
Statistica Sinica 8(1998), 801-812

NONPARAMETRIC TESTS FOR THE MULTIVARIATE

MULTI-SAMPLE LOCATION PROBLEM

Yonghwan Um and Ronald H. Randles

Sungkyul University and University of Florida

Abstract: Nonparametric tests for the multi-sample multivariate location problem

are proposed which extend the two-sample multivariate rank tests by Randles and

Peters (1990) to the multi-sample setting. The asymptotic distributions of the pro-

posed statistics under the null hypothesis and under certain contiguous alternatives

are obtained for a class of elliptically symmetric distributions. Comparisons are

made between the proposed statistics and several competitors via Pitman asymp-

totic relative efficiencies and Monte Carlo results. The tests proposed perform

better than the Lawley-Hotelling generalized T 2 for heavy-tailed distributions. For

normal to light-tailed distributions, the proposed statistics also perform better than

other nonparametric competitors and the proposed analog of the signed-rank test

performs better than the Lawley-Hotelling generalized T 2 for light-tailed distribu-

tions.

Key words and phrases: Interdirections, location problem, multi-sample, multivari-

ate, nonparametric.

1. Introduction

Consider tests for the multivariate multi-sample location problem. Assume
that X

(α)
i = (X(α)

i1 , . . . ,X
(α)
ip )′, i = 1, . . . , nα, denotes a random sample of size

nα from a p-variate continuous population with density function f(X − θα) and
p-dimensional location parameter θα. Here α = 1, . . . , c indexes samples from c

different populations. These samples are assumed to be mutually independent.
We are interested in testing H0 : θ1 = · · · = θc = θ against the general alternative
that θ1, . . . ,θc are not all equal.

A normal theory test for this problem can be based on the likelihood ratio
criterion. Assume that the underlying distributions are all p-variate normal with
common unknown covariance matrix Σ and mean vectors possibly different from
each other. The Lawley-Hotelling generalized T 2 (Lawley (1938) and Hotelling
(1951)) is defined as

T 2 =
c∑

α=1

nα(X̄(α) − X̄)′S−1(X̄(α) − X̄),
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where

S =
1

N − c

c∑
α=1

nα∑
i=1

(X(α)
i − X̄

(α))(X(α)
i − X̄

(α))′,

with X̄
(α) = 1

nα

∑nα
i=1 X

(α)
i , X̄ = 1

N

∑c
α=1

∑nα
i=1 X

(α)
i , and N = n1 +n2+ · · ·+nc.

The Lawley-Hotelling generalized T 2 statistic is affine invariant. Thus if the data
are transformed to form Y

(α)
i = DX

(α)
i + d∗ for i = 1, . . . , nα and α = 1, . . . , c,

where D is a p × p nonsingular matrix of constants and d∗ is p × 1 vector of
constants, then T 2 computed on the Y

(α)
i ’s would be identical to T 2 computed

on the original X
(α)
i ’s. This property insures, for example, that the performance

of T 2 is consistent over changes in the matrix Σ and in the direction of shift.
We also note that the asymptotic null distribution of Hotelling’s T 2 is chi-square
with p(c − 1) degrees of freedom.

Puri and Sen (1971) proposed a nonparametric approach to this problem
based on a component-wise ranking. Let R

(α)
ij denote the rank of X

(α)
ij among

the N observations X
(1)
1j , . . . ,X

(1)
n1j , . . . ,X

(c)
1j , . . . ,X

(c)
ncj for each component j =

1, . . . , p. Let J(·) denote a score function defined on (0,1) that is nondecreasing
and nonconstant, and satisfies

∫ 1
0 J(u)du = 0 plus

∫ 1
0 J2(u)du < ∞. Define

E
(α)
ij = J((N + 1)−1R

(α)
ij ) for j = 1, . . . , p and E

(α)
i = (E(α)

i1 , . . . , E
(α)
ip )′ for

i = 1, . . . , nα and α = 1, . . . , c. In addition, form the p × N matrix of scores:

E =

E
(1)
11 · · ·E(1)

n11 · · ·E(c)
nc1

· · ·
E

(1)
1p · · ·E(1)

n1p · · ·E(c)
ncp

 .

The test statistic is analogous to the Lawley-Hotelling generalized T 2 computed
on the scores of the componentwise ranks. It rejects H0 for large values of

LN =
c∑

α=1

nα(Ē(α) − Ē)′V −1(Ē(α) − Ē),

where the elements of V = {Vst} are given by

Vst =
1
N

(E[s]′E[t]) − 1
N2

(1′E[s])(1′E[t]),

where E[s](E[t]) is the sth (tth) row of E and 1 is a N × 1 vector of ones. Under
the null hypothesis, Ln has a limiting chi-square distribution with p(c−1) degrees
of freedom. However, unlike T 2, Ln is not affine invariant. Thus its performance
will depend on the form of the covariance matrix and the direction of shift.

An affine-invariant nonparametric test procedure was recently proposed by
Hettmansperger and Oja (1994). Their test rejects H0 for large values of H =
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∑c
α=1(1 − nα/n)Hα, where Hα is a two-sample difference in location statistic

used to measure the difference in location between the αth sample and all the
other samples combined. To describe the component statistics, consider H1 and
let θ̂ denote the Oja median (Oja (1983)) of all c samples combined. Align the
data points to form Z

(1)
i = X

(1)
i − θ̂ for i = 1, . . . , n1, and Z

(2)
i = X

(α)
i∗ − θ̂ for

i = 1, . . . , N −n1, where i∗ and α delineate all the data points except those in the
first sample. The statistic H1 is then the Hettmansperger, Nyblom, Oja (1994)
sign test statistic based on Z

(1)
i for i = 1, . . . , n1 and −Z

(2)
i for i = 1, . . . , N −n1

combined into a sample of size N . The test statistic H is affine invariant and has
a limiting chi-square distribution with p(c − 1) degrees of freedom under H0.

An alternative class of affine-invariant, nonparametric test statistics for this
problem, based on interdirections, is described in Section 2. Section 3 shows
their limiting null distribution and develops some Pitman efficiencies relative to
Lawley-Hotelling generalized T 2. In Section 4 these tests are compared to those
described in the current section via Monte Carlo results. A data set is also
used to show comparative results. Key steps to proofs required in Section 3 are
contained in the appendix.

2. The Proposed Class of Statistics

Parametric multivariate tests perform poorly when the underlying distribu-
tion is heavy-tailed. They are particularly vulnerable to outliers. Moreover,
outliers are quite difficult to identify in multivariate settings. Thus nonparamet-
ric tests are particularly important. The family of statistics proposed in this
paper is built on the class of multivariate affine-invariant statistics, denoted by
ZN,φ, proposed by Randles and Peters (1990) for testing the difference in location
between two elliptically symmetric populations. The extension to the c-sample
setting is made by summing all possible pairs of two-sample statistics. Thus the
class of statistics proposed is given by

WN,φ =
c−1∑
α=1

c∑
β=α+1

Zα,β
N,φ

=
c−1∑
α=1

c∑
β=α+1

nαnβ

NE(φ2)

{ 1
n2

α

nα∑
i=1

nα∑
j=1

cos (πp̂α(i, j; θ̂))φ(
Rα,i

N
)φ(

Rα,j

N
)

+
1
n2

β

nβ∑
i=1

nβ∑
j=1

cos (πp̂β(i, j; θ̂))φ(
Rβ,i

N
)φ(

Rβ,j

N
)

− 2
nαnβ

nα∑
i=1

nβ∑
j=1

cos (πp̂α,β(i, j; θ̂))φ(
Rα,i

N
)φ(

Rβ,j

N
)
}
,
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where Zα,β
N,φ compares the αth and βth samples’ locations. Here θ̂ denotes an

affine equivariant estimator of the common location parameter θ when H0 is true
and is based on all N observations. Randles and Peters (1990) used the sample
mean of the N observations for θ̂. For our case we use another affine equivariant
estimator, the Oja median (Oja (1983)). In the above expression, Rα,i denotes the
rank of distance Dα,i among all N distances D1,1, . . . ,D1,n1 , . . . ,Dc,1, . . . ,Dc,nc,
where

Dα,i = (X(α)
i − θ̂)′Σ̂

−1
(X(α)

i − θ̂)

and

Σ̂ =
1
N

c∑
α=1

nα∑
i=1

(X(α)
i − θ̂)(X(α)

i − θ̂)′

(A more robust estimator of the variance-covariance matrix could be used in
place of Σ̂, but the performance is virtually the same.) The term p̂α(i, j; θ̂)
is the sample proportion of hyperplanes formed by θ̂ and p − 1 of the obser-
vations X

(α)
i′ (i′ = 1, . . . , nα, but i �= i′ �= j) such that X

(α)
i and X

(α)
j are on

opposite sides of the hyperplane formed. The term p̂β(i, j; θ̂) is similarly de-
fined. Here X

(α)
i (X(β)

i ) is the ith observation from the αth (βth) sample. The
term p̂α,β(i, j; θ̂) represents the sample proportion of hyperplanes formed by θ̂

and p − 1 of the nα + nβ − 2 observations (X(α)
i′ , i′ = 1, . . . , nα with i′ �= i,

and X
(β)
j′ , j′ = 1, . . . , nβ with j′ �= j) such that X

(α)
i (coming from the αth

sample) and X
(β)
j (coming from the βth sample) are on opposite sides of the

hyperplane formed. The score function φ is nondecreasing on (0,1) and satisfies
E(φ2) =

∫
φ2(t)dt < ∞. In particular, φ1(u) = 1 and φ2(u) = u are emphasized.

3. Pitman Asymptotic Relative Efficiencies

This section establishes the asymptotic null distribution of WN,φ under the
class of elliptically symmetric distributions and displays some Pitman asymptotic
relative efficiencies. Proofs of the results are sketched in the appendix. Let
X

(α)
i , i = 1, . . . , nα and α = 1, . . . , c be independent random samples from the

same elliptically symmetric distribution with dispersion matrix Σ and a location
parameter θ. We assume that both Σ̂−Σ = Op(N−1/2) and θ̂−θ = Op(N−1/2)
and that limN→∞(nα/N) = λα with 0 < λα < 1, and λ1+λ2+· · ·λc = 1. Because
the statistics Zα,β

N,φ are all affine invariant, we assume without loss of generality

that Σ = I(p×p) and that θ is the origin. Under H0, we let X
(α)
i = (Qα,i)1/2U

(α)
i

where the U
(α)
i are all i.i.d. uniformly distributed on the p-dimensional unit

sphere, the Qα,i’s are all i.i.d. positive R.V.’s and independent of the U
(α)
i ’s. We

use an approximating statistic which has the same asymptotic null distribution
as WN,φ.
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Randles and Peters (1990) showed that an approximating quantity for Zα,β
N,φ

in the two sample case is:

Z∗,α,β
N,φ =

nαnβ

NE(φ2)

{ 1
n2

α

nα∑
i=1

nα∑
j=1

cos (πpα(i, j;θ))φ(H(Qα,i))φ(H(Qα,j))

+
1
n2

β

nβ∑
i=1

nβ∑
j=1

cos (πpβ(i, j;θ))φ(H(Qβ,i))φ(H(Qβ,j))

− 2
nαnβ

nα∑
i=1

nβ∑
j=1

cos (πpα,β(i, j;θ))φ(H(Qα,i))φ(H(Qβ,j))
}
,

where Qα,i = X
(α)
i

′
X

(α)
i , Qβ,i = X

(β)
i

′
X

(β)
i , H is the distribution function of Qα,i

(and Qβ,i) under H0, and pα(i, j;θ) is the angle in radians between X
(α)
i - θ and

X
(α)
j - θ (similarly for pβ(i, j;θ) and pα,β(i, j;θ)). Therefore our approximating

quantity for WN,φ is given by:

W ∗
N,φ = Z∗,1,2

N,φ + Z∗,1,3
N,φ + · · · + Z∗,c−1,c

N,φ .

Since Zα,β
N,φ − Z∗,α,β

N,φ = op(1) under H0 (Randles and Peters (1990)), WN , φ and
W ∗

N,φ have the same asymptotic null distribution. The following theorem results
from this asymptotic approximation. Its proof is sketched in the appendix.

Theorem 1. Under H0,WN,φ
d
→χ2

p(c−1).

Establishing Pitman efficiencies requires the asymptotic distribution of the
test statistics under a sequence of alternatives approaching the null hypothesis.
Assume X

(α)
1 , . . . ,X(α)

nα
are iid from f(x − dα/

√
N) where dα = (dα1, . . . , dαp)′

satisfies
∑c

α=1 λαdα = 0. The class of multivariate distributions used for this
comparison is the exponential power family, with density function f(x) = k0

exp{−[(x−θ)′Σ−1(x−θ)/c0]ν}, where ν > 0, c0 = [pΓ(p/2ν)/Γ((p+2)/2ν)] and
k0 = νΓ(p/2)/[Γ(p/2ν)(πc0)p/2]. Because both tests are affine invariant we again
assume, without loss of generality, that Σ = I and θ = 0. The rationale of Hajek
and Sidak ((1967), pp. 208-213) shows that the alternatives are contiguous to the
null hypothesis. The proof of the following theorem is sketched in the Appendix.

Theorem 2. Under the sequences of alternatives,

WN,φ
d

→χ2
p(c−1)(δ),

where

δ =
4ν2

pc2ν
0 E(φ2)

E2
(
φ(H(Q1,i))(Q1,i)ν−1/2

) c∑
α=1

λαdα
′dα.
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Pitman asymptotic relative efficiency will be used to make a comparison
between WN,φ and the Lawley-Hotelling generalized T 2. The asymptotic distri-
bution of the generalized T 2 under the same sequence of contiguous alternatives
described above is chi-square with noncentrality parameter

∑c
α=1 λαd′

αdα (Puri
and Sen (1971), p. 212). Thus

ARE(WN,φ, T 2) =
4ν2

pc2ν
0 E(φ2)

E2
(
φ(H(Q1,i))(Q1,i)ν−1/2

)
.

Using the score functions φ1(u) = 1 and φ2(u) = u, the asymptotic relative
efficiencies are identical to the one-sample asymptotic relative efficiencies of the
sign and signed-rank tests, respectively reported in Randles (1989) and in Peters
and Randles(1990). So that, after evaluating the expectation, we have

ARE(WN,φ1 , T
2) =

4ν2Γ2(2ν+p−1
2ν )Γ(p+2

2ν )
p2Γ3( p

2ν )
,

and

ARE(WN,φ2 , T
2) =

12ν2Γ(p+2
2ν )Γ2(2p+2ν−1

2ν )β2(1
2 ; p

2ν ; 2p+2ν−1
2ν )

p2Γ5( p
2ν )

,

where β(1
2 ; a; b) =

∫ 1
2

0 xa−1(1 − x)b−1dx, a, b > 0. It is of interest to note that
limν→∞ ARE (WN,φ1 , T

2) = p
p+2 (≤ 1) and limν→∞ ARE (WN,φ2 , T

2) = 3p
p+2(≥ 1)

for fixed p. Thus we expect that for light-tailed distributions WN,φ2 will perform
better than both WN,φ1 and the Lawley-Hotelling generalized T 2 when p > 1.
Table 1 displays the Pitman asymptotic relative efficiencies of WN,φ relative to
the Lawley-Hotelling generalized T 2 for these two score functions and for selected
values of ν and p.

Table 1. ARE(WN,φ1 , T
2) and ARE (WN,φ2 , T

2)

ν

0.1 0.5 1.0 2.0 5.0
p φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2

1 252252 739 2.00 1.50 .637 .954 .411 .873 .347 .907
2 367 25 1.50 1.13 .785 .985 .590 1.051 .519 1.221
3 54.8 7.40 1.33 1.00 .849 .975 .688 1.099 .620 1.346
4 21.0 3.93 1.25 0.94 .884 .961 .749 1.109 .687 1.395
5 11.7 2.67 1.20 0.90 .905 .949 .790 1.106 .734 1.412

As can be seen, WN,φ2 is more efficient than WN,φ1 and T 2 for light-tailed
distributions (ν = 2 and 5) when p> 1. Even under the multivariate normal
distribution and other distributions close to the normal, WN,φ2 continues to be
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efficient relative to T 2. For heavy-tailed distributions (ν = 0.1 and 0.5), WN,φ1

is superior to both WN,φ2 and T 2.

4. Monte Carlo Study and Example

In this section we display results from a Monte Carlo study in which the
number of samples is c = 3, the dimension is p = 3, and each sample size is nα

= 15, α = 1, 2, 3. The five statistics WN,φ1 , WN,φ2, Lawley-Hotelling general-
ized T 2, and the statistics LN and H were compared using samples from three
distributions which span the spectrum of tailweights among elliptically symmet-
ric distributions. Specifically, the distributions considered are a very light-tailed
member of the exponential power family with ν = 25, the multiviariate normal
(exponential power with ν = 1) and the multiviariate Cauchy distribution with
density function f(x) = k1(1 + x′x)−(p+1)/2, where k1 = π−(p+1)/2Γ((p + 1)/2).
Here we also use θ = 0 and Σ = I, except in the multiviariate normal case, where
the individual components of X have mean 0 and variance 1, but each pair of
components are highly correlated with ρ = .90. The latter is chosen to illustrate
how its lack of affine invariance can cause LN to perform poorly. The distri-
butions were chosen to illustrate performance extremes from very light-tailed to
very heavy-tailed cases.

The number of repetitions at each case was 1000. In each Monte Carlo sim-
ulation, the proportion of times out of 1000 in which each test statistic exceeded
its critical value is reported. The asymptotic null distribution χ2

6 is used to deter-
mine the critical value for tests WN,φ1, WN,φ2, LN and H. For Lawley-Hotelling
generalized T 2, the test rejects H0 if T 2 exceeds 84

13F6,78 where Fν1,ν2 denotes the
upper 5th percentile of an F distribution with ν1 and ν2 degrees of freedom.

In Table 2 we present the results of the Monte Carlo study for various values
of the locations θ1, θ2 and θ3. The first sample was selected in each case from
the indicated population centered at the origin. The second and third samples
were selected from the same population but centered at shifted values θ2 and
θ3 respectively, as indicated in Table 2. The locations for the second and third
populations were selected so that the results would represent a reasonable range
of powers under the alternative hypotheses. The directions of shift are fairly
irrelevant to the performances of the affine invariant procedures, but not so to
LN .

In general, the tests WN,φ1 and H perform similarly, with WN,φ1 performing
slightly better in this study due to the fact that its levels are closer to the
target α = .05 using the asymptotic cutoff. All of the tests could be conducted
using permutation cutoffs which would equate their null levels, but would greatly
increase the computational difficulty in a simulation such as this. Both WN,φ1 and
H are superior to WN,φ2, T

2 and LN when the distribution is the multivariate
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Cauchy. When the underlying distribution is multivariate normal, T 2 is best,
but WN,φ1, H and especially WN,φ2 are very competitive in this case. Here the
performance of LN is poor due to its lack of affine-invariance. For the light-tailed
(ν = 25) case, WN,φ2 is best with T 2 the only legitimate competitor.

We make another comparison among those five statistics using the example
Hettmansperger and Oja (1994) took from Seber (1984). The data contains x1,
the amount of phospate (mg/ml) and x2, the amount of calcium (mg/ml) in urine
samples from 36 men in three different weight groups, with n1 = 10, n2 = 12 and
n3 = 14. The result of the analysis are given in Table 3. Here the approximate
distribution of Lawley-Hotelling generalized T 2 is F4,62 and the others have an
approximate χ2

4 distribution. All five statistics indicate that these three weight
groups do differ in urine phosphate and calcium levels. The asymptotic p-values
associated with WN,φ1 and WN,φ2 are the smallest among the nonparametric
tests.

Table 2. Monte Carlo results with n = 15, reps = 1000

Statistics
θ1 θ2 θ3 WN,φ1 WN,φ2 T 2 LN H

Cauchy
(0,0,0) (0,0,0) (0,0,0) .058 .059 .012 .045 .038
(0,0,0) (.4,.4,.4) (0,−.4,0) .264 .199 .035 .199 .213
(0,0,0) (.6,.6,.6) (0,−.6,0) .463 .299 .075 .349 .417
(0,0,0) (.8,.8,.8) (0,−.8,0) .688 .405 .097 .566 .660

normal, correlations = 0.9
(0,0,0) (0,0,0) (0,0,0) .062 .063 .049 .030 .037
(0,0,0) (−.1,−.1,0) (.1,.1,0) .139 .152 .141 .054 .105
(0,0,0) (−.2,−.2,0) (.2,.2,0) .430 .459 .505 .100 .386
(0,0,0) (−.3,−.3,0) (.3,.3,0) .808 .840 .897 .203 .780

exp. power ν = 25
(0,0,0) (0,0,0) (0,0,0) .065 .071 .048 .042 .038
(0,0,0) (.2,.2,.2) (0,−.2,0) .162 .174 .150 .123 .126
(0,0,0) (.4,.4,.4) (0,−.4,0) .207 .367 .278 .130 .172
(0,0,0) (.6,.6,.6) (0,−.6,0) .396 .730 .620 .261 .352

Table 3. Statistical analysis of urine data

Statistics
WN,φ1 WN,φ2 T 2 LN H

Value 13.8931 15.0518 6.262 12.2479 12.511
p-value 0.0076 0.0046 0.0003 0.0156 0.0139

Appendix

Proof of Theorem 1. Noting that cos(πpα(i, j,θ)) = U
(α)
i

′
U

(α)
i , etc. we can
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write Z∗,α,β
N,φ = Sα,β′

N,φSα,β
N,φ, where

Sα,β
N,φ =

√
nαnβp√
NE(φ2)

{ 1
nα

nα∑
i=1

U
(α)
i φ(H(Qα,i)) − 1

nβ

nβ∑
j=1

U
(β)
j φ(H(Qβ,j))

}
.

Let B = (B′
1,2,B

′
2,3, . . . ,B

′
c−1,c)′ where Bα,β are arbitrary nonzero p × 1 fixed

vectors. Then

B′SN,φ = B′
1,2S

1,2
N,φ + B′

1,3S
1,3
N,φ + · · · + B′

c−1,cS
c−1,c
N,φ

=
c−1∑
α=1

c∑
β=α+1

√
nαnβp√

NE(φ2)
1

nαnβ

nα∑
i=1

nβ∑
j=1

B′
α,β

(
U

(α)
i φ(H(Qα,i)) − U

(β)
j φ(H(Qβ,j))

)

=
c∑

α=1

1
nα

nα∑
i=1

{ c∑
β=1
β �=α

√
nαnβp√
NE(φ2)

B′
α,β U

(α)
i φ(H(Qα,i))

}
,

where we set Bα,β = −Bβ,α when β < α. Here we see that the summands
in each term are i.i.d. random variables so that we can establish an asymptotic
normal distribution for each term by the Central Limit Theorem. The αth term
converges to N(0, (

∑c
β=1
β �=α

√
λβB′

α,β)(
∑c

β=1
β �=α

√
λβB′

α,B)′), where limN→∞ nα
N = λα,

α = 1, . . . , c and λ1 + λ2 + · · ·+ λc = 1. Also, since the terms are independent of
one another, we obtain the asymptotic normality of B′SN,φ via a multi-sample

version of the Central Limit Theorem. Then B′SN,φ
d→ N(0,Ψ), where Ψ =

B′A′AB and

A =



√
λ2Ip

√
λ3Ip · · · 0p

−√
λ1Ip 0p ·· 0p

0p −√
λ1Ip ·· 0p

· · ...√
λcIp

· · −√λc−1Ip


cp× (c−1)cp

2

,

where 0p denotes a p × p matrix of zeros. Therefore, SN,φ
d
→N(0,V ) where

V = A′A is a (c−1)cp
2 × (c−1)cp

2 variance-covaiance matrix.
In general, A = A1 ⊗ Ip where A1 is a c × ( c

2

)
matrix of constants and Ip

is a p × p identity matrix. Let a′
i denote the ith row of A1, 1 ≤ i ≤ c, and bj

denote the jth column of A1, 1 ≤ j ≤ c(c − 1)/2. We see that A1 satisfies: (1)
a′

αaα = (1−λα) for α = 1, . . . , c, (2) a′
αaβ = −√λαλβ for all 1 ≤ α < β ≤ c, (3)
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∑c
α=1

√
λαa′

α = 0′, and (4) if the jth column of A1 corresponds to Bα,β, then
b′jbj = λα + λβ for all j = 1, . . . , c(c − 1)/2. Letting V = V 1 ⊗ Ip, we note that

V 1 · V 1 =
( c∑

α=1

aαa′
α

)( c∑
β=1

aβa′
β

)

=
c∑

α=1

aα (1 − λα) a′
α +

c c∑∑
α=1 β=1

α�=β

aα

(
−
√

λαλβ

)
a′

β

=
c∑

α=1

aαa′
α −

( c∑
α=1

√
λαaα

)( c∑
β=1

√
λβa′

β

)

=
c∑

α=1

aαa′
α = A1

′ · A1 = V 1.

Since V = V 1 ⊗ Ip, and V · V = (V 1 ⊗ Ip)(V 1 ⊗ Ip) = (V 1 · V 1)⊗ (Ip · Ip) =
V 1 ⊗ Ip = V , we see that V is idempotent. Therefore the asymptotic null
distribution of W ∗

N,φ is a chi-square distribution with degrees of freedom tr(V )
(see Searle (1971)), where

tr(V ) = (λ1 + λ2)p + (λ1 + λ3)p + · · · + (λc−1 + λc)p
= (c − 1)p(λ1 + λ2 + · · · + λc) = (c − 1)p.

This completes the proof.

Proof of Theorem 2. Under continguous alternatives, an asymptotic approxi-
mation to the log-likelihood function is:

T ∗
N =

1√
N

{ c∑
α=1

nα∑
i=1

dα
′ f ′(X(α)

i )

f(X(α)
i )

}
=

2ν
cν
0

√
N

{ c∑
α=1

nα∑
i=1

dα
′X(α)

i (X(α)
i

′
X

(α)
i )ν−1

}
=

2ν
cν
0

√
N

{ c∑
α=1

nα∑
i=1

dα
′(Qα,i)ν−1/2U

(α)
i

}
.

Let a = (a1, a2)′ be an arbitrary fixed vector of constants in which both compo-
nents are not zero. We first find the joint limiting distribution of T ∗

N and S∗
N =

B′SN,φ.

a′
(

S∗
N

T ∗
N

)
= a1S

∗
N + a2T

∗
n

=
c∑

α=1

nα∑
i=1

[
2a2ν

cν
0

√
N

(Qα,i)ν−1/2dα + a1φ(H(Qα,i))(
∑
β=1
β �=α

√
nβp√

nαNE(φ2)
Bα,β)

]′
U

(α)
i .
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Since EHo [S∗
N ] and EHo [T ∗

N ] are zero, EHo [a′(S∗
N , T ∗

N )′] = 0. Also,

VHo [a
′(S∗

N , T ∗
N )′] = EHo[(a

′(S∗
N , T ∗

N )′)2].

Using EH0(U
(α)
i ) = p−1Ip, the variance of S∗

N is:

σ2
1,N =

1
N

[ c∑
α=1

(
c∑

β=1
β �=α

√
nβB′

α,β)′(
c∑

β=1
β �=α

√
nβB′

α,β)
]

→ B′A′AB = B′V B as N → ∞.

Also, as N → ∞, the variance of T ∗
N , goes to

σ2
2 =

4ν2

c2ν
0 p

EHo((Q1,i)2ν−1)
( c∑

α=1

λαd′
αdα

)
.

Finally, as N → ∞, the covariance of S∗
N and T ∗

N goes to

σ12 =
2ν

cν
0

√
pE(φ2)

EHo

[
φ(H(Q1,i))(Q1,i)ν−1/2

][ c∑
α=1

λα(
c∑

β=1
β �=α

√
λβ√
λα

B′
α,β)dα

]

=
2ν

cν
0

√
pE(φ2)

EHo

[
φ(H(Q1,i))(Q1,i)ν−1/2

]
B′Gd,

where d′ = (d′
1, . . . ,d

′
c) and

G =



√
λ1λ2Ip −

√
λ1λ2Ip 0p 0p · · · 0p 0p√

λ1λ3Ip 0p −√
λ1λ3Ip 0p · · · 0p 0p

·
·
0p 0p 0p 0p · · ·

√
λc−1λcIp −

√
λc−1λcIp

 .

Then by LeCam’s third Lemma, we have, under the sequence of alternatives,

S∗
N

d→ N(µ∗
a,B

′V B),

where
µ∗

a =
2ν

cν
0

√
pE(φ2)

EHo

[
φ(H(Q1,i))(Q1,i)ν−1/2

]
B′Gd.

Therefore, under the contiguous alternatives,

SN
d→ N

( 2ν
cν
0

√
pE(φ2)

EHo

[
φ(H(Q1,i))(Q1,i)ν−1/2

]
Gd,V

)
and

W ∗
N,φ

d→ χ2
(c−1)p

( 4ν2

c2ν
0 pE(φ2)

E2
Ho

[
φ(H(Q1,i))(Q1,i)ν−1/2

]
d′G′Gd

)
.
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To simplify the form of noncentrality parameter of the chi-square distribution,
we use the fact that

∑c
α=1 λαdα = 0. Since

d′G′Gd = d′


λ1(1 − λ1)Ip −λ1λ2Ip −λ1λ3Ip · · · −λ1λcIp

−λ1λ2Ip λ2(1 − λ2)Ip −λ2λ3Ip · · · −λ2λcIp
...

...
...

...
...

−λcλ1Ip −λcλ1Ip −λcλ3Ip · · · λc(1 − λc)Ip

d

=
c∑

α=1

λαd′
αdα −

[
(

c∑
α=1

λαdα)′(
c∑

α=1

λαdα)
]

=
c∑

α=1

λαd′
αdα,

and we have the desired result.
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