Statistica Sinica 8(1998), 827-839

CONSTRUCTING THE BIVARIATE TUKEY MEDIAN

Peter J. Rousseeuw and Ida Ruts

University of Antwerp

Abstract: The halfplane location depth of a point 8 € IR? relative to a bivariate
data set X = {X1,...,Xn} is the minimal number of observations in any closed
halfplane that contains 6 (Tukey (1975)). The halfplane median or Tukey median
is the & with maximal depth k&* (Donoho and Gasko (1992)). If this € is not
unique, the Tukey median is defined as the center of gravity of the set of points
with depth £*. In this paper we construct two algorithms for computing the Tukey
median. The first one is relatively straightforward but quite slow, whereas the
second (called HALFMED) is much faster. A small simulation study is performed,
and some examples are given.
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1. Introduction

Consider a bivariate data set X = {xX1,...,Xn}. The halfplane location depth
of an arbitrary point @ € IR? relative to X is defined as:

ldepth(0, X) = H}}n#{i; x; € H},

where H ranges over all closed halfplanes of which the boundary line passes
through 0 (Tukey (1975)). Obviously, a point @ outside the convex hull of X will
have depth zero. A fast algorithm for the computation of the halfplane depth of
6 was constructed by Rousseeuw and Ruts (1996).

The depth region of depth k is defined as the set D of points @ with
ldepth(0, X) > k. Equivalently, Dy is the intersection of all closed halfplanes
that contain (at least) n — k + 1 observations, hence Dy is a bounded convex
polytope. (Note that Dy D Dy D D3 D ---) The boundary of Dy is a convex
polygon, which is called the contour of depth k. Therefore, each vertex of a
depth contour is the intersection point of two lines, each passing through two
observations.

The Tukey median is the center of gravity of the deepest depth region. We
will construct two algorithms for the computation of the Tukey median. The first
one is quite staightforward and has time complexity O(n°logn). The second one
is called HALFMED and attains O(n? log? n). We will first explain the slower
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algorithm to illustrate some geometric aspects of the Tukey median (Section 3),
but the focus of the paper will be on the algorithm HALFMED (Section 4).

By construction, the halfplane depth is affine invariant: if we consider an
affine transformation g(z) = Az + b with any b € IR? and any nonsingular
A € IR**%) then ldepth(g(0),g(X)) = ldepth(8, X). Consequently, the Tukey
median is affine equivariant:

halfmed(g(X)) = g(halfmed(X)).

Other important affine equivariant bivariate medians are the Oja (1983) median
and Liu’s (1990) simplicial median. For surveys of bivariate medians see Small
(1990), Niinimaa (1995) and Niinimaa and Oja (1997). The minimal computa-
tional complexity of most bivariate medians has not yet been established. A new
(but not affine equivariant) median can be found in Griibel (1996). Other no-
tions of location depth can be found in Liu (1992) and Dyckerhoff, Koshevoy and
Mosler (1996). Recently, Rousseeuw and Hubert (1996) have introduced depth
functions for regression which are analogous to halfplane depth and simplicial
depth.

2. The Tukey Median

The function ldepth(@, X) takes on integer values between 0 and n, and thus
attains a maximum value

kE*(X) = max ldepth(6, X).
OcR2
This maximum depends on the shape of X. For instance, k*(X) tends to be
higher when X has certain symmetries, and £*(X) = n if all points of X coincide.
We say that a bivariate data set X is in reqular position if no more than two
observations lie on a line. Under this assumption, Donoho and Gasko (1992),

page 1806 show that
n n
— | <E(X)< |= 1
HECHE! 1)

where the ceiling [A] is the smallest integer > A. Therefore, Dy # @ whenever
k < [%]. Let us now prove that the upper bound [%] in (1) can be lowered to
| 5| for bivariate X. This is only a minor modification of (1), but our objective is
to present a geometric proof through some actual constructions, which will then
be used in Section 4 as basic tools for the algorithm HALFMED.

Proposition 1. For any bivariate data set X in reqular position

k(X)) < {gJ .
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Proof. For n even we have |5 | = [§] so there is nothing to prove. From here
on we assume that n is odd. Suppose that there exists a depth region Dy # &
with k = [§] +1=[5] :"TH.

The depth region Dj. is the intersection of all closed halfplanes which contain
at least n—k+1 data points. Since Dy # @ and the data set is in regular position,
there exists a directed line L containing two observations, and with n — k — 1
observations strictly to the left of L. This is illustrated in Figure 1. Then Dy is
a subset of the closed halfplane H to the left of L. The number of points strictly
to the right of L is k —1 =n — k (since n = 2k — 1). This means that the closed
halfplane to the right of L contains n — k + 2 observations, hence D, also must
be a subset of this halfplane. This implies that Dy C L.

We now prove that no point of L has depth k. Let x; be the first and x5 the
second observation lying on the directed line L. We construct the directed line
Ly by slightly rotating L counterclockwise around xg in such a way that it does
not touch any of the other observations x3,...,xy,. Therefore, the observations
strictly to the left of L, are x7 and the observations strictly to the left of L. Hence
the closed halfplane to the right of L; (denoted by H;) contains k —1+1 =k =
n — k + 1 observations.

Analogously, we construct the directed line Lo by slightly rotating L clock-
wise around x3 in such a way that it does not touch any of the observations
X3, ...,Xpn. Therefore, the closed halfplane to the right of Ly (denoted by Hs) also
contains n—k+1 observations. By definition of Dy, it follows that Dy C (H1NHs).
Therefore

DkC(LﬂHlﬂHg):Q

which ends the proof.

Figure 1. Ilustration of the proof of Proposition 1 for n = 9. In Section 4,
the directed line L is called a special k-divider.
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The Tukey median or halfplane median is defined as the @ with depth k*
(Donoho and Gasko (1992)). If Dy~ is not a singleton, they define the halfplane
median as the center of gravity of Dy«.

An important motivating property of the bivariate Tukey median is its ro-
bustness. Donoho and Gasko (1992), page 1811 prove that the breakdown value
¢*(halfmed, X) > % for any sample X in regular position. This means that when
replacing fewer than n/3 observations of X, the resulting halfmed(X’) will still
remain in a bounded region.

It is sometimes suggested to consider the observation x; with largest
ldepth(xj, X) as a simple variant of the Tukey median. (If there are several
observations with the maximal depth, one can again take their average.) This
estimator is easier to compute than the Tukey median, and for ‘well-behaved’ data
sets may be a fair approximation to it. However, the analog of (1) does not hold.
For instance, if X consists of points on the half circle {(z,y); 22+%? =1 and z <
0}, the maximal ldepth(x;, X) is merely 1. Consequently, this estimator may have
a breakdown value as low as 1/n. For instance, consider the same X and replace
one x; by a point (A,0) with A\ > 0, and then let A — oco. This shows that
one outlier can cause breakdown. Therefore, we will not pursue this estimator
further.

3. A Straightforward Algorithm

In this section we will construct a relatively straightforward algorithm for the
Tukey median, several parts of which will also be used in the more sophisticated
algorithm in Section 4. The first algorithm starts from the fact that each edge of
the region Dy« is part of a line passing through two observations. Therefore, each
vertex of Dy« is an intersection point of two such lines. The algorithm consists
of the following steps:

Straightforward algorithm

1. Compute all M = O(n*) intersection points of lines passing through 2 obser-
vations.

2. Compute the halfplane depth of each of these M points by means of the
subroutine LDEPTH of Rousseeuw and Ruts (1996), which runs in O(nlogn)
time. In short, LDEPTH uses the fact that ldepth(#, X) = ldepth(0, X — ).
It then replaces all x;—6 by z; = (x;—6)/||x; —0||. Since the z; lie on the unit
circle, each z; is characterized by its angle a; € [0,27[. Also the angle §; of
—2z; is considered. Then LDEPTH sorts these 2n angles together in O(n logn)
time. Finally, ldepth(0,{z1,...,2n}) is computed by a loop of length 2n over
the sorted angles, where the number of angles in each halfplane is updated at



CONSTRUCTING THE BIVARIATE TUKEY MEDIAN 831

each step. Note that LDEPTH also yields the simplicial depth of Liu (1990).
We now keep the highest halfplane depth k* encountered, as well as the N
points which attain it.

. Compute the boundary of Dy« as the convex hull of these N points with
depth k*. This convex hull can be obtained with an algorithm of Eddy (1977)
or Preparata and Hong (1977). The latter algorithm runs in O(N log N) <
O(n*logn) time, and yields a list of points on the convex polygon in counter-
clockwise order.

. From this list, delete all points lying inside an edge (this takes < O(N) time),
retaining only the actual vertices {yl,...,y™} of Dy~. Since each edge of
Dy~ is part of a line through two observations x; and x;j, and because each x;
can occur in at most two such lines (otherwise Dy« is not convex), we have
m < n.

. Compute the central point

which belongs to the convex set Dpyx.
. If m < 3, the Tukey median T* equals T°. For m > 4 the Tukey median is

1 Dy+)dA
T* = gravitycenter(Dy«) = Jz (x/\G(D k)) (37)7
k*

where A is the usual measure of area. Since T° is in the interior of Dy« we

can write Dy« as the union of regular triangles

Dy = A(To,yl,yz) U A(To,yz,ys) U---uU A(T07ym’ym+1)

with y™*! .=y hence

YLy area(A(T°, yd, yI 1)) gravitycenter (A (T°, y3, yit1))
B Z;nzl area(A(TO, yJ ) YJ+1))
ool o el )

m J,Jt+1 J+1 ’
32 vy — o1y

T*

(2)

=T°+

where v := yJ — T° and vi*! .= yd+1 — T° Clearly, (2) needs O(m) < O(n)

time.
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Figure 2. Depth region Dy- of a data set with 15 observations. The maximal
depth k* is 6, and the total number of intersection points with depth 6
(indicated by + signs) is 80. Six of them (indicated by dots) are vertices of
Dg. The Tukey median T* as well as the estimates 7° and T# are indicated
by squares.

The main principle of the algorithm is illustrated in Figure 2, which is based
on an actual data set. The intersection points (step 1) with maximal depth k*
(step 2) are indicated by + signs. The boundary of Dy« computed in step 3 is
the convex polygon in the figure, and its vertices (from step 4) are shown as solid
dots. The estimates T (step 5) and T (step 6) are relatively close to each other,
especially since the region Dy~ in Figure 2 is quite small relative to the original
data cloud (not shown here).

The algorithm’s computation time is determined by steps 1 and 2: applying
the O(nlogn) time algorithm LDEPTH to the O(n?) intersection points takes
O(n®logn) operations. The other steps take less time, as indicated.

In the way the algorithm is described, its apparent storage is O(n*) due to
step 1. However, this can be improved upon. By combining steps 1 and 2 we
only need to store the intersection points with the currently highest depth (by
overwriting the intersection points having a previous depth). We can even do
with the minimal storage requirement O(n), if we don’t store the currently best
intersection points but simply add them and count how many there are. This
does not yield T™ but the related estimator

T# = average{all intersection points with depth &*}. (3)
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In this way we only need a modification of steps 1 and 2 while bypassing steps
3 to 6, yielding an algorithm with O(n®logn) time and only O(n) storage. The
estimate T7 is also indicated in Figure 2.

Note that both the set Dy and each of the estimators 7°, T* and T# can
be considered as valid formalizations of Tukey’s notion of median. They all have
maximal depth £*, and when Dy~ is a singleton they all coincide. Moreover,
they are all affine equivariant. Here we have emphasized T™ because this was the
version suggested by Donoho and Gasko (1992), page 1809.

4. The Algorithm HALFMED

Making use of what we learned from the straightforward algorithm, we now
construct a faster algorithm for the bivariate Tukey median. The basic idea is to
construct several regions Dy, for [§] < k < |§] (using (1) and Proposition 1) in
order to find the k* for which Dy» # @ and Dy+,1 = @. From Dy« we can then
compute the Tukey median 7™ as in the straightforward algorithm.

Algorithm HALFMED

1. We first test whether any two data points x; and x; coincide, which can
be done in O(nlogn) time if we sort the data according to their horizontal
coordinate (and then sort the vertical coordinates among the points with
identical horizontal coordinate). Next we consider all (;) lines L;; through
any two data points x; and x;. Each L;; makes an angle 0 < «;; < 7 with the
horizontal axis. We then sort these O(n?) lines according to their angles in
O(n?logn) time, and whenever two or more angles are equal we check whether
their lines have a point in common. If that doesn’t happen, the data are in
regular position. Overall, step 1 takes O(n?logn) time and O(n?) storage.
We now initialize k' «— [2] so we know that Dyiover # @ by (1), and set
EUPPEr «— | ] 4 1 so we know that Dygupper = @ by Proposition 1 above. Then
put kL o— L%(klower 4 kupper)J.

2. Let us construct Dy. If Dy # @ we want to obtain its vertices; if Dy = @ the
algorithm should tell us so. This step is a slight extension of steps 2 and 3 in
Ruts and Rousseeuw (1996), where a more detailed description is given. The
main concept is that of a special k-divider, which is a directed (oriented) line
passing through two observations such that exactly n — k — 1 observations lie
strictly to its left and exactly k — 1 observations lie strictly to its right. For
instance, the line L in Figure 1 is a special k-divider. We can find all the special
k-dividers by running through the O(n?) lines L;j sorted according to their
angles «; (available from step 1) while making use of the circular sequence
technique of Goodman and Pollack (1980). This means that we start from
the projection of the data points on the horizontal direction, and we then
let the directed line on which we project rotate counterclockwise. At discrete
steps, we update the ranks of the projected points on the current directed line.
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This takes O(n?) operations. Now note that Dy, (which may be empty) is the
intersection of the closed halfplanes to the left of the special k-dividers. Based
on this fact, Ruts and Rousseeuw (1996) devised an O(n?logn) time algorithm
(described in step 3 of their algorithm ISODEPTH) which constructs Dy, by
‘spiraling down’ to it by marching only on the special k-dividers and taking
left turns where appropriate. Checking when they are appropriate is done
by calling LDEPTH. The spiral stops when a point is encountered twice. If
its depth is less than k we know that D, = @; otherwise we have found the
vertices of Dy.

. If Dy, = @ we put klOWer « glower and kUPPeT « k. If Dy, # @ we put koW «— k

new new
and FPRe — kP TE RRRS — KU > 2 we put k — [5(kT + kiRE)]
and return to step 2. On the other hand, if kUPPer — klower — 1 we have found

k* « klover as well as the corresponding Dy-.

. Apply steps 5 and 6 of the straightforward algorithm in Section 3 above,

yielding the Tukey median T*.
The algorithm HALFMED takes O(n? log? n) time and O(n?) storage. Clearly,

step 1 needs O(n?logn) time and O(n?) storage. Step 2 also takes O(n?logn)
time, but has to be repeated O(logy n) times in view of the bisection strategy in
step 3, yielding O(n? log? n) overall. The time spent on step 4 is negligible by
comparison.

Table 1. Execution times (in seconds on a Pentium PC) of the straightforward
algorithm and the proposed algorithm HALFMED, for various sample sizes n

n  straightforward HALFMED

10 0.15 0.02
20 6.47 0.12
30 52.22 0.32
40 236.58 0.59
50 768.52 0.94
100 5.75
200 26.67
300 61.61
400 117.43
500 187.86

Naturally, we have verified that the straightforward algorithm and HALFMED

produce exactly the same Tukey median 7%. In Table 1 we compare the execution
times of the straightforward algorithm and HALFMED for various sample sizes

n,

using the same generated data sets for both. The times are in seconds on

a Pentium PC. We see that the straightforward algorithm takes a lot of time
even for small n, which is not surprising in view of its O(n°logn) complexity.



CONSTRUCTING THE BIVARIATE TUKEY MEDIAN 835

In contrast, HALFMED computes the Tukey median of 100 points in under 6
seconds.

The source code of the new program HALFMED can be obtained at our
website http://win-www.uia.ac.be/u/statis/. Since step 2 of HALFMED actu-
ally constructs Dy, the program has been set up so that (apart from 7*) it will
also yield the vertices of Dy, for any value(s) of k specified by the user. (There-
fore, the program HALFMED encompasses and supersedes our older program
ISODEPTH.) The extra time for each additional Dy, is O(n?logn). Afterwards,
these contours can easily be plotted, as in Figures 4 and 5. For data analytic
purposes we don’t want to draw all depth contours for k£ between 1 and k*, but
just a few representative ones.

Note that the algorithm HALFMED desribed here is for bivariate data only.
The ideas behind the algorithm cannot be extended directly to higher dimensional
problems. We actually use a special feature of 2-dimensional space, namely the
possibility of identifying all angles with points on a circle, where they can be
ordered. This feature first occurs in the algorithm LDEPTH described in Step 2
of Section 3. In Step 2 of the HALFMED algorithm we apply the ISODEPTH
algorithm which is based on the idea of circular sequences, which again use the
ordering of angles on a circle. Moreover, the ISODEPTH algorithm often calls
the LDEPTH subroutine.

We have recently worked on ways to compute the halfspace location depth
in higher dimensions (Rousseeuw and Struyf (1998)). In that paper we compute
the exact depth in 3 dimensions by a more complicated algorithm, which needs
an extra factor n of computer time. In addition to this, the paper also constructs
approximate algorithms which are faster and can deal with more than 3 dimen-
sions. However, algorithms for the Tukey median in 3 or more dimensions are
not yet available.

5. Simulation: Finite-Sample Efficiency

For several sample sizes n we generated m = 1000 samples from the bivariate
standard normal distribution, and applied the algorithm HALFMED to each
sample. From the m Tukey medians 77,...,T we computed the bias, the
empirical covariance matrix and the empirical efficiency. The results are shown
in Table 2. The first column contains the sample size n. The next two columns
show the coordinates of the bias:

(biasy, biasy) = T* = average T} .
j:17"'7m

Next we consider the empirical variance-covariance matrix C":
1 m

C= g X0 - T =T
‘]:
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Columns 4 and 5 contain the n-fold variances nC’ll and négg, whereas column
6 contains the n-fold covariance nC1s. The final column contains the empirical
(Monte Carlo) efficiency, computed as

1

n \/det(CA’).

In Table 2 we see that the finite-sample efficiency of the Tukey median is
around 78%. Let us compare this with the analogous results for the coordinate-
wise median, given by

eff =

(meda;, medy,)

which is easy to compute but not affine equivariant. In Table 3 (using m =
10,000) we see that its efficiency is that of the univariate median, and lower than
that of the Tukey median in Table 2.

Table 2. Empirical efficiency of the Tukey median for various sample sizes n

n biasy biass nCi1 nCagy nC1ia eff

10 —0.0014 —0.0018 1.3153 1.2981 —0.0150 0.7654
20 0.0025 —0.0004 1.3140 1.2902 0.0109 0.7681
30 —0.0069 0.0049 1.2930 1.3089 —0.0001 0.7687
40 0.0040  0.0001 1.2564 1.3256 —0.0609 0.7757
50 —0.0055 0.0044 1.2303 1.2437 —0.0318 0.8087
60 0.0017 —0.0066 1.2298 1.3007 —0.0206 0.7908
70 —0.0036 —0.0048 1.3271 1.2364 0.0003 0.7807
80 —0.0015 0.0011 1.2207 1.2947  0.0085 0.7955
90 —0.0026 —0.0024 1.2632 1.2724 —0.0085 0.7888
100  0.0043 —0.0117 1.2848 1.3387 —0.0127 0.7625

Table 3. Empirical efficiency of the coordinatewise median for various sample sizes n

n biasl bia32 71011 TLCQQ nélg €ﬁ
10 —0.0047  0.0020 1.3815 1.3790 —0.0062 0.7245
20 0.0021  0.0012 1.4699 1.4510 —0.0129 0.6848
30 —0.0006  0.0021 1.4674 1.5062  0.0020 0.6726
40 —0.0001  0.0030 1.4986 1.5222 —0.0133 0.6621
50 0.0002  0.0005 1.5208 1.5086 —0.0104 0.6602
60 0.0035 —0.0018 1.5076 1.5013 —0.0108 0.6647
70 —0.0007 0.0001 1.5265 1.5123  0.0177 0.6582
80 0.0006 —0.0016 1.5184 1.4963 —0.0117 0.6634
90 —0.0007 —0.0002 1.5148 1.5429 —0.0187 0.6542
100 —0.0020  0.0016 1.5314 1.5423 —0.0203 0.6507
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Figure 3. Tukey median (%) of 75 points generated from the bivariate stan-
dard normal distribution, and 25 points generated from the normal distribu-
tion with center (8,0) and unit covariance matrix.

Figure 4. The Tukey median (*) and the contours of depths 1, 11, 21 and 31
of 100 points generated from the standard bivariate normal distribution plus
3 outliers. The maximal depth £* equals 44.

6. Examples

In the first example we illustrate the robustness property of the Tukey me-
dian. We consider 75 points generated from the bivariate standard normal dis-
tribution, and 25 points generated from the bivariate normal distribution with
center (8,0) and unit covariance matrix. Applying the algorithm HALFMED
to these n = 100 observations yields the Tukey median 7", indicated by a * in
Figure 3. If we move the 25 points further away to the right, the Tukey median
essentially does not change any more.
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In a second example we consider 100 data points generated from the bivariate
standard normal distribution, and 3 outliers with coordinates (4,0), (4.5,3) and
(5, —3). The maximal depth k* was equal to 44. In Figure 4 we have plotted the
data and the Tukey median, as well as the contours of depths 1, 11, 21 and 31.
The region D; is simply the convex hull of the whole data cloud. The outliers
influence only the outer contour line, whereas the inner contours are roughly
spherical around the median.

w
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el
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o 95 ‘ ‘ ‘ ‘ ‘ ‘ ‘

I3 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5
&+

g 100 m times

Figurg 5. The Tukey median (%) and the contours of depth 1, 3, 5, and 7 for
the heptathlon data.

Our third example considers the 100 metres time (in seconds) and the shot
put distance (in metres) of n = 25 heptathletes in the women’s heptathlon of
the 1988 Olympics (Hand, Daly, Lunn, McConway and Ostrowski (1994)). We
applied HALFMED to this data set, yielding the Tukey median 7™ indicated by
a * in Figure 5. The maximal depth k* was 10. In Figure 5 we also plotted the
regions with depth 1, 3, 5 and 7. There is an outlier on the right of the figure
which only affects Di, whereas the inner contours and the Tukey median are
robust against the outlier. Making use of the Tukey median and certain depth
contours, we have recently developed a bivariate generalization of the boxplot
(Rousseeuw and Ruts (1997)).
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