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Abstract: We show in a general mixed model the best linear unbiased estimators

(BLUE) of fixed effects, with unknown variance components substituted by the

REML estimates, are jointly asymptotically normal with the REML estimates. We

also prove that given sufficient information the empirical distributions of the best

linear unbiased predictors (BLUP) of random effects, again with REML-estimated

variance components, converge to the true distributions of the corresponding ran-

dom effects. As a consequence, we obtain a consistent estimate of the asymptotic

variance-covariance matrix of the REML estimates. The results require neither

that the data is normally distributed nor that the model is hierarchical (nested).
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1. Introduction

This paper explores asymptotic properties of the empirical best linear unbi-
ased predictors (BLUP) and best linear unbiased estimators (BLUE), i.e., BLUP
and BLUE with estimated variance components, in a general mixed linear model.
The BLUE and BLUP are methods of estimating fixed and random effects in a
mixed model and have important applications in animal breeding, survey sam-
pling, and many other fields (e.g., Henderson (1963, 1973), Harris et al. (1989),
Ghosh and Rao (1994), Liski and Nummi (1995)). Robinson (1991) gives a very
wide-ranging account of the BLUP and BLUE with examples and applications.

A general mixed linear model can be expressed as

y = Xβ + Z1α1 + · · · + Zsαs + ε, (1.1)

where y is a N × 1 vector of observations, β is a p × 1 vector of fixed effects, αi

is a mi × 1 vector of random effects, 1 ≤ i ≤ s, ε is a N × 1 vector of errors; X
is a N × p design matrix of full rank p, Zi is a N × mi design matrix, 1 ≤ i ≤ s.
The components of αi are i.i.d. ∼ Fi with mean 0 and variance σ2

i , 1 ≤ i ≤ s, the
components of ε are i.i.d. ∼ F0 with mean 0 and variance σ2

0 > 0, and α1, . . . , αs, ε

are mutually independent.
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Under model (1.1), the BLUE for β and BLUP for αi are given by (e.g.,
Robinson (1991), Speed (1991))

β̃ = (X ′V −1
µ X)−1X ′V −1

µ y, (1.2)

and
α̃i = µiZ

′
iV

−1
µ (y − Xβ̃), i = 1, . . . , s, (1.3)

where Vµ = IN + µ1Z1Z
′
1 + · · · + µsZsZ

′
s, µi = σ2

i /σ
2
0 , 1 ≤ i ≤ s. Since the

above expressions depend on the dispersion parameters or variance components
µi, 1 ≤ i ≤ s, they can not be calculated unless the µ′

is are known. A situation
of more practical interest is when the variance components are unknown, in
which case one has to substitute the variance components in (1.2) and (1.3)
by their estimates, say µ̂. The resulting expressions are usually referred to as
the empirical BLUE (EBLUE) and empirical BLUP (EBLUP) (Harville (1991)),
given respectively by

β̂ = (X ′V −1
µ̂ X)−1X ′V −1

µ̂ y, (1.4)

α̂i = µ̂iZ
′
iV

−1
µ̂ (y − Xβ̂), i = 1, . . . , s. (1.5)

Note both the EBLUE and EBLUP are no longer linear functions of the obser-
vations y.

There has been much concern about the performance of the EBLUE and
EBLUP (e.g., Robinson (1991), Ghosh and Rao (1994) and discussions following
the two articles). Asymptotically, it is generally believed that good behavior in
estimation of the variance components will be transmitted to the EBLUE and
EBLUP. For example, if the variance components estimates are asymptotically
normal, one would expect β̂ to be likewise. There is more to say about the
asymptotic properties of the EBLUP. One conjecture is that the empirical dis-
tribution (e.d.) of the EBLUPs (i.e., components of α̂i) converges to the true
distribution of the corresponding random effects. Such a question arises when
there is a need to estimate not just the variance but the entire distribution of
some random effects. An important problem in estimating the variance compo-
nents is to obtain a consistent estimate of the asymptotic variance-covariance
matrix (AVCM) and hence the MSE of the estimates. Since (in a non-normal
situation) the AVCM may contain unknown parameters such as the third and
forth moments of the random effects as well as the variance components, having
consistent variance component estimates is not enough to provide a good approx-
imation to the AVCM. One promising idea is to use moments of the e.d. of the
EBLUPs to estimate those of the corresponding random effects. Another impor-
tant problem in mixed model analysis is model diagnostics. In practice, methods
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are needed for checking the basic model assumptions such as normality, inde-
pendence, and linearity. Unlike standard regression diagnostics, however, mixed
model diagnostics techniques are not well-developed (see Ghosh and Rao (1994),
§7.1 for a summary of literature). Since the EBLUPs are thought, in some way,
to resemble the random effects, it is natural to consider the use of the EBLUPs
to check, for example, whether the random effects are distributed as they are as-
sumed (e.g., Lange and Ryan (1989), Calvin and Sedransk (1991)). Asymptotic
results for the e.d. of the EBLUPs will certainly provide a theoretical basis for
such methods. Note that we will not assume the random effects or errors are
normally or even symmetrically distributed. Despite the high expectation, these
are fundamental issues that have to be addressed rather seriously.

In (1.4) and (1.5) we did not specify what the estimate µ̂ was. There are
certainly many choices. Two of the most frequently used estimates for the µ′

is
and λ = σ2

0 are the maximum likelihood estimates (MLE) and the restricted
maximum likelihood (REML) estimates. As some authors have pointed out (e.g.,
Harville (1977), Thompson (1980), Fellner (1986), and Speed (1991)), REML
and BLUP are intimately connected. In fact, REML equations can be derived by
simply equating observed with expected sum of squares of BLUPs. On the other
hand, the MLE for λ, µ and β can be obtained by finding the MLE for λ and µ

first and then calculating β̂ by (1.4), using the MLE for µ as µ̂. Miller (1977)
considered a special class of the mixed model (1.1) — models having a standard
ANOVA structure. Under normality assumption, he proved that asymptotically
there exists a sequence of roots to the maximum likelihood (ML) equations for
λ, µ and β which are (jointly) asymptotically normal. Recently, Richardson and
Welsh (1994) considered asymptotic normality of β̂, where µ̂ was chosen to be
the REML estimate. A main feature of the later work is that the authors did not
assume that the data is normally distributed. However, their study was restricted
to hierarchical (nested) models. The literature on asymptotic properties of the
EBLUP is very limited. Assuming normality, Lange and Ryan (1989) considered
asymptotic normality of the e.d. of the (standardized) empirical Bayes estimators
(EBE) of the random effects, which in the normal situation are equivalent to the
EBLUP (e.g., Harville (1991)). One of the key assumptions they made was that
the e.d. of the EBE with unknown parameters replaced by their true values rather
than estimates is jointly asymptotically normal with estimates of the unknown
parameters, which may not be easy to check.

In this work, we shall consider both the joint asymptotic normality of λ̂, µ̂

and β̂ and the convergence of the e.d. of the EBLUPs for a general mixed model
(1.1), where λ̂ and µ̂ are chosen to be the REML estimates. Since normality is not
assumed, we have to make it clear what is meant by the REML estimates. The
REML estimates for λ and µi, 1 ≤ i ≤ s are defined as solutions of the following



864 JIMING JIANG

REML equations with the requirement that they belong to the parameter space
Θ = {θ : λ > 0, µi ≥ 0, 1 ≤ i ≤ s}, where θ = (λ, µ1, . . . , µs)′. The REML
equations under normality are equivalent to

z′V (A,µ)−1z = λ(N − p), (1.6)

z′V (A,µ)−1A′ZiZ
′
iAV (A,µ)−1z = λtr(Z ′

iAV (A,µ)−1A′Zi), 1 ≤ i ≤ s, (1.7)

where z = A′y, A is a N × (N − p) matrix such that

rank(A) = N − p, A′X = 0, (1.8)

and

V (A,µ) = A′A +
s∑

i=1

µiA
′ZiZ

′
iA. (1.9)

(e.g., Searle, Casella and McCulloch (1992)). Note that our definition of the
REML estimates is the same as that of Richardson and Welsh (1994) except that
they did not require θ ∈ Θ.

We shall state our main results in §3 and interpret the conditions. In §4
we use examples to illustrate the application of the main theorems. The proofs
of the theorems are given in §5, and a concluding remark is made in §6. Some
notation will be used throughout, which we summarize in §2. Of course, the best
way of using the notation is to skip §2 for the moment, and come back to it when
needed.

2. Notation

In addition to the notation already introduced, we define the following.
For an integer n, let In and 1n be the n-dimentional identity matrix and

vector of 1’s, respectively. Let A,B,A1, . . . , As be matrices. Define ‖A‖ =
λ

1/2
max(A′A), ‖A‖R = tr1/2(A′A); Cor(A1, . . . , As) = (cor(Ai, Aj)) if A1, . . . , As �=

0, and 0 otherwise, where cor(Ai, Aj) = tr(A′
iAj)/‖Ai‖R‖Aj‖R; diag(A1, . . . , As)

or diag(Ai) = the block diagonal matrix with A1, . . . , As on its diagonal; All =
the l’th diagonal element of A.

Let Xj be the j’s column of X, 1 ≤ j ≤ p; m = m1 + · · · + ms, µ =
(µ1 · · · µs)′; b(µ) = (IN

√
µ1Z1 · · · √µsZs)′, V (µ) = AV (A,µ)−1A′, V0(µ) =

b(µ)V (µ)b(µ)′, Vi(µ) = b(µ)V (µ)ZiZ
′
iV (µ)b(µ)′; U0 = IN/λ0, V0 = IN−p/λ0,

Ui = V
−1/2
µ0 ZiZ

′
i V

−1/2
µ0 , Vi = V (A,µ0)−1/2A′ZiZ

′
iAV (A,µ0)−1/2, 1 ≤ i ≤ s. Let

B(µ) = (X ′V −1
µ X)−1X ′V −1

µ .
Let pi(N), 0 ≤ i ≤ s be sequences of positive numbers. For 0 ≤ i, j ≤ s, denote

I
(N)
ij =tr(ViVj)/pi(N)pj(N),K(N)

ij =
∑N+m

l=1 (EW 4
Nl−3)Vi(µ0)llVj(µ0)ll/λ

1(i=0)+1(j=0)

0
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pi(N)pj(N), where

WNl =

{
εl/

√
λ0, 1 ≤ l ≤ N,

αil−N−
∑

k<i
mk

/
√

λ0µ0i, N+
∑

k<i mk+1 ≤ l ≤N+
∑

k≤imk, 1≤ i≤s.

Let IN (θ0) = (I(N)
ij ),KN (θ0) = (K(N)

ij ), JN (θ0) = 2IN (θ0) + KN (θ0),MN =

MN (θ0) = J
−1/2
N (θ0)IN (θ0); Finally, the abbreviation w.p. → 1 stands for “with

probability tending to one”.

3. Main Results

We shall not assume that the random effects and errors are normally dis-
tributed. However, it is required that

Eε4
1 < ∞, Eα4

i1 < ∞, 1 ≤ i ≤ s. (3.1)

Since we shall consider the joint asymptotic normality of estimates of both the
fixed effects and the variance components, for which a central limit theorem for
quadratic forms of random variables is needed, condition (3.1) is necessary. The
following definitions are given and explained in Jiang (1996).

Definition 3.1. Model (1.1) is said to be asymptotically-identifiable and infin-
itely-informative under the invariant class (AI4) if

lim inf λmin(Cor(V0, V1, . . . , Vs)) > 0 and lim ‖Vi‖R = ∞, 0 ≤ i ≤ s.

Definition 3.2. Model (1.1) is said to be non-degenerate (ND) if

λmin(Var (
( ε2

1

ε1

)
)) ∧ min

1≤i≤s
λmin(Var (

(α2
i1

αi1

)
)) > 0.

Note that the definition of non-degeneracy here is more restrictive than that in
Jiang (1996), which is necessary when considering the joint asymptotic normality
of both θ̂ and β̂.

3.1. Asymptotic property of the EBLUE

Let p0(N) =
√

N − p, pi(N) be any sequence ∼ ‖Vi‖R, 1 ≤ i ≤ s. Define
(see §2) p(N) = diag(p0(N) · · · ps(N)), PN = MNp(N), QN = (X ′V −1

θ0
X)1/2,

and SN =
(Is+1 RN

R′
N Ip

)
, where RN = J

1/2
N TNCN ,

TN = (Vi(µ0)llEW 3
Nl/λ

1(i=0)

0 pi(N))0≤i≤s,1≤l≤N+m,

CN = b(µ0)V −1/2
µ0

X(X ′V −1
µ0

X)−1/2 = (CN,1 · · ·CN,N+m)′ = (clj)1≤l≤N+m,1≤j≤p.
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Theorem 3.1. Suppose model (1.1) is AI 4 and ND, and (3.1) is satisfied. Fur-
thermore, suppose

max
1≤l≤N+m

|CN,l| −→ 0. (3.2)

Then there exist w.p. → 1 REML estimates λ̂N , µ̂Ni, 1 ≤ i ≤ s such that with
θ̂N = (λ̂N , (µ̂Ni)′1≤i≤s)

′ and β̂N = B(µ̂N )y (see §2),

SN

(
PN 0
0 QN

)(
θ̂N − θ0

β̂N − β0

)
L−→ N(0, Is+p+1). (3.3)

Remark 1. Condition (3.2) corresponds to negligibility. It is easy to show by
examples that this condition can not be dropped. In particular, when s = 0, i.e.,
when there is no random effect, model (1.1) reduces to a regression model and
condition (3.2) to condition (4.3) of Lai and Wei (1982).

Remark 2. The AI4 condition is required for estimating the variance compo-
nents. Some may wonder why there is no similar assumption for the estimation
of the fixed effects, as there were in Millar (1977) and Richardson and Welsh
(1994). Here is the explanation:
(1) The REML estimates are defined as solution of the REML equations, which

do not have an analytic solution in general. Asymptotic-identifiability ensures
the existence (w.p.→ 1) of a sequence of roots to the REML equations, which
are consistent if infinite-informativity is further satisfied. AI4, plus non-
degeneracy, also implies negligibility (i.e., (26) in Jiang (1996)), which leads
to asymptotic normality. Note that AI4 implies mi → ∞, 1 ≤ i ≤ s.

(2) Unlike θ̂N , β̂N has an explicit expression (1.4) after the variance components
being estimated. Furthermore, (3.3) is a very general form of asymptotic
normality, which does not necessarily imply consistency unless one specifies
the order of QN (see Corollary 3.1 below). Therefore all one needs here is,
in addition to AI4 and ND, the negligibility (3.2).

Remark 3. The sequence θ̂N in Theorem 3.1 can be identified under a strength-
ening of AI4 (Jiang (1997)).

We say a sequence of matrices {BN} is bounded from above if lim sup ‖BN‖ <

∞, and bounded from below if lim sup ‖B−1
N ‖ < ∞.

Corollary 3.1. Under the assumption of Theorem 3.1, if there are sequences
lj(N), 1 ≤ j ≤ p such that

0 < lim inf λmin(l(N)−1(X ′V −1
µ0

X)l(N)−1)

≤ lim sup λmax(l(N)−1(X ′V −1
µ0

X)l(N)−1) < ∞, (3.4)
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where l(N) = diag(l1(N) · · · lp(N)), then

SN

(
MN 0
0 HN

)(
p(N)(θ̂N − θ0)
l(N)(β̂N − β0)

)
L−→ N(0, Is+p+1), (3.5)

where HN = QN l(N)−1, and the normalizing matrix SN

(MN 0
0 HN

)
is bounded

from above and below.

Thus, under the conditions of Corollary 3.1, β̂N is consistent if and only if
lj(N) → ∞, 1 ≤ j ≤ p.

By (3.5), the asymptotic covariance matrix of
( θ̂N − θ0

β̂N − β0

)
is given by

V (N) =

(
P (N)−1M−1

N M
′−1
N P (N)−1 P (N)−1M−1

N RNH
′−1
N l(N)−1

l(N)−1H−1
N R′

NM
′−1
N P (N)−1 l(N)−1H−1

N H
′−1
N l(N)−1

)

=

(
Ĩ−1
N J̃N Ĩ−1

N Ĩ−1
N C̃NQ−1

N

Q−1
N C̃

′
N Ĩ−1

N (X ′V −1
θ0

X)−1

)
, (3.6)

where ĨN = (tr(ViVj))0≤i,j≤s, J̃N = 2ĨN + K̃N with

K̃N =
(N+m∑

l=1

(EW 4
NL − 3)Vi(µ0)llVj(µ0)ll/λ

1(i=0)+1(j=0)

0

)
0≤i,j≤s

,

and C̃N = (
∑N+m

l=1 EW 3
NlVi(µ0)llclj/λ

1(i=0)

0 )0≤i≤s,1≤j≤p. Note that V (N) does not
depend on the normalizing sequences p(N) and l(N). In particular, if Eε3

1 =
0, Eα3

i1 = 0, 1 ≤ i ≤ s, which are true when the errors and random effects are
symmetrically distributed, then

V (N) =

(
(ĨN )−1J̃N (ĨN )−1 0

0 (X ′V −1
θ0

X)−1

)
, (3.7)

i.e. the θ̂N and β̂N are asymptotically independent. If furthermore κ
(4)
0 =

Eε4
1/σ

4
00 − 3 = 0, κ(4)

i = Eα4
i1/σ

4
0i − 3 = 0, 1 ≤ i ≤ s, which hold under nor-

mality, then (ĨN )−1J̃N (ĨN )−1 = 2(ĨN )−1.

3.2. Asymptotic property of the EBLUP

Before stating any asymptotic result, let us speculate about what to expect.
One conjecture is that the e.d.’s of the EBLUPs converge to the true distributions
of their corresponding random effects, given general conditions that ensure the
consistency of the REML estimates. This is, however, not true.
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Example 3.1. Consider a simple random effects model yi = αi + εi, i =
1, . . . ,m; and yi = εi, i = m + 1, . . . , 2m, where the random effects α1, . . . , αm

are i.i.d. ∼ N(0, σ2
α), and the errors ε1, . . . , ε2m i.i.d. ∼ N(0, σ2

ε ). The EBLUPs
for the α’s are

α̂i =
µ̂

1 + µ̂
yi =

µ̂

1 + µ̂
(αi + εi), i = 1, . . . ,m.

Therefore
1
m

m∑
i=1

1(α̂i≤x)
P−→ Φ

(√1 + µ√
λµ

x
)

for all x. But Φ(
√

1+µ√
λµ

x) �= P (α1 ≤ x) = Φ( 1√
λµ

x) no matter what λ and µ.

Example 3.2. Consider the following random effects model yij = β+αi+εij, i =
1, . . . ,m, j = 1, . . . , n(m,n ≥ 2), where β is an unknown mean, α’s and ε’s are
random effects and errors, respectively. The EBLUPs are

α̂i =
µ̂n

1 + µ̂n
(αi − ᾱ. + ε̄i. − ε̄..), i = 1, . . . ,m.

It follows that 1
m

∑m
i=1 1(α̂i≤x)

P−→ P (α1 ≤ x)for all x if and only if m, n → ∞.

Example 3.3. This time we consider a two-way balanced random effects model
yijk = αi +γij +εijk, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l. By direct calculation
we obtain

α̂i =
µ̂1nl

1 + µ̂2l + µ̂1nl
(αi + γ̄i. + ε̄i..), i = 1, . . . ,m,

γ̂ij =
µ̂2l

1 + µ̂2l

(
γij +

1 + µ̂2l

1 + µ̂2l + µ̂1nl
αi − µ̂1nl

1 + µ̂2l + µ̂1nl
γ̄i. + ε̄ij. − ε̄i..

)
,

i = 1, . . . ,m, j = 1, . . . , n.

For the e.d. of the α̂’s and γ̂’s to converge to the true distributions of the α’s
and γ’s, one needs m,n, l all → ∞.

All of the above examples satisfy the AI4 condition, therefore the REML
estimates for the variance components are consistent (Jiang (1996)). However,
the e.d. of the EBLUPs will either not converge to the true distribution of the
corresponding random effects, or converge only under further restriction on the
way that the size of the design is growing. It is not hard to see why in Example
3.1 and 3.2 (when n does not → ∞) the e.d. of the α̂’s does not converge to the
distribution of the α’s: if the number of repetition of each random effect does
not increase, how can we distinguish the distribution of random effects from that
of the errors. An analogous explanation may be given for Example 3.3 but we
leave this for later discussion.
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The following theorem gives sufficient conditions for the convergence of the
e.d.’s of the EBLUPs to the true distributions of their corresponding random
effects. For 1 ≤ i ≤ s, let Vi−(A,µ) = A′A +

∑
j �=i µjA

′ZjZ
′
jA,Vi−(µ) =

AV −1
i− (A,µ)A′,Hi(µ) = Z ′

iVi−(µ)Zi; and Θo be the interior of Θ.

Theorem 3.2. Suppose model (1.1) is AI4 and θ0 ∈ Θo, and (3.1) is satisfied.
Furthermore, suppose

1
mi ∧ mj

tr((Z ′
iV (µ0)Zj)(Z ′

iV (µ0)Zj)′) −→ 0, 1 ≤ i �= j ≤ s, (3.8)

1
mi

tr((Imi + µ0iHi(µ0))−1) −→ 0, 1 ≤ i ≤ s. (3.9)

Then there exists w.p.→ 1 REML estimates λ̂N , µ̂Ni, 1 ≤ i ≤ s such that
{(‖V0‖R(λ̂N − λ0), (‖Vi‖R(µ̂Ni − µ0i))

′
1≤i≤s)

′} is bounded in probability and for
1 ≤ i ≤ s

1
mi

mi∑
k=1

1(α̂ik≤x)
P−→ Fi(x) = P (αi1 ≤ x), x ∈ CFi , (3.10)

1
mi

mi∑
k=1

α̂q
ik

P−→ Eαq
i1, q = 1, 2, 3, 4, (3.11)

where α̂i = (α̂ik)1≤k≤mi
, 1 ≤ i ≤ s are the BLUP’s with the unknown variance

components substituted by the above REML estimates, and CF = {x ∈ R : F is
continuous at x}. If moreover, Fi is continuous for some i (1 ≤ i ≤ s), then the
convergence in (3.10) is uniform in x ∈ R for the same i.

Remark 1. As in Remark 3 following Theorem 3.1, the sequences λ̂N , µ̂Ni, 1 ≤
i ≤ s may be identified.

Remark 2. Taking q = 2 in (3.11), the theorem provides (another set of)
consistent estimates of the variance components σ2

i = Eα2
i1, 1 ≤ i ≤ s.

To see what conditions (3.8) and (3.9) actually mean, let us consider an
important special case of model (1.1) — the balanced case.

Example 3.4. (balanced mixed models) A balanced r-factor mixed model of
the analysis of variance can be written as (1.1) where each design matrix is
a Kronecker product. Namely, X = 1d1

n1

⊗ · · ·⊗ 1dr+1
nr+1, Zi = 1i1

n1

⊗ · · ·⊗ 1ir+1
nr+1,

where d = (d1 · · · dr+1) ∈ Sr+1 = {0, 1}r+1, i = (i1 · · · ir+1) ∈ S ⊂ Sr+1; 10
n =

In, 11
n = 1n (e.g., Jiang (1996)). Among our previous examples, Example 3.2 and

3.3 are balanced. The following can be shown by Lemma 7.3 in Jiang (1996) and
an argument similar to its proof:
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(i) (3.8) is true in the balanced case provided for 1 ≤ q ≤ r + 1, nq → ∞ if iq = 0
for some i ∈ S (i.e., nq → ∞ if factor q appears in the indexes of some random
effects).

(ii) (3.9) is true provided the model is unconfounded and mi/N −→ 0,∀i ∈ S,
which means the number of appearances of each random effect (i.e., each
component of any vector αi, i ∈ S) must go to ∞.

Note. (ii) in the above agrees with the result of some recent work by Verbeke
and Lesaffre (1996), where they found that the EBLUP is not asymptotically
accurate if the number of repeated measurements corresponding to the same
random effect is not growing.

Applying (i) and (ii) to Example 3.3, we see (3.8) and (3.9) are true provided
m,n, l → ∞.

From Theorem 3.2 we obtain consistent estimates of the kurtosis. namely,
κ̂

(3)
i = ( 1

mi

∑mi
k=1 α̂3

ik)/(λ̂µ̂i)3/2, κ̂
(4)
i = ( 1

mi

∑mi
k=1 α̂4

ik)/(λ̂µ̂i)2−3, 1 ≤ i ≤ s, where
λ̂ and µ̂′

is are the REML estimates. Another set of consistent estimates may be
obtained by replacing λ̂µ̂i by 1

mi

∑mi
k=1 α̂2

ik, 1 ≤ i ≤ s.
However, in order to get an approximation of the asymptotic covariance

matrix (3.6), one also needs to estimate κ
(r)
0 , r = 3, 4 consistently. This can be

achieved by defining the following “EBLUP” for the errors εi, 1 ≤ i ≤ N ,

ε̂ = y − Xβ̂ − Z1α̂1 − · · · − Zsα̂s = V (µ̂)y, (3.12)

which generalizes the “residuals” in linear regression. A similar result to Theorem
3.2 can be proved for ε̂.

Lemma 3.1. If in addition to the conditions of Theorem 3.2 we have

mi/N −→ 0, 1 ≤ i ≤ s, (3.13)

then

1
N

N∑
k=1

1(ε̂k≤x)
P−→ F0(x) = P (ε1 ≤ x), x ∈ CF0, (3.14)

1
N

N∑
k=1

ε̂q
k

P−→ Eεq
1, q = 1, 2, 3, 4, (3.15)

where ε̂ = (ε̂k)1≤k≤N is given by (3.12) with the unknown variance components
substituted by the REML estimates in Theorem 3.2. If moreover, F0 is continuous,
then the convergence in (3.14) is uniform in x ∈ R.

Thus, κ̂0
(3) = ( 1

N

∑N
k=1 ε̂3

k)/λ̂
3/2, κ̂0

(4) = ( 1
N

∑N
k=1 ε̂4

k)/λ̂
2 − 3 are consistent

estimates of κ
(r)
0 , r = 3, 4. As before, one may replace the REML estimates λ̂ by

1
N

∑N
k=1 ε̂2

k and still maintain consistency.
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4. Examples

The first two examples are used to illustrate the asymptotics for the EBLUE.

Example 4.1. Consider, once again, Example 3.2. Since the model is balanced
and unconfounded, the AI4 condition is satisfied provided m → ∞ (Jiang (1996)).
By direct calculation, it can be shown that

max
1≤l≤N+m

|CN,l| ≤ (
n−1 ∨ µ0n

m(1 + µ0n)
)1/2 −→ 0 as m → ∞,

and X ′V −1
θ0

X = [λ0(1+µ0n)]−1mn. Thus, by Corollary 3.1 the REML estimates
for θ and EBLUE for β are jointly asymptotically normal. Further calculation
shows, by (3.5), that



√

mn − 1(λ̂ − λ0)√
m(µ̂ − µ0)√
m(β̂ − β0)


 L−→ N(0,




λ2
0(2 + κ

(4)
0ε ) 0 0

0 µ2
0(2 + κ

(4)
0α ) λ

1/2
0 µ

3/2
0 κ

(3)
0α

0 λ
1/2
0 µ

3/2
0 κ

(3)
0α λ0µ0


),

(4.1)
where κ

(4)
0ε = Eε4

11/σ
4
0ε − 3, κ

(4)
0α = Eα4

1/σ
4
0α − 3, and κ

(3)
0α = Eα3

1/σ
3
0α.

One may compare Example 4.1 with the same example discussed by Miller
(1977) under normality (therefore κ

(r)
0ε = κ

(r)
0α = 0, r = 3, 4), where the variance

components were estimated by the MLE. A generalization of Example 4.1 was
also considered by Richardson and Welsh (1994) (hereafter RW), although they
did not work out the details. Note that one condition is missing in both Theorem
1 and 2 of RW: There should be an extra assumption in condition B of RW which
ensures the nonsingularity of F there. For example, in Example 4.1, a sufficient
condition for |F | �= 0 is that Var (ε2

11) > 0 and Var (α2
1) > 0. In our case, since

we are considering the joint asymptotic normality of θ̂ and β̂, the corresponding

condition is Var ((
ε2
11

ε11
)) > 0 and Var ((

α2
1

α1
)) > 0, i.e., ND.

Example 4.2. In this example, we show that condition A(ii), B(i) and B(iii) of
RW for hierarchical models imply (3.2). In fact, under the hierarchical structure
of RW (and keeping the notation there)

CN =
σ0c√

n




In

σ01Z
′
1

...
σ0c−1Z

′
c−1






V −1
01 X1

...
V −1

0g Xg


 (n−1X ′V −1

0 X)−1/2.

Let Z(i, k)′ = (Z ′
i1k · · ·Z ′

igk), where Zijk is a mj-vector corresponding to Vj , 1 ≤
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j ≤ g, then

|Z(i, k)′V −1
0 X(n−1X ′V −1

0 X)−1/2| = |(n−1X ′V −1
0 X)−1/2

g∑
j=1

X ′
jV

−1
0j Zijk|

≤ ‖(n−1X ′V −1
0 X)−1/2‖

g∑
j=1

|XjV
−1
oj Zijk|

≤ σ−2
0c ‖ · · · ‖(n−1

g∑
j=1

‖Xj‖2+δ
R )

1
2+δ n

1
2+δ

g∑
j=1

|Zijk|2

≤ σ−2
0c Q‖(n−1X ′V −1

0 X)−1/2‖(n−1
g∑

j=1

‖Xj‖2+δ
R )

1
2+δ n

1
2+δ , 1≤k≤pi, 1≤ i≤c − 1,

by A(ii) of RW and the fact that |Zijk|2 is 0 or a positive integer. Also

‖V −1
0j Xj(n−1X ′V −1

0 X)−1/2‖R

≤ σ−1
0c ‖(n−1X ′V −1

0 X)−1/2‖
(
n−1

g∑
j=1

‖Xj‖2+δ
R

) 1
2+δ n

1
2+δ , 1 ≤ j ≤ g.

Thus max1≤l≤N+m |CN,l| ≤ σ−1
0c (Q ∨ 1)λmax((n−1X ′V −1

0 X)−1) (n−1∑g
j=1

‖Xj‖2+δ
R )

1
2+δ n

− δ
2(2+δ) −→ 0 by conditions B(i) and B(ii) of RW.

Our third example is used to demonstrate the asymptotics for the EBLUP.

Example 4.3. Consider an unbalanced mixed model yijk = βi + αij + εijk, i =
1, . . . , p, j = 1, . . . ,mi, k = 1, . . . , ni, where the β′s, α′s and ε’s are fixed, random
effects and errors, respectively. Suppose the model is AI4 and θ0 ∈ Θo. Write
the model as y = Xβ +Zα+ ε, where X = diag(1mi

⊗
1ni), Z = diag(Imi

⊗
1ni).

The EBLUPs can be derived as

α̂ij =
µ̂ni

1 + µ̂ni
(ȳij. − ȳi..), (4.2)

i = 1, . . . , p, j = 1, . . . ,mi, where ȳij. =
∑ni

k=1 yijk/ni, ȳi.. =
∑mi

j=1

∑ni
k=1 yijk/mini.

On the other hand, it is easy to show that m/N =
∑p

i=1 mi/
∑p

i=1 mini → 0,
and

1
m

tr((Im + µ0H(µ0))−1) =
p∑

i=1

mi + µ0ni

1 + µ0ni
/

p∑
i=1

mi −→ 0 (4.3)

provided ni −→ ∞, 1 ≤ i ≤ p and m =
∑p

i=1 mi −→ ∞. Thus, by Theorem 3.2
and Lemma 3.1, the e.d.’s of the α̂′s and ε̂′s converge to the true distributions of
the α′s and ε′s, respectively, where

ε̂ijk = yijk − ȳi.. − α̂ij = yijk − µ̂ni

1 + µ̂ni
ȳij. − 1

1 + µ̂ni
ȳi.., (4.4)
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i = 1, . . . , p, j = 1, . . . ,mi, k = 1, . . . , ni. The estimated kurtoses

κ̂(3)
α =

( 1
m

p∑
i=1

mi∑
j=1

α̂3
ij

)
/(λ̂µ̂)3/2, κ̂(4)

α =
( 1
m

p∑
i=1

mi∑
j=1

α̂4
ij

)
/(λ̂µ̂)2 − 3,

κ̂(3)
ε =

( 1
N

p∑
i=1

mi∑
j=1

ni∑
k=1

ε̂3
ijk

)
/λ̂3/2, κ̂(4)

ε =
( 1
N

p∑
i=1

mi∑
j=1

ni∑
k=1

ε̂4
ijk

)
/λ̂2 − 3

are consistent, where λ̂ and µ̂ are the REML estimates of λ = σ2
ε and µ = σ2

α/σ2
ε .

Therefore by (3.6) an approximation to the asymptotic covariance matrix of the
REML estimates and the EBLUE is given by:

Var (


 λ̂

µ̂

β̂


) ∼

(
Î−1Ĵ Î−1 Î−1F̂

F̂ ′Î−1 Ĝ

)
, (4.5)

where Î = (Îij)0≤i,j≤1, Ĵ = (Ĵij)0≤i,j≤1, F̂ = (F̂ij)0≤i≤1,1≤j≤p, Ĝ = diag(λ̂(1 +
µ̂ni)/mini);

Î00 = (N − p)/λ̂2, Î01 = Î10 =
p∑

t=1

(mt − 1)(
µ̂nt

1 + µ̂nt
)/λ̂µ̂, Î11

=
p∑

t=1

(mt − 1)(
µ̂nt

1 + µ̂nt
)2/µ̂2;

Ĵ00 = 2Î00 + λ̂−2κ̂(4)
ε

p∑
t=1

mtnt

(1 + µ̂nt)2
(1 + µ̂(nt − 1) − 1

mtnt
)2

+λ̂−2κ̂(4)
α

p∑
t=1

mt(1 − 1
mt

)2(
µ̂nt

1 + µ̂nt
)2,

Ĵ01 = Ĵ10 = 2Î01 + λ̂−1κ̂(4)
ε

p∑
t=1

mtnt

(1 + µ̂nt)3
(1 + µ̂(nt − 1) − 1

mtnt
)(1 − 1

mt
)

+λ̂−1µ̂−2κ̂(4)
α

p∑
t=1

mt(1 − 1
mt

)2(
µ̂nt

1 + µ̂nt
)3,

Ĵ11 = 2Î11 + κ̂(4)
ε

p∑
t=1

mtnt

(1 + µ̂nt)4
(1 − 1

mt
)2 + µ̂−4κ̂(4)

α

p∑
t=1

(1 − 1
mt

)2(
µ̂nt

1 + µ̂nt
)4;

F̂0j = λ̂−1/2κ̂(3)
ε

1 + µ̂(nj − 1) − m−1
j n−1

j

(1 + µ̂nj)1/2
+ (λ̂−1µ̂)1/2κ̂(3)

α

µ̂nj(1 − m−1
j )

(1 + µ̂nj)1/2
,

F̂1j = λ̂1/2κ̂(3)
ε

1 − m−1
j

(1 + µ̂nj)3/2
+ (λ̂µ̂)1/2κ̂(3)

α

n2
j(1 − m−1

j )
(1 + µ̂nj)3/2

.
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Note that (4.5) is derived without normality or any symmetry assumption for
the distributions of the α′s and ε′s (otherwise it would be much simpler).

5. Proofs

The proof of Theorem 3.1 is based on a generalization of Theorem 5.1 in Jiang
(1996), i.e., a central limit theorem for combination of quadratic and linear forms
of random variables.

For each n, let Xn1, . . . ,Xnkn be independent with mean 0, An=(anij)1≤i,j≤kn

be a symmetric matrix, and bn=(bni)1≤i≤kn be a vector. LetXn=(Xn1, . . . ,Xnkn)′,
An = {1 ≤ i ≤ kn : anii �= 0}.
Theorem B. Suppose

inf
n

min
1≤i≤kn

λmin
(
Var (

(X2
ni

Xni

)
)
)

> 0, (5.1)

sup
n

(max
i∈An

EX4
ni1(|Xni|>x)) ∨ ( max

1≤i≤kn

EX2
ni1(|Xni|>x)) →

x→∞ 0. (5.2)

Then X ′
nAnXn + b′nXn − EX ′

nAnXn

[Var (X ′
nAnXn + b′nXn)]1/2

L→ N(0, 1) (5.3)

provided
λmax(A2

n) ∨ max1≤i≤kn b2
ni

tr(A2
n) +

∑kn
i=1 b2

ni

−→ 0. (5.4)

Theorem B is a special case of a more general theorem. Let Ao
n = An −

diag(anii, 1 ≤ i ≤ kn). Given numbers {Lni, 1 ≤ i ≤ kn, n ≥ 1}, define γ
(1)
ni =

EX4
ni1(|Xni|≤Lni), γ

(2)
ni = E(X2

ni − 1)41(|Xni|≤Lni); δ
(1)
ni = EX2

ni1(|Xni|>Lni), δ
(2)
ni =

E(X2
ni − 1)21(|Xni|>Lni); γnij = γ

(1)
ni γ

(1)
nj if i �= j, and γ

(2)
ni if i = j; δnij = 1

2(δ(1)
ni +

δ
(1)
nj ) if i �= j, δ

(2)
ni if i = j ∈ An, and 0 otherwise.

Theorem A. Suppose EX2
ni = 1, 1 ≤ i ≤ kn and

1
σ2

n

{ kn∑
i,j=1

a2
nijδnij +

kn∑
i=1

b2
niδ

(1)
ni

}
−→ 0, (5.5)

1
σ4

n

{ kn∑
i,j=1

a4
nijγnij +

kn∑
i=1

[(
∑
j �=i

a2
nij)

2 + b4
ni]γ

(1)
ni

}
−→ 0, (5.6)

where σ2
n = Var (X ′

nAnXn + b′nXn). Then

X ′
nAnXn + b′nXn − EX ′

nAnXn

[Var (X ′
nAnXn + b′nXn)]1/2

L−→ N(0, 1) (5.7)
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provided
λmax((Ao

n)2)
σ2

n

−→ 0. (5.8)

Proof of Theorem A. As in the proof of Theorem 5.2 in Jiang (1996) (hereafter
PT5.2)

1
σn

(X ′
nAnXn + b′nXn − EX ′

nAnXn) =
kn∑
i=1

ξni +
kn∑
i=1

ηni,

where

ξni =
1
σn

{
aniiUni + [bni + 2(

∑
j<i

anijunj)]uni

}
,

ηni =
1
σn

{
aniiVni + 2(

∑
j<i

anijvnj)uni + [bni + 2(
∑
j<i

anijXnj)]vni

}
,

Uni, Vni, uni, vni are as in PT5.2. (5.5) and (5.6) imply that

E
( 1
σn

kn∑
i=1

bnivni

)2 ≤ 1
σ2

n

kn∑
i=1

b2
niδ

(1)
ni −→ 0,

E
( 1
σ4

n

max
1≤i≤kn

b4
niu

4
ni

)
≤ 16

σ4
n

kn∑
i=1

b4
niγ

(1)
ni −→ 0.

Thus by PT5.2
∑kn

i=1 ηni
L2−→ 0, and max1≤i≤kn |ξni| is bounded in L2 and → 0

in probability. Now
kn∑
i=1

ξ2
ni =

3∑
i=1

Ui +
3∑

i=1

Vi,

where

U1 = σ−2
n

kn∑
i=1

[(aniiUni + bniuni)2 − E(aniiUni + bniuni)2]

U2 = 4σ−2
n

kn∑
i=1

(
∑
j<i

anijunj)[anii(Uniuni − E(Uniuni)) + bni(u2
ni − Eu2

ni)],

V1 = σ−2
n

kn∑
i=1

E(aniiUni + bniuni)2,

V2 = 4σ−2
n

kn∑
i=1

(
∑
j<i

anijunj)(aniiEUniuni + bniEu2
ni),
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and U3 and V3 are as in PT5.2. Note that we now have a new expression for σ2
n:

σ2
n =

kn∑
j=1

Var (aniiX
2
ni + bniXni) + 2

∑
i�=j

a2
nij. (5.9)

By (5.6) it is easy to show, as in PT5.2, that Ui
L2−→ 0, i = 1, 2, 3. And by (5.5)

and (5.9)

V1 = σ−2
n

kn∑
i=1

Var (aniiX
2
ni + bniXni) + o(1).

Finally, by Lemma 5.1 in Jiang (1996), (5.8), (5.9), and similar argument as in
PT5.2 one can show

EV 2
2 ≤ (32/

√
2)(λmax((Ao

n)2)/σ2
n)1/2(1 + o(1)) −→ 0.

The result now follows as in PT5.2, observing the same identity for V3:

V3 = 2σ−2
n

∑
i�=j

a2
nij + op(1).

Proof of Theorem B. This is very similar to that of Theorem 5.1 in Jiang
(1996). Note (5.1) implies there exist δ,M > 0 such that

δ(a2
nii + b2

ni) ≤ Var (aniiX
2
ni + bniXni) ≤ M(a2

nii + b2
ni),

1 ≤ i ≤ kn, n ≥ 1.

In the following lemma, let β̂ = B(µ̂)y, where {µ̂} is a sequence of estimates
such that

‖Ui‖R|µ̂i − µ0i| = Op(1), 1 ≤ i ≤ s. (5.10)

Lemma 5.1. Suppose ‖Ui‖R → ∞, 1 ≤ i ≤ s. Then

(X ′V −1
θ0

X)1/2(β̂ − β0) = (X ′V −1
θ0

X)−1/2X ′V −1
θ0

(y − Xβ0) + op(1).

Proof. Let H(µ) = X ′V −1
µ X. Then

H(µ0)1/2(β̂ − β0) = H(µ0)−1/2X ′V −1
µ0

(y − Xβ0) + I1 + I2, (5.11)

where

I1 = H(µ0)1/2H(µ̂)−1X ′(V −1
µ̂ − V −1

µ0
)(y − Xβ0)

I2 = H(µ0)1/2[H(µ̂)−1 − H(µ0)−1]X ′V −1
µ0

(y − Xβ0).
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By identity

V −1
µ̂ = V −1

µ0
+

s∑
i=1

(µ0i − µ̂i)V −1
µ̂ ZiZ

′
iV

−1
µ0

, (5.12)

it follows that

I1 =
s∑

i=1

(µ0i − µ̂i)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZiZ

′
iV

−1
µ0

(y − Xβ0). (5.13)

By a similar identity

H(µ̂)−1 = H(µ0)−1 +
s∑

j=1

(µ̂j − µ0j)H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

XH(µ0)−1, (5.14)

we have

H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZiZ

′
iV

−1
µ0

(y−Xβ0)=H(µ0)−1/2X ′V −1
µ0

ZiZ
′
iV

−1
µ0

(y−Xβ0)

+
s∑

j=1

(µ̂j−µ0j)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

XH(µ0)−1X ′V −1
µ0

ZiZ
′
iV

−1
µ0

(y−Xβ0)

+
s∑

j=1

(µ0j − µ̂j)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y − Xβ0). (5.15)

|H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y − Xβ0)|
≤ ‖H(µ0)1/2H(µ̂)−1X ′V −1/2

µ̂ ‖ |V −1/2
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y − Xβ0)|
= λ

1/2
0 µ−1

0i ‖Uj‖ROp(1), (5.16)

since w.p. → 1, ‖H(µ0)1/2H(µ̂)−1X ′V −1/2
µ̂ ‖2 ≤ 2,

|V −1/2
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y−Xβ0)|2 ≤ 2|V −1/2
µ0

ZjZ
′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y−Xβ0)|2, and

E|V −1/2
µ0

ZjZ
′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

(y−Xβ0)|2 ≤ λ0λ
2
max(Z ′

iV
−1
µ0

Zi)tr((Z ′
jV

−1
µ0

Zj)2)

≤ λ0µ
−2
0i ‖Uj‖2

R. (5.17)

Therefore the 3rd term in (5.15) is Op(1). Similarly one can show the 2nd term
in (5.15) is Op(1). Thus I1 = op(1) by (5.13), (5.15) and the fact that as in (5.17)

E|H(µ0)−1/2X ′V −1
µ0

ZiZ
′
iV

−1
µ0

(y − Xβ0)|2 ≤ λ0µ
−2
0i p.

Again by (5.14) and (5.12) and a similar argument

I2 =
s∑

i=1

(µ̂i − µ0i)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZiZ

′
iV

−1
µ0

XH(µ0)−1X ′V −1
µ0

(y − Xβ0),

(5.18)
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H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZiZ

′
iV

−1
µ0

XH(µ0)−1X ′V −1
µ0

(y − Xβ0)

= H(µ0)1/2H(µ̂)−1X ′V −1
µ0

ZiZ
′
i · · ·

+
s∑

j=1

(µ0j − µ̂j)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
i · · ·

= H(µ0)−1/2X ′V −1
µ0

ZiZ
′
i · · ·

+
s∑

j=1

(µ̂j − µ0j)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

XH(µ0)−1X ′V −1
µ0

ZiZ
′
i · · ·

+
s∑

j=1

(µ0j − µ̂j)H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
i · · · , (5.19)

|H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

ZiZ
′
i · · · |

≤ ‖H(µ0)1/2H(µ̂)−1X ′V −1/2
µ̂ ‖|V −1/2

µ̂ ZjZ
′
jV

−1
µ0

ZiZ
′
iV

−1
µ0

XH(µ0)−1X ′V −1
µ0

(y−Xβ0)|
≤

√
2 ·

√
2λ

1/2
0 λmax(Z ′

iV
−1
µ0

Zi)‖Uj‖ROp(1)

≤ 2λ1/2
0 µ−1

0i ‖Uj‖ROp(1), (5.20)

|H(µ0)1/2H(µ̂)−1X ′V −1
µ̂ ZjZ

′
jV

−1
µ0

XH(µ0)−1X ′V −1
µ0

ZiZ
′
i · · · |

≤
√

2|V −1/2
µ̂ ZjZ

′
jV

−1
µ0

XH(µ0)−1X ′V −1
µ0

ZiZ
′
iV

−1
µ0

XH(µ0)−1X ′V −1
µ0

(y − Xβ0)|
≤ 2λ1/2

0 µ−1
0i ‖Uj‖ROp(1), (5.21)

and finally

E|H(µ0)−1/2X ′V −1
µ0

ZiZ
′
iV

−1
µ0

X ′H(µ0)−1X ′V −1
µ0

(y − Xβ0)|2
≤ λ0λmax(V −1/2

µ0
XH(µ0)−1X ′V −1/2

µ0
)

tr(V −1/2
µ0

XH(µ0)−1X ′V −1/2
µ0

(V −1/2
µ0

ZiZ
′
iV

−1/2
µ0

)2V −1/2
µ0

XH(µ0)−1X ′V −1/2
µ0

)

≤ λ0µ
−2
0i p. (5.22)

So I2 = op(1) by combing (5.18) - (5.22).

Proof of Theorem 3.1. By Theorem 4.3 of Jiang (1996), there exist REML
estimates λ̂N , µ̂Ni, 1 ≤ i ≤ s such that ‖Vi‖R(µ̂Ni −µ0i) = Op(1), 1 ≤ i ≤ s. We
now show that the same is true with Vi replaced by Ui. By a well-known identity
(e.g., Searle, Casella and McCulloch (1992), page 451)

A(A′Vµ0A)−1A′ = V −1
µ0

− V −1
µ0

X(X ′V −1
µ0

X)−1X ′V −1
µ0

,

we have Z ′
iAV (A,µ0)−1A′Zi ≤ Z ′

iV
−1
µ0

Zi. Therefore ‖Ui‖2
R = tr((Z ′

iV
−1
µ0

Zi)2) ≥
tr((Z ′

iAV (A,µ0)−1A′Zi)2) = ‖Vi‖2
R. Note that A,B ≥ 0, A ≤ B ⇒ tr(A2) ≤
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tr(B2) but does not ⇒ A2 ≤ B2 (e.g., Chan and Kwong (1985)). On the other
hand, let Ai = Z ′

iV
−1
µ0

X(X ′V −1
µ0

X)−1X ′V −1
µ0

Zi, Bi = (X ′V −1
µ0

X)−1/2X ′V −1
µ0

Zi

Z ′
iV

−1
µ0

X(X ′V −1
µ0

X)−1/2. Since ZiZ
′
i ≤ µ−1

0i Vµ0 , we have Bi ≤ µ−1
0i Ip. Thus by the

above fact tr(B2
i ) ≤ µ−2

0i p, hence ‖Ui‖R = ‖Z ′
iV

−1
µ0

Zi‖R = ‖Z ′
iAV (A,µ0)−1A′Zi+

Ai‖ ≤ ‖Z ′
iAV (A,µ0)−1A′Zi‖R+‖Ai‖R = ‖Vi‖R+‖Bi‖R ≤ ‖Vi‖R+µ−1

0i
√

p. Since
p is fixed, and min1≤i≤s ‖Vi‖R → ∞, we have ‖Ui‖R ∼ ‖Vi‖R, 1 ≤ i ≤ s, and
hence min1≤i≤s ‖Ui‖R → ∞.

For any u = (ui)0≤i≤s ∈ Rs+1, v ∈ Rp, let ξN,u = J
−1/2
N u, dN,v = CNv. By

Lemma 5.1, the proof (outline) of Lemma 7.2 in Jiang (1996) (bottom of page
273, i.e. −AN (θ0) = IN (θ0)p(N)(θ̂N − θ0) + op(1)), and the proof of Theorem
4.3 (ii) in Jiang (1996) (top of page 276, note that a and bN there correspond to
u and ξN,u here), we have

u′PN (θ̂N − θ0) + v′QN (β̂N − β0)

= W ′
NBN,uWN + d′N,vWN − EWNBN,uWN + u′op(1) + v′op(1), (5.23)

where BN,u = BN (ξN,u), BN (ξ)=
∑s

i=0 ξiVi(µ0)/qi(N) with qi(N)=λ
1(i=0)

0 pi(N),
0 ≤ i ≤ s. Write IN = IN (θ0), JN = JN (θ0). It is easy to see that

tr(B2
N,u) = u′J−1/2

N INJ
−1/2
N u, (5.24)

|dN,v |2 = |v|2. (5.25)

Let BN,u = (bkl), dN,v = (dl), then

Var (W ′
NBN,uWN + d′n,vWN )

= 2
∑
k �=l

b2
kl +

N+m∑
l=1

(blldl)Var ((W 2
NlWNl)′)

(bll

dl

)

≥ (2 ∧ δ)(tr(B2
N,u) + |dN,v|2), (5.26)

where δ = infN,l Var ((W 2
NlWNl)′) > 0.

On the other hand,

Var (W ′
NBn,uWN + d′N,vWN )

= 2tr(B2
N,u) +

N+m∑
l=1

b2
ll(EW 4

Nl − 3) + 2
N+m∑
l=1

blldlEW 3
Nl + |dN,v|2

= |u|2 + 2u′RNv + |v|2 = (u′v′)SN

(u

v

)
. (5.27)

Combing (5.26), (5.27) and (5.24), (5.25),

(u′v′)SN

(u

v

)
≥ (2 ∧ δ)(u′J−1/2

N INJ
−1/2
N u + |v|2) > 0 (5.28)
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provided |u|2 + |v|2 �= 0. Thus SN is positive definite.
For any a ∈ Rs+1, b ∈ Rp such that |a|2 + |b|2 �= 0, let (a′Nb′N ) = (a′b′)S−1/2

N ,
BN = BN,aN

, dN = dN,bN
. Then by (5.23)

(a′b′)S−1/2
N

(
PN 0
0 QN

)(
θ̂N − θ0

β̂N − β0

)

= a′NPN (θ̂N − θ0) + b′NQN (β̂N − β0)

= W ′
NBNWN + d′NWN − EW ′

NBNWN + op(1).

Since |aN |2 + |bN |2 ≤ λ−1
min(SN )(|a|2 + |b|2), by (5.28) it is easy to show that

λmin(SN ) ≥ (2 ∧ δ)
[
((2 ∨ M)−1 λmin(IN )

λmax(IN )
) ∧ 1

]
, (5.29)

where M = supN max1≤l≤N+m Var (W 2
Nl) < ∞. Note for any ξ ∈ Rs+1

ξ′JN ξ = Var (W ′
NBNWN ) ≤ (2 ∨ M)tr(B2

N (ξ)) = (2 ∨ M)ξ′INξ. (5.30)

Again, by (5.30)

tr(B2
N ) = tr(B2

N (ξN,aN
)) ≥ 1

2 ∨ M
ξ′N,aN

JN ξN,aN
=

|aN |2
2 ∨ M

,

λmax(B2
N ) = ‖BN (ξN,aN

)‖2

≤ (λ−2
0 p−2

0 (N) +
s∑

i=1

µ−2
0i p−2

i (N))|ξN,aN
|2 ≤ δN |aN |2,

where δN = λ−1
min(JN )(λ−2

0 p−2
0 (N) +

∑s
i=1 µ−2

0i p−2
i (N)).

Also, by (5.25), |dN |2 = |bN |2, and by Cauchy-Schwarz max1≤l≤N+m d2
Nl ≤

ρN |bN |2, where ρN = max1≤l≤N+m |CN,l|2. Thus

λmax(B2
N ) ∨ max1≤l≤N+m d2

Nl

tr(B2
N ) + |dN |2 ≤ (2 ∨ M)(δN ∨ ρN ) −→ 0

(note |aN |2 + |bN |2 �= 0).
The result now easily follows from Theorem B, using the fact that Var (W ′

N

BNWN + d′NWN ) = |a|2 + |b|2.
The proof of Theorem 3.2 requires the following lemmas whose proofs are

mostly straightforward (e.g., Billingsley (1986), §20).
Lemma 5.2. Let ξNk = ηk +ζNk, k = 1, . . . ,mN , where η1, η2, . . . , are i.i.d. ∼ F

and mN → ∞. If there is p > 1 such that E|η1|p < ∞ and 1
mN

∑mN
k=1 |ζNk|p P→ 0,

then
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(i) 1
mN

∑mN
k=1 1(ξNk≤x)

P→ F (x),∀x ∈ CF ;

(ii) 1
mN

∑mN
k=1 ξq

Nk
P→ Eηq

1,∀ positive integer q ≤ p.

Corollary 5.1. If in Lemma 5.2 F is continuous, then the convergence in (i) is
uniform in x ∈ R.

Lemma 5.3. Let ξ = (ξ1, . . . , ξn)′, where ξ1, . . . , ξn are i.i.d. with Eξ1 = 0 and
B = (B′

1, . . . , B
′
m)′ is m × n.

(I) If Eξ2
1 < ∞, then E|Bξ|2 =

∑m
k=1 E(Bkξ)2 = Eξ2

1tr(BB′);
(II) If Eξ4

1 < ∞, then
∑m

k=1 E(Bkξ)4 ≤ 3Eξ4
1λmax(BB′) tr(BB′).

Proof of Theorem 3.2. First we note that (3.8) is equivalent to

1
mi

tr((Z ′
iV (µ0)Zj)(Z ′

iV (µ0)Zj)′) −→ 0, ∀i �= j.

Theorem 4.3 of Jiang (1996) guarantees the existence of such REML esti-
mates. For simplicity, write µ = µ0, µ̂ = µ̂N ,Hi = Hi(µ0). We have

α̂i = αi−(Imi +µiHi)−1αi+(µ̂i−µi)Z ′
iV (µ)Ziαi+µ̂i(Z ′

iV (µ)ε+
∑
j �=i

Z ′
iV (µ)Zjαj)

+µ̂i

s∑
j=1

(µj − µ̂j)Z ′
iAV (A, µ̂)−1A′ZjZ

′
jAV (A,µ)−1z

= αi +
4∑

l=1

ξ(l). (5.31)

By a similar argument as in the proof of Lemma 5.1 it is easy to show that
|ξ(4)| = Op(1), so that

mi∑
k=1

(ξ(4)
k )4 ≤ (

mi∑
k=1

(ξ(4)
k )2)2 = |ξ(4)|4 = Op(1),

which implies
1

mi

mi∑
k=1

(ξ(4)
k )4 P−→ 0. (5.32)

Denoting the k′th row of a matrix B by Bk, we have by Lemma 5.3

mi∑
k=1

E((Z ′
iV (µ))kε)4 ≤ 3Eε4

1λmax(Z ′
i(V (µ))2Zi)tr(Z ′

i(V (µ))2Zi)

≤ 3µ−1
i Eε4

1tr(Z
′
i(V (µ))2Zi). (5.33)
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Using a well-known identity (e.g., Rao (1965), Page 33) for the first step in the
following, we have

Z ′
iV (µ)Zi = µ−1

i (Imi − (Imi + µiHi)−1)

= Z ′
i(V (µ))2Zi + µi(Z ′

iV (µ)Zi)2 +
∑
j �=i

µjZ
′
iV (µ)ZjZ

′
jV (µ)Zi. (5.34)

It follows from (5.33), (5.34), (3.8) and (3.9) that

1
mi

mi∑
k=1

((Z ′
iV (µ))kε)4 L1−→ 0. (5.35)

Again, by Lemma 5.3

mi∑
k=1

E((Z ′
iV (µ)Zj)kαj)4 ≤ 3Eα4

j1λmax((Z ′
iV (µ)Zj)(Z ′

iV (µ)Zj)′)

· tr((Z ′
iV (µ)Zj)(Z ′

iV (µ)Zj)′)
≤ 3(µiµj)−1Eα4

j1tr((Z
′
iV (µ)Zj)(Z ′

iV (µ)Zj)′).

Thus by (3.8) and (5.35)

1
mi

mi∑
k=1

(ξ(3)
k )4 ≤ s3µ̂4

i [
1

mi

mi∑
k=1

((Z ′
iV (µ))kε)4

+
∑
j �=i

1
mi

mi∑
k=1

((Z ′
iV (µ)Zj)kαj)4]

P−→ 0. (5.36)

Similarly,

mi∑
k=1

E((Z ′
iV (µ)Zi)kαi)4 ≤ 3Eα4

i1λ
2
max(Z ′

iV (µ)Zi)tr((Z ′
iV (µ)Zi)2)

≤ 3µ−4
i Eα4

i1mi,

which implies

1
mi

mi∑
k=1

(ξ(2)
k )4 = 3(µ̂i − µi)4µ−4

i Eα4
i1Op(1)

P−→ 0. (5.37)

Finally,

mi∑
k=1

E(((Imi + µiHi)−1)kαi)4 ≤ 3Eα4
i1λ

2
max((Imi + µiHi)−1)tr((Imi + µiHi)−2)

≤ 3Eα4
i1tr((Imi + µiHi)−1),
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so that by (3.9)

1
mi

mi∑
k=1

(ξ(1)
k )4 L1−→ 0. (5.38)

The results now follow from (5.31), (5.32), (5.36)—(5.38), Lemma 5.2, and Corol-
lary 5.1.

Proof of Lemma 3.1. Similar to (5.31) we have

ε̂ = ε − PXε − PX⊥Z(Z ′PX⊥Z + M−1)−1Z ′PX⊥ε

+
s∑

j=1

V (µ)Zjαj +
s∑

j=1

(µj − µ̂j)AV (A, µ̂)−1A′ZjZ
′
jAV (A,µ)−1z

= ε +
4∑

l=1

η(l),

where PX = X(X ′X)−1X ′, PX⊥ = IN − PX , Z = (Z1, . . . , Zs),M = diag(µiImi).
As in the proof of Theorem 3.2,

1
N

N∑
k=1

(η(4)
k )4 ≤ 1

N
|η(4)|4 =

1
N

Op(1)
P−→ 0,

1
N

N∑
k=1

(η(3))4 ≤ s3(
s∑

j=1

1
N

N∑
k=1

((V (µ)Zj)kαj)4)
L1−→ 0.

And by Lemma 5.3

N∑
k=1

E(η(2)
k )4 ≤ 3Eε4

1λ
2
max((Z ′PX⊥Z)1/2(Z ′PX⊥Z + M−1)−1(Z ′PX⊥Z)1/2)

tr(((Z ′PX⊥Z)1/2(Z ′PX⊥Z + M−1)−1(Z ′PX⊥Z)1/2)2)

≤ 3Eε4
1(m1 + · · · + ms),

∑N
k=1 E(η(1)

k )4≤3Eε4
1λmax(PX)tr(PX)≤3Eε4

1p, which imply 1
N

∑N
k=1(η

(l)
k )4 L1−→

0, l = 1, 2 by (3.13). The conclusions therefore hold, by Lemma 5.2 and Corollary
5.1.

6. Concluding Remark

From our proof in §5 we see that under certain conditions the EBLUPs may
be expressed as the corresponding random effects plus something that is asymp-
totically negligible, i.e., α̂i = αi + op(1), i = 1, . . . , s. This is important because
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although the EBLUPs are not independent, they may be somehow regarded,
asymptotically, as i.i.d.. Such an observation may support the idea of using the
EBLUPs in mixed model diagnostics. A topic of further research seems to be the
asymptotic normality of the e.d. of the EBLUPs. Some discussion of the topic
under normality can be found in Lange and Ryan (1989).

Acknowledgements

The auther would like to thank Professor P. J. Bickel for helpful discussions.

References

Billingsley, P. (1986). Probability and Measure. John Wiley.

Calvin, J. A. and Sedransk, J. (1991). Bayesian and frequentist predictive inference for the

patterns of care studies. J. Amer. Statist. Assoc. 86, 36-48.

Chan, N. N. and Kwong, M. K. (1985). Hermitian matrix inequalities and a conjecture. Amer.

Math. Monthly 92, 533-541.

Fellner, W. H. (1986). Robust estimation of variance components. Technometrics 28, 51-60.

Ghosh, M. and Rao, J. N. K. (1994). Small Area estimation: An appraisal. Statist. Sci. 9,

55-93.

Harris, D. L., Lofgren, D. L., Stewart, T. S. and Schinckel, A. P. (1989). Adapting best linear

unbiased prediction (BLUP) for timely genetic evaluation: I. Progeny traits in a single

contemporary group for each sex. J. Anim. Sci. 67, 3209-3222.

Harville, D. A. (1977). Maximum-likelihood approaches to variance component estimation and

to related problems. J. Amer. Statist. Assoc. 72, 320-340.

Harville, D. A. (1991). Comment on Robinson: The estimation of random effects. Statist. Sci.

6, 35-39.

Henderson, C. R. (1963). Selection index and expected genetic advance. In Statist. Genet. and

Plant Breed (Edited by W. D. Hanson and H. F. Robinson), 141-163. NAS-NRC Publ.

982.

Henderson, C. R. (1973). Sire evaluation and genetic trends. Proc. Anim. Breed. Genet.

Symp. in honor of Dr. Jay L. Lush., 10-41, Am. Soc. Anim. Sci., Champaign, IL.

Jiang, J. (1996). REML estimation: Asymptotic behavior and related topics. Ann. Statist. 24,

255-286.

Jiang, J. (1997). Wald consistency and the method of sieves in REML estimation. Ann. Statist.

25, 1781-1803.

Lai, T. L. and Wei, C. Z. (1982). Least squares estimates in stochastic regression models with

applications to identification and control of dynamic systems. Ann. Statist. 10, 154-166.

Lange, N. and Ryan, L. (1989). Assessing normality in random effects models. Ann. Statist.

17, 624-642.

Liski, E. P. and Nummi, T. (1995). Prediction of tree stems to improve efficiency in automatized

harvesting of forests. Scand. J. Statist. 22, 255-269.

Lofgren, D. L., Harris, D. L., Stewart, T. S. and Schinckel, A. P. (1989). Adapting best linear

unbiased prediction (BLUP) for timely genetic evaluation: II. Progeny traits in multiple

contemporary groups within a herd. J. Anim. Sci. 67, 3223-3242.

Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates in the mixed model

of the analysis of variance. Ann. Statist. 5, 746-762.



EMPIRICAL BLUP AND BLUE 885

Rao, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.

Richardson, A. M. and Welsh, A. H. (1994). Asymptotic properties of restricted maximum

likelihood (REML) estimates for hierarchical mixed linear models. Austral. J. Statist. 36,

31-43.

Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statist.

Sci. 6, 15-51.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components. John Wiley.

Speed, T. (1991). Comment on Robinson: The estimation of random effects. Statist. Sci. 6,

42-44.

Thompson, R. (1980). Maximum likelihood estimation of variance components. Math. Oper-

forsch, Statist. Ser. Statist. 11, 545-561.

Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the

random-effects population. J. Amer. Statist. Assoc. 91, 217-221.

Department of Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland,

Ohio 44106-7054, U.S.A.

E-mail: jiang@eureka.cwru.edu

(Received October 1996; accepted August 1997)


