}
.

≤
∞∑

n=2

hn∑
h=2

2h∑
j=0

P
{ ∑

i∈Dj

I{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)} ≥ n

4h + 2

}

=
∞∑

n=2

hn∑
h=2

2h∑
j=0

P
{2h + 1

n

∑
i∈Dj

{
I{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)}

−P{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)}
}

≥ 1
2
− 2h + 1

n

∑
i∈Dj

P{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)}
}

≤
∞∑

n=2

hn∑
h=2

2h∑
j=0

exp
{
− 2nλ2

h

2h + 1

}
(by Hoeffding’s inequality (1963),) (A.20)

where

λh = 1/2 − (2h + 1)/n
∑
i∈Dj

P{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)}.

In the above reasoning, λh > 0 for 2 ≤ h ≤ hn is required for the Hoeffding
inequality. In the following we deal with λh. Note that

P{|ei − Bi,h,−1| ≤ m(|e1|) + K(n)}
≤ P{|ei − m(ei(2), . . . , ei(h))| − |m(ei(2), . . . , ei(h)) − Bi,h,−1| ≤ m(|e1|) + K(n)}
≤ P

{
|ei − m(ei(2), . . . , ei(h))| ≤ m(|e1|) + K(n) + max

2≤j≤h
|ai(j)|

}
≤ P

{
|ei − m(ei(2), . . . , ei(h))| ≤ m(|e1|) + K(n) + max

1≤i≤n
L|xi − xi(h)|α

}
≤ P{|ei − m(ei(2), . . . , ei(h))| < m(|e1|) + K(n) + L(c2n

−1h ln n)α}
= P{|ei − m(ei(2), . . . , ei(h))| < m(|e1|)}

+P{m(|e1|) ≤ |ei − m(ei(2), . . . , ei(h))| ≤ m(|e1|) + K(n) + L(c2n
−1h ln n)α}

≤ P{|e1 − m(e2, . . . , eh)| < m(|e1|)} + c6(K(n) + L(c2n
−1h ln n)α)

≤ 1/2 − c3/h + c6(K(n) + L(c2n
−1ln n)αhα), (by Lemma A.4)
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where c6 is a positive constant depending only on f(x), the density function of
e1. Therefore,

λh ≥ c3/h − c6(K(n) + L(c2n
−1ln n)αhα)

= c3/h − c6

(2
√

n−1ln n

f(m(|e1|)) + c4n
−α/(1+2α)(ln n)

2α
1+2α + L(c2n

−1hln n)α
)
. (A.21)

Note that the right of (A.21) is a monotonically decreasing function of h. It is
easy to show that for hn = [µ(ln n)2/n]−α/(1+2α),

λh ≥ c3/hn − 3c6c4n
−α/(1+2α)(ln n)2α/(1+2α) > 0, 2 ≤ h ≤ hn

holds for large n and small µ, which shows that by (A.20)

∞∑
n=2

P{h∗
n ≤ hn, Sc

n}

≤
∞∑

n=2

hn∑
h=2

2hn exp{−2nλ2
n/(2hn + 1)} ≤

∞∑
n=2

2h2
n exp{−2nλ2

hn
/(2hn + 1)}

≤
∞∑

n=2

2h2
n exp

{
− nh−1

n

(
c3/hn − c6(2/(f(m(|e1|)))

√
n−1ln n

+c4n
− α

1+2α (ln n)
2α

1+2α + L(c2n
−1ln n)αhα

n)
)2}

< ∞.

By the Borel-Cantelli lemma and Lemma A.5, we know that h∗
n ≥ hn =

µ(n(ln n)−2)α/(1+2α) a.s., which completes the proof of Theorem 1.

Proof of Theorem 2.2. Note that

ME(h∗
n) = max

1≤i≤n
|g(xi) − g̃n,h∗

n
(xi)| = max

1≤i≤n
|Bi,h∗

n
|

≤ max
1≤i≤n

|Bi,h∗
n
− Ai,h∗

n
| + max

1≤i≤n
|Ai,h∗

n
| (A.22)

From Theorem 2.1 and Lemma A.1, for all ε > 0,
∞∑

n=2

P
{

max
1≤i≤n

|Bi,h∗
n
− Ai,h∗

n
| ≥ ε

}

≤
∞∑

n=2

P
{

max
1≤i≤n

|Bi,h∗
n
− Ai,h∗

n
| ≥ ε, h∗

n ≥ hn

}
+

∞∑
n=2

P{h∗
n ≤ hn}

≤
∞∑

n=2

n max
1≤i≤n

P{|Bi,h∗
n
− Ai,h∗

n
| ≥ ε, h∗

n ≥ hn} +
∞∑

n=2

P{h∗
n ≤ hn}

=
∞∑

n=2

n max
1≤i≤n

µn∑
h=hn

P{|Bi,h∗
n
− Ai,h∗

n
| ≥ ε, h∗

n = h} +
∞∑

n=2

P{h∗
n ≤ hn}
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≤
∞∑

n=2

n max
1≤i≤n

µn∑
h=hn

P{|Bi,h − Ai,h| ≥ ε} +
∞∑

n=2

P{h∗
n ≤ hn}

≤
∞∑

n=2

n max
1≤i≤n

µn∑
h=hn

2 exp{−c0hε2} +
∞∑

n=2

P{h∗
n ≤ hn}

≤
∞∑

n=2

2n(µn − hn) exp{−c0hnε2} +
∞∑

n=2

P{h∗
n ≤ hn}

≤
∞∑

n=2

2n2 exp
{
− c0ε

2µ(n(ln n)−2)
α

1+2α

}
+

∞∑
n=2

P{h∗
n ≤ hn} < ∞.

By the Borel-Cantelli lemma,

max
1≤i≤n

|Bi,h∗
n
− Ai,h∗

n
| → 0 a.s. (A.23)

Also, by the definition of Ai,h, for all h ∈ Hn, n ≥ 2,

max
1≤i≤n

|Ai,h| ≤ max
1≤i≤n

max
1≤j≤h

|g(xi(1)) − g(xi(j))| ≤ max
1≤i≤n

max
1≤j≤h

L|xi − xi(j)|α

≤ max
1≤i≤n

L|xi − xi(h)|α ≤ Lcα
2

(
n−1ln n

)α
hα,

Therefore,

max
1≤i≤n

|Ai,h∗
n
| ≤ Lcα

2 (n−1lnn)α(h∗
n)α ≤ Lcα

2 (n−1ln n)α(n/(bn ln n))α

= Lcα
2 b−α

n → 0. (A.24)

From (A.22)∼(A.24), we obtain ME(h∗
n) → 0 a.s., which completes the proof of

Theorem 2.2.
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