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MODEL INDEXING AND SMOOTHING PARAMETER

SELECTION IN NONPARAMETRIC

FUNCTION ESTIMATION
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Abstract: Smoothing parameter selection is among the most intensively studied

subjects in nonparametric function estimation. A closely related issue, that of iden-

tifying a proper index for the smoothing parameter, is however largely neglected

in the existing literature. Through heuristic arguments and simple simulations, we

show that most current working indices are conceptually “incorrect”, in the sense

that they are not interpretable across-replicate in repeated experiments. As a con

sequence, a few popular working concepts, such as expected mean square error

and “degrees of freedom”, appear vulnerable under close scrutiny. Due to tech-

nical constraints, the arguments are mainly developed in the penalized likelihood

setting, but conceptual parallels can be drawn to other settings as well. In the

light of our findings, simulations and discussion are also presented to compare the

relative merits of the simple cross-validation method versus the more sophisticated

plug-in method for smoothing parameter selection, and to explore related issues.

The development stems from an attempt to understand the well-publicized nega-

tive correlation between optimal and cross-validation smoothing parameters, which

however turns out to bear little statistical relevance.

Key words and phrases: Constraint, cross-validation, kernel method, negative cor-

relation, penalized likelihood, plug-in method.

1. Introduction

Smoothing parameter selection plays an important role in practical nonpara-
metric function estimation. In spite of the ever growing number of procedures
being proposed and theorems being proved, there remain some basic concepts
to be clarified, some gaps between theory and practice to be patched, and some
counter-intuitive phenomena to be understood. Through the assessment of the
interpretability of the smoothing parameters commonly in use, we illustrate in
this article that most working indices of smoothing parameter are conceptu-
ally “incorrect”, in the sense that they are not interpretable across-replicate in
repeated experiments, and consequently the commonly accepted intuitions are
somewhat distorted. Our conclusions concerning the philosophies of smoothing
parameter selection and the relative merits of the cross-validation method versus
the plug-in method are at odds with some of the recent literature.
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We consider a regression problem for simple exposition, but the arguments
readily apply to other problems. Given observations

Yi = f(xi) + εi, i = 1, . . . , n, (1)

where xi ∈ [0, 1] and εi ∼ N(0, σ2), one is to estimate f(x). The issues under
discussion are the statistical models behind nonparametric estimates, their proper
indexing, and the ramifications in smoothing parameter selection.

Our arguments will be developed under the setting of penalized likelihood
estimation. Assume f(x) is smooth in the sense that its second derivative exists
and is small. A popular approach to the estimation of f(x) is through minimizing

1
n

n∑
i=1

(Yi − f(xi))2 + λ

∫ 1

0
f̈2(x)dx, (2)

where the least squares term discourages lack of fit, the smoothness functional∫ 1
0 f̈2(x)dx penalizes roughness, and the smoothing parameter λ controls the

tradeoff. The minimizers of (2) with λ ∈ (0,∞), known as the cubic smoothing
splines, define a continuum of estimates. When λ → ∞, one obtains the sim-
ple linear regression line; when λ → 0, one computes the minimum curvature
interpolant. The practicability of the method hinges on a good choice of λ, the
selection of a good model from a continuum of available models. A comprehensive
treatment of (2) and related methods can be found in Wahba (1990).

An alternative derivation of smoothing splines is through a constrained least
squares problem, which minimizes

1
n

n∑
i=1

(Yi − f(xi))2, s.t.

∫ 1

0
f̈2(x)dx ≤ ρ (3)

for some ρ ≥ 0. The solution of (3) usually falls on the boundary
∫ 1
0 f̈2(x)dx = ρ

and, by the Lagrange method, it can be calculated as the minimizer of (2) with an
appropriate Lagrange multiplier λ. Thus, up to the choice of λ and ρ, a penalized
likelihood problem with a penalty proportional to

∫ 1
0 f̈2(x)dx is equivalent to a

constrained maximum likelihood problem subject to a soft constraint of the form∫ 1
0 f̈2(x)dx ≤ ρ. See, e.g., Schoenberg (1964).

Given the least squares functional (1/n)
∑n

i=1(Yi − f(xi))2, which is depen-
dent on the data Yi, the mapping from ρ to λ is one-to-one, but an important
fact is that the mapping changes with the least squares functional. That is, for a
fixed constraint

∫ 1
0 f̈2(x)dx ≤ ρ, the Lagrange multiplier λ varies with the data

Yi; conversely, a fixed λ in (2) implies different binding constraints on the esti-
mates for different data. This simple observation, that ρ and λ are not equivalent
as model indices, is a key to an understanding of the discussion.
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In Section 2 we present some heuristics and a simple simulation to show that
the λ index of smoothing splines is not interpretable across-replicate while the
ρ index is, and consequently any across-replicate concepts directly indexed by λ

are likely to mislead. In section 3 we discuss the ramifications of model indexing
in smoothing parameter selection, and demonstrate that the counter-intuitive
negative correlation between the optimal and the cross-validation smoothing pa-
rameters is actually an illusion due to improper model indexing. In Section 4
the relative merits of the cross-validation method and the plug-in method for
smoothing parameter selection are compared in the context of kernel density es-
timation. There we show that the former is as competitive as the latter, that the
latter also demonstrates a negative correlation, and that the published theory
may have little to do with the practical performance of the plug-in method. In
Section 5 we briefly summarize our findings and discuss the implications.

2. Model Indexing

Statistical estimation can be viewed as a compromise between the data and
the model, the assumptions one makes about the scheme in which the data are
generated. In classical parametric estimation a statistical model often consists of
two parts: a random part represented by the likelihood function, and a systematic
part characterized by a certain constraint. For example, a parametric model
f(x) = f(x, θ) for the systematic part f(x) in (1) simply represents a rigid
constraint. For a general statistical procedure, it may not always be possible
to explicitly describe the effective constraint, and the constraint actively in force
may not comport with the stated assumptions. It seems always possible, however,
to perceive conceptually some effective constraint with which the data make
compromise in an estimation procedure. With such effective constraint in mind,
we have the following heuristic.

Heuristic 1. The model behind an estimate is characterized by the constraint to
which the estimate is subject.

For smoothing spline estimates, it is clear that the effective constraints are
characterized by the ρ index in the constrained least squares formulation of (3).
For other procedures, the effective constraint may remain an abstract notion
impossible to quantify, yet the mere awareness of such notion may caution one
to stay away from otherwise tempting conceptual pitfalls.

The discrepancies between the estimates and the truth are usually measured
via loss or risk functions. Intuitively, the performance of an estimate relative to
other estimates based on the same data should be largely determined by how
close the effective model (i.e., constraint) is to the state of nature, as compared
to the effective models behind the other estimates. The state of nature does
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not change over replicates in an experiment with a fixed stochastic structure
except for minor random fluctuations, hence there should be a single optimal
model yielding the (nearly) best-performing estimates for all replicates, provided
that the same set of effective constraints are reproduced by the procedure over
replicates. This leads to our second heuristic.

Heuristic 2. The optimal models should remain largely invariant over replicated
data from the same stochastic structure.

For (1), Heuristic 2 means that the optimal strategy among given choices
should only depend on the true f(x) and the stochastic behavior of εi, but not
on the specific realization of εi.

Now consider a simple simulation. On xi = (i − .5)/100, i = 1, . . . , 100, we
generated 100 replicates of data from (1) with f(x) = 1+3 sin(2πx−π) and σ2 =
1. For λ on a fine grid of log10 nλ = (−5)(.05)(−1), we calculated the minimizers
of (2) for each of the replicates, and determined retrospectively the effective

constraint an estimate f̂(x) had been subject to by calculating ρ =
∫ 1
0

¨̂
f

2
(x)dx.

The best-performing estimate on the grid was identified for each of the replicates,
with the performance of f̂(x) as an estimate of f(x) being measured by the mean
square error at the sampling points: (1/100)

∑100
i=1(f̂(xi)− f(xi))2. The grid was

broad enough to bracket the best-performing estimates for all the 100 replicates.
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Figure 1. The ρ and λ indices of smoothing spline estimates in simulation.
Left and center: Empirical relation between ρ and λ and the optimal indices.
Right: Efficacies of typical optimal ρ and λ indices.

The left frame of Figure 1 depicts the mapping between the λ index and the
ρ index in our simulation, where the solid curve plots the mapping for the first
replicate and the dashed lines sketch an envelope surrounding the bundle of 100
such curves. The window marked by the dotted lines is amplified in the center
frame of Figure 1, where the indices of the best-performing estimates are super-
imposed as circles and the ρ of the true function

∫ 1
0 f̈(x)dx = 103.846 is marked
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by the vertical dotted line. It is reassuring to see that the optimal models scatter
around the dotted line. To comprehend the magnitudes of the scatters of the
optimal indices, we examine the relative performance of some typical optimal
index at the middle of the cloud. We pick log10 ρ = 3.846 as a typical optimal ρ

and log10 nλ = −2.8 as a typical optimal λ, and assess their efficacy by calculat-
ing for each replicate the ratio of the mean square error of the best-performing
estimate to that of the estimate with the typical optimal index. The right frame
of Figure 1 summarizes these ratios in box plots, which indicate that the scatter
of the optimal λ indices is an order of magnitude greater than the scatter of the
optimal ρ indices. By Heuristic 1, the ρ index for models behind the estimates
has a clear statistical meaning as it characterizes the constraints to which the
estimates are subject; Heuristic 2 extends further support to the ρ index through
the above simulation. In contrast, the λ index is not statistically interpretable
across-replicate in this setting, although it sometimes helps replicate-specific cal-
culations as we shall note shortly.

Denote by fλ the minimizer of (2) for fixed λ, and by fρ the solution of
(3) for fixed ρ. A tempting criterion for the assessment of penalized likelihood
estimates is the expected mean square error of fλ indexed by λ:

R(λ) = E
1
n

n∑
i=1

(fλ(xi) − f(xi))2, (4)

where the expectation is with respect to εi. This seemingly natural criterion is un-
fortunately defective: a fixed λ implies different models for different realizations
of εi, so the expectation is mixing apples with oranges. Concepts based on the
exact quantification of (4), such as the minimizer of R(λ) as the across-replicate
“optimal” λ, are hence misleading. One may nevertheless legitimately define an
expected mean square error for fρ indexed by ρ, and discuss the across-replicate
optimal ρ, although analysis of the constrained problem is less tractable.

Caution 1. Working with an index that is not interpretable across-replicate,
concepts based on a risk function can mislead.

Despite the conceptual defect in R(λ), the right-hand-side of (4) can be useful
in determining the rates, but not the exact quantifications, of the asymptotic
behavior of the minimizers of (2). One may calculate a rate E(1/n)

∑n
i=1(fλ(xi)

−f(xi))2 = O(K), with K an expression in n and λ, and then convert the rate
to (1/n)

∑n
i=1(fλ(xi)− f(xi))2 = Op(K), which concerns a replicate-specific loss

function.
Denote the fitted value by Ŷi = fλ(xi). Fixing λ, the minimizer of (2) forms

a so-called linear smoother in the sense that Ŷ = A(λ)Y , where Y and Ŷ

are vectors of Yi and Ŷi, respectively, and A(λ) is a so-called smoothing matrix
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or hat matrix indexed by λ; see, e.g., Buja, Hastie and Tibshirani (1989) and
Wahba (1990). A popular concept in data smoothing is the so-called “degrees-
of-freedom”, defined as the trace of A(λ) or that of a related matrix. Given
xi, λ ↔ A(λ) is one-to-one, so the “degrees-of-freedom” index of models is,
unfortunately, a repackaging of the λ index. In the above simulation, the trace
of A(λ) corresponding to the optimal λ index ranges from 5.08 to 9.14.

Caution 2. The popular notion of “degrees-of-freedom” in nonparametric re-
gression does not seem to convey the proper intuition for model complexity.

In parametric regression, the trace of the hat matrix happens to match the
dimension of the model space, which provides an intuitive characterization of the
binding effect of the model. The concept of degrees-of-freedom rests only with
the dimension, but not with the trace. For example, there is no hat matrix in
parametric density estimation, yet there still is a degrees-of-freedom.

3. Smoothing Parameter Selection

For practical estimation one has to choose a particular ρ or λ to calculate an
estimate, and it is rarely the case that a good choice of ρ or λ can be determined
a priori. The practice of using a linear smoother with predetermined “degrees-
of-freedom”, or using the minimizer of (2) with a fixed λ, is hardly a defensible
strategy, for the choice of ρ would then be up to the specific realization of εi in
(1). Unless a proper value of ρ =

∫ 1
0 f̈2(x)dx can be assumed, which is not too far

from a parametric assumption, effective data-driven model selection procedures
are necessary for the method to be of any practical use.

For data-specific calculations, the ρ index and the λ index are equivalent.
Because the penalized problem is much easier to deal with, the λ index is most
convenient for operational purposes. The objective of model selection is thus to
locate a data-specific optimal λ, say the minimizer of

L(λ|Y ) =
1
n

n∑
i=1

(f
λ|Y (xi) − f(xi))2,

where the dependence of fλ on the data is made explicit, and it is necessary to
keep any λ selection procedure data-specific. As a side remark, we note that naive
resampling procedures should not be used in λ-indexed model selection without
proper justification, for the optimal λ for a resample may not necessarily be good
for the observed data.

Caution 3. Working with an index that is not interpretable across-replicate, a
proper model selection method should be data-specific.
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An effective model selection procedure for regression is Craven and Wahba’s
(1979) generalized cross-validation, which selects the minimizer of

V (λ|Y ) =
Y T (I − A(λ))2Y /n

[trace(I − A(λ))/n]2

for use in (2), where the matrix A(λ) is as defined in Section 2. The score V (λ|Y ) is
data-specific and its minimizer λ∗ can be shown to approximately minimize the
data-specific loss function L(λ|Y ), in the sense that 1 − minλL(λ|Y )/L(λ∗|Y )
= op(1), of course under conditions; see Li (1986). Note that the data in V (λ|Y )
and L(λ|Y ) have to be the same to make this work. Actually, Li’s (1986) result
can be expressed as

V (λ|Y ) − L(λ|Y ) − n−1εT ε = op(L(λ|Y )), (5)

where ε is the vector of unobservable noise εi in (1). V (λ|Y ) is thus a consistent
estimate of the relative loss L(λ|Y ) + n−1εT ε. With small probability the term
op(L(λ|Y )) may not be negligible relative to L(λ|Y ), and this is when the method
may fail to identify a (data-specific) good λ.

We now continue the simulation of Section 2 by evaluating the performance
of generalized cross-validation on the 100 replicates. Plotted in the left frame of
Figure 2 are the loss of the cross-validated estimates L(λ∗|Y ) versus the loss of the
best-performing estimates minλL(λ|Y ) for each of the replicates. A point on the
dotted line indicates a perfect performance of the procedure. As explained above
the method may malfunction with small probability, and indeed it worked rather
poorly on a few of the replicates. The general performance however appears
satisfactory.
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Figure 2. The performance of generalized cross-validation in simulation. Left:
Cross-validation MSE versus optimal MSE. Center: Cross-validation λ versus
optimal λ. Right: Cross-validation ρ versus optimal ρ.
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To visually perceive how bad things can be, we take a closer look as the
replicate plotted as the star in the left frame of Figure 2. It recorded the lowest
efficacy minλL(λ|Y )/L(λ∗|Y ) = .133 among the 100 replicates. Plotted in Figure
3 are the data from the worst replicate as the circles, the cross-validated estimate
as the solid line, the best performing estimate as the dashed line, and the test
function as the dotted line. There seem to be some indications that the method
was “fooled” by the data. For example, the local dip near x = .75 was apparently
responding to the data pattern at that locale.
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Figure 3. A poor performance of generalized cross-validation. The circles
are the data, the solid line the cross-validated estimate, the dashed line the
best-performing estimate, and the dotted line the test function.

In the course of the above simulation, we have collected sufficient informa-
tion to reproduce the well-publicized negative correlation between the optimal
and the cross-validation smoothing parameters in the center frame of Figure 2,
where the λ index of the cross-validated estimates is plotted against that of the
best-performing estimates. Scott and Terrell (1987) and Hall and Johnstone
(1992) made the observation concerning a few versions of cross-validation under
various problem settings, and charged cross-validation for performing counter-
intuitively. Were the λ index interpretable across-replicate, as was usually per-
ceived, the negative correlation would indeed signal an alarm against the use of
cross-validation in practice. In the light of our previous discussion, however, the
points in the center frame of Figure 2 are not comparable with each other, and
hence the whistle can be a false alarm. Plotting the more relevant ρ index of
the cross-validated estimates versus that of the best-performing estimates in the
right frame of Figure 2, we see that the negative correlation no longer exists.
There is nearly a single optimal model which generalized cross-validation tries to
adopt, but due to the error in the estimation of the relative loss L(λ|Y )+n−1εT ε

by V (λ|Y ), the models actually adopted are scattered nearby, except for a few
wild failures when the error term op(L(λ|Y )) in (5) gets out of control.
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Caution 4. Working with an index that is not interpretable across-replicate, the
relation between the optimal index and the cross-validation index has no logical
bearing on the statistical performance of cross-validation.

Cross-validation may not be the final word for smoothing parameter selec-
tion, but whatever a better procedure is going to be, as long as it is λ-indexed,
it should be after a data-specific loss function. Also, a procedure can not be
expected to work all the time, as the decisions have to be based on stochastic
data.

In settings other than Gaussian regression, such as density estimation, a
strategy for data-specific λ selection in penalized likelihood estimation can be
found in Gu (1992) and (1993). In simulations similar to that reported above, the
procedure demonstrates the same qualitative performance as that of generalized
cross-validation as depicted in the three frames of Figure 2, including the negative
correlation of the λ indices.

As a final note, we point out a gap between the theory and the practice of
generalized cross-validation in the early literature. As we see it now, the original
theoretical result presented by Craven and Wahba (1979), that the minimizer
of EV (λ|Y ) approximately minimizes EL(λ|Y ), has no logical bearing on the
practical performance of generalized cross-validation as simulated by the original
authors and many others, including the current one. Despite the oversight in
their presentation of the theory, however, the general arguments of Craven and
Wahba (1979) (with a more careful interpretation) can be seen to lead to the
more relevant result as quoted above, proved later by Li (1986). The derivative
result of Gu (1990) in the context of non-Gaussian regression suffers from the
same logical defect, which can be similarly fixed by applying the result of Li
(1986).

4. Cross-Validation versus Plug-in Method

Perceived as superior to the cross-validation method, the so-called plug-in
procedures have been mushrooming in the recent literature on smoothing param-
eter selection; see, e.g., Jones, Marron, and Sheather (1992) for a review and a
list of related references. In the light of our previous discussion, however, we see a
possible conceptual defect in the philosophy behind the plug-in procedures, to be
noted below. To address related issues including the relative merits of the cross-
validation method versus the plug-in method, simulations and discussion will be
presented in the context of kernel density estimation, where the development of
the plug-in procedures appears mature enough to warrant a review.

Observing Xi, i = 1, . . . , n from a probability density f(x), one is to estimate
f(x) by a function of the form

fh(x|X) =
1

nh

n∑
i=1

K(
x − Xi

h
), (6)
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where the kernel K(x) is some known smooth function satisfying
∫

K(x)dx = 1,
X is the data vector (X1, . . . ,Xn), and the so-called bandwidth h acts as the
smoothing parameter. The bandwidth h appears to be the only model index
available for one to work with, and an explicit description of the effective con-
straint seems nowhere in sight.

One commonly referenced cross-validation procedure for the choice of h is
based on the least squares cross-validation score

VLS(h|X) =
∫

f2
h(x|X)dx − (2/n)

n∑
i=1

fh(Xi|X(i)),

which, up to a term independent of h, estimates the integrated square error

LISE(h|X) =
∫

(fh(x|X) − f(x))2dx.

X(i) in VLS denotes the data vector (X1, . . . ,Xi−1,Xi+1, . . . ,Xn). Another pop-
ular criterion is the Kullback-Leibler cross-validation score

VKL(h|X) = −
n∑

i=1

log fh(Xi|X(i))

which targets the Kullback-Leibler discrepancy

LKL(h|X) =
∫

log{f(x)/fh(x|X)}f(x)dx.

See, e.g., Rudemo (1982) for the derivation of these scores. The plug-in proce-
dures are based on the asymptotic expansion of ELISE(h|X), where estimates
are plugged in for the leading terms of the expansion which usually contain func-
tionals of derivatives of f(x), and the resulting estimated truncated asymptotic
expansion of ELISE(h|X) is minimized with respect to h. Among the many
plug-in procedures, that of Sheather and Jones (1991) is considered to be the
most reliable; see Jones, Marron and Sheather (1992).

Among the criticisms against the cross-validation procedures, which served
as part of the motivations for the development of the plug-in method, were the
large magnitude of sample variability of the cross-validation bandwidths and the
negative correlation similar to what we saw in the center frame of Figure 2.
The relevance of these criticisms, and the very conceptual validity of the plug-in
method itself, however, hinges on the presumed across-replicate interpretability
of the h index.

We now carry out a simple simulation to check on the interpretability of the
h index. The test density f1(x) was taken as the half-half mixture of N(.35, (.1)2)
and N(.65, (.1)2), the same as the f1(x) test density of Sheather and Johns (1991)
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but shifted and scaled into [0, 1]. We generated 100 replicates of data of size
n = 100, and used the standard normal density for the kernel function K(x). The
estimates fh(x|X) were calculated for h on a fine grid log10 h = (−2.3)(.02)(−.7),
and the losses LISE(h|X) and LKL(h|X) for each of the estimates were calculated
by summation over an equally spaced mesh of 500 points in [0, 1]. Following
a suggestion by an anonymous reviewer, a ρ∗ =

∫
f̈2

h(x|X)dx index was also
calculated, although it played no direct role in the estimation procedure.
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Figure 4. The h and ρ∗ indices of kernel estimates and the performance
of bandwidth selectors. Left: Empirical relation between h and ρ∗ and the
optimal indices. Center: LISE efficacies of typical optimal h and ρ∗ indices.
Right: LISE efficacies (fatter boxes) and LKL efficacies (thinner boxes) of
the Sheather-Jones, VKL, and VLS bandwidths.

The left frame of Figure 4 parallels the center frame of Figure 1, where
LISE(h|X) is used as the loss in defining the optimal estimates; the vertical
dotted line marks the “true ρ∗”

∫
f̈2
1 (x)dx = 103.963. We pick the medians of the

optimal indices as the fixed typical optimal indices, which give h = 10−1.26 and
ρ∗ = 103.871. The LISE efficacies of these typical optimal indices, defined in the
same manner as those in Section 2, are summarized in the center frame of Figure
4 as the fatter boxes. For comparison the boxes of the right frame of Figure 1
are superimposed as thinner boxes. Despite the fact that the indices come from
two different problem settings, a rough ordering of the interpretability of these
indices according to Heuristic 2 seems in place. The good news is that the h

index appears more interpretable than the λ index for smoothing splines, but
the bad news is that it runs only second to the ρ∗ index under the same problem
setting. The tighter scatter of the optimal ρ∗ indices is curious, but we do not
yet understand why it is the case.

The Associate Editor suggested that one might run the risk of comparing
apples with oranges by superimposing the thinner boxes in the center frame of
Figure 4, as regression and density estimation are different problem settings.
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We followed up on that note by replacing the smoothing spline regression sim-
ulation results by some parallel smoothing spline density estimation simulation
results, and the resulting plot is visually almost identical to the one presented.
As noted above, the comparison is based on Heuristic 2, which seems somewhat
independent of specific problem settings.

Conceptual validity aside, the plug-in method does provide us with some
data-driven bandwidths, and we now compare its practical performance with
that of the cross-validation method. In the course of the above simulation,
we calculated VLS(h|X) and VKL(h|X) from which the cross-validation band-
widths were obtained. The Sheather-Jones bandwidths for the replicates were
calculated using a FORTRAN routine kindly provided by Professor Sheather at
sish@agsm.unsw.edu.au. The LISE efficacies of the Sheather-Jones (SJ) band-
width, the VKL (KL) bandwidth, and the VLS (LS) bandwidth are summarized
in the right frame of Figure 4 as the fatter boxes. For this test density, the losses
LISE(h|X) and LKL(h|X) were reasonably “parallel” to each other as functions
of h given the data X. In spite of its being designed primarily after the LKL loss,
VKL has fared well with the Sheather-Jones procedure on the ground of LISE in
the simulation. The performance of VLS is clearly inferior, indicating that it is
not too reliable an estimate of LISE for the purpose. The LKL efficacies of the
three procedures are summarized in the same frame via the thinner boxes.
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Figure 5. Some features of Sheather-Jones procedure. Left: Sheather-Jones
h versus optimal h. Center: Sheather-Jones ρ∗ versus optimal ρ∗. Right:
VKL ρ∗ versus Sheather-Jones ρ∗.

Some features of the Sheather-Jones procedure are depicted in Figure 5.
From the left frame, one can see that the famous negative correlation in the h

index is no monopoly of the cross-validation method. In the center frame, no
obvious correlation is found between the optimal ρ∗ and the Sheather-Jones ρ∗.
Besides the negative correlation, another prominent feature of the left frame is
that the scatter of the optimal indices across-replicate is almost the same as that
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of the empirical indices across-replicate. In view of Heuristic 2, either the scatter
is within reasonable natural fluctuation (but then the empirical procedure would
be performing too well) or the indices of different replicates do not compare
with each other. Although very good indeed, the practical performance of the
Sheather-Jones procedure is still far from perfect, so the plot seems to serve as
evidence against the across-replicate interpretability of the h index. The right
frame compares the Sheather-Jones ρ∗ with the VKL ρ∗, where Sheather-Jones’
preference for smoother estimates is evident.

Caution 5. The kernel bandwidth h does not seem to be interpretable across-
replicate.

Caution 6. Negative correlation exists between the optimal bandwidth and the
plug-in bandwidth.

To perceive how far the Sheather-Jones procedure and VKL can depart from
each other, we chose to take a closer look at the replicate plotted as the star in
the right frame of Figure 5. Plotted in Figure 6 are the data in a finely binned
histogram, the test density as a smooth dotted line, the Sheather-Jones estimate
as a dashed line, and the VKL estimate as a solid line. It is clear that VKL was
trying too hard to adapt to the data, perhaps somehow “deceived” by the data,
whereas Sheather-Jones played rather conservatively. This replicate happened to
record the lowest LISE efficacy of .182 for the VKL procedure.

0.2 0.4 0.6 0.8 1.00.0

Figure 6. An extreme contrast between the Sheather-Jones estimate and the
VKL estimate. The histogram is finely binned data, the dotted line the test
density, the dashed line the Sheather-Jones estimate, and the solid line the
VKL estimate.

Besides f1(x), we also carried out parallel simulations using three other test
densities: f2(x) as the half-half mixture of N(.5, (1/6)2) and N(.5, (1/6

√
10)2);

f3(x) as the half-half mixture of N(.5, (1/6)2) and N(.5, (1/60)2); and f4(x) as
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the third-third-third mixture of N(.3, (1/14)2), N(.7, (1/14)2), and N(.5, (1/7)2);
f2(x) and f3(x) are actually the shifted and scaled versions of the f2(x) and f3(x)
test densities of Sheather and Jones (1991). The counterparts of the right frame
of Figure 4 in the parallel simulations are included in Figure 7. The minimizers
of LISE(h|X) and LKL(h|X) were far apart for f2(x) and f3(x) but close to each
other for f4(x), as reflected in Figure 7.
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Figure 7. LISE efficacies (fatter boxes) and LKL efficacies (thinner boxes) of
the Sheather-Jones, VKL, and VLS bandwidths in parallel simulations. From
left to right: f2(x), f3(x), and f4(x).

VLS again appears inferior, but the unsatisfactory performance of a single
score does not necessarily discredit the whole methodology of cross-validation,
just as a case in which the plug-in method performed poorly would not be suf-
ficient grounds for the rejection of the whole plug-in methodology. Comparing
VKL against Sheather-Jones, we see that they are winners respectively in their
own games. The qualitative performance of VKL in terms of LKL and that of
Sheather-Jones in terms of LISE appear comparable.

Following a suggestion by the Associate Editor, the relative efficacy of VKL

over Sheather-Jones, defined by the ratio of the loss (LISE or LKL) of Sheather-
Jones over that of VKL, is summarized in Figure 8 for the reported simulations
involving test densities f1(x), f2(x), f3(x), and f4(x). The findings are consistent
with those from Figures 4 and 7 summarized above.

As loss function for density estimation, I find little to like about in LISE

other than its tractability in kernel estimation: it is not invariant to base measure
substitution, which is external to a probability distribution, and it assigns unduly
heavy weight where information from data is scarce. In contrast, LKL is among
intrinsic measures free of these problems. Of course this is more a matter of
personal preference, but LKL is at least as defensible as LISE, if not more. Given
the adequate performance of VKL in terms of LKL, I see no reason to rate VKL

as inferior to Sheather-Jones operationally.
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From the empirical evidences we have seen so far, it seems fair to say that the
h index is not that interpretable across-replicate as is stated in Caution 5. Given
this, the validity of concepts based on ELISE(h|X) appears questionable. Since
the plug-in method is derived from the asymptotic expansion of ELISE(h|X),
and the minimizer of ELISE(h|X) plays an important role in the published
theory, the relevance of the derivation and the theory of the plug-in method to the
practical performance of the Sheather-Jones procedure is not clear. One possible
way to check such relevance in simulation is to try to use different replicates
to estimate different terms in the asymptotic expansion of ELISE(h|X): if the
performance of the method changes significantly after such a substitution, then
the original procedure is in fact data-specific.

Caution 7. The published theory for plug-in method may not have much to do
with its practical performance.

Reflecting different philosophies of smoothing parameter selection are the
different performance measures used in our simulations and in the simulations
of Sheather and Jones (1991) and Jones, Marron and Sheather (1992). We
calculate minh L(h|X)/L(h∗|X) where h∗ is the empirical bandwidth under
evaluation, which compares the actual performance of the estimate one will
be using in practice with that of the best possible estimate given the data.
Sheather and Jones (1991) and Jones, Marron and Sheather (1992) calculate
minhEL(h|X)/EL(h∗|X), which compares the would-be average performance
of h∗ if it were used for all possible but unobserved replicates from the same
stochastic structure with the best possible average performance of all h. Even if
the h index were perfectly interpretable across-replicate, the data-specific version
would still carry more practical meaning than the expected version.
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The discussion in the previous paragraph is related to the ISE versus MISE
controversy, or loss versus risk, in the literature; related references may be found
in Jones, Marron and Sheather (1992). We note that even people advocating risk
(MISE) do not deny the conceptual appeal of working with the loss (ISE). They
argue however that a purely data-based procedure does not have the needed in-
formation to behave well in terms of the loss. With results such as that of Li
(1986) in mind (see (5) in Section 3), we have to disagree. On a more funda-
mental level, with the across-replicate interpretability of h in jeopardy, the very
conceptual validity of the h-indexed risk is in question.

With comparable practical performance (between VKL and Sheather-Jones
in different terms), the cross-validation method enjoys the conceptual clarity,
the computational simplicity, and the ready extensibility to more complicated
settings such as multivariate smoothing. Multivariate nonparametric regression
with cross-validation smoothing parameters has been in practical use for several
years (cf. Wahba (1990)). Parallel developments in density and hazard estima-
tion can be found in some recent work of the author (cf. Gu (1993, 1998)). For
the plug-in method, conceptual validity aside, the choice of the asymptotic expan-
sion and the estimation of functionals of the derivatives seem challenging enough
beyond a dimension of one or two, yet its potential benefit remains questionable.

5. Summary

In this article, we have attempted to discuss a few conceptual issues related
to smoothing parameter selection in nonparametric function estimation. The
central idea is to identify, if possible, the model behind the estimate, so that the
estimate can be viewed as a compromise between the model and the data.

For a nonparametric procedure yielding a continuum of possible estimates,
there may or may not exist the luxury of explicit model characterization as in
(3). Nevertheless, the nature of the model index used in smoothing parameter
selection may imply some dos and don’ts in its theory and practice. It is advisable
to carefully examine a working index before loading too much on it.

By empirically examining the interpretability of the λ index for smoothing
splines and the h index for the kernel estimates, we find that these default indices
are not so interpretable across-replicate. Consequently, a few popular concepts
and intuition seem to be in jeopardy: the risk functions indexed by λ or h

are somewhat mixtures of apples and oranges. Linear smoothers, or smoothing
splines with a fixed λ or kernel estimates with a fixed h, are not quite estimators
in the classical sense. The famous negative correlation seems to have little to do
with the statistical performance of the bandwidth selector involved.

Working with indices not interpretable across-replicate, one needs to exercise
caution to avoid possible conceptual pitfalls in smoothing parameter selection.
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Our advice is to use a data-specific criterion to target a data-specific loss function.
Among the available methods with comparable practical performance, we favor
the cross-validation method for its clarity, simplicity, and extensibility.
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COMMENT

M. C. Jones

The Open University, U.K.

Overview

There is a novel and intriguing observation at the heart of this paper. In
a spline smoothing context, the smoothing parameter λ and the constraint pa-
rameter ρ have a data–dependent connection; the summed squared error optimal
smoothing parameter varies considerably with the data (this is known) but the
“effective constraint” associated with that smoothing parameter is very much
more stable (this is new). So what novel consequences does this apparently ex-
citing observation have for practice? Little or none, I fear. Neither the author
nor I have managed to find anything new and worthwhile to do with it (perhaps
other discussants have). Instead, the paper really pontificates on two topics. The
first is the old debate about whether one should choose smoothing parameters
to minimise data–dependent losses (such as integrated squared error, ISE) or
averaged risks (such as mean integrated squared error, MISE). The author seems
not to have appreciated a number of papers on this topic in the kernel density
estimation literature; the current discussion seems to me to add little. Secondly,
the paper descends into a polemic which I paraphrase as “cross–validation at
all costs”. I shall discuss each of these at greater length below, but let me try
to start on the more positive side by describing an (unsuccessful) attempt at
developing the author’s spline smoothing insight for kernel density estimation.

Effective Constraint for Kernel Density Estimation?

I have tried hard, but ultimately failed, to emulate the explicit effective
constraint work on spline smoothing in the general kernel density estimation
context. The key, it seems to me, should lie in the excellent but little known work
of Terrell (1990) who identifies a “penalised least squares” problem to which the
kernel density estimate — at least for many kernels — is the exact solution. In
general, this takes the form

fh(x|X) = argminf

{ ∫
f2 − 2n−1

n∑
i=1

f(Xi) + Rh(f)
}
,

where Rh(f) is a roughness penalty (with smoothing parameter, the bandwidth
h, subsumed).
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Different roughness penalties are associated with different kernels. The nor-
mal kernel is associated with the roughness penalty

∞∑
j=1

(−1)j

j!2j

∫
(f (j)2(x)dx =

1
2π

∫
|φ(t)|2(e−h2t2/2 − 1)dt,

where φ is the Fourier transform of f . However, I could not get the behaviour
of log h as a function of the log of this penalty to emulate that in the left–hand
frame of Figure 1. I also tried to match the integrated squared second deriva-
tive penalty function with use of the usual spline–equivalent kernel in density
estimation (e.g. Silverman (1984)), but got no more than the merest hint of
the behaviour observed in the (exact) spline smoothing case. This is all rather
disappointing. Perhaps my programming is at fault.

What Practical Help Could This Be?

In the spline smoothing context (and in the kernel density estimation context
if a general solution to the above could be found), the question remains, what
practical use can be made of this? My feeling is little or nothing. It is attractive to
think that all one has to do is to direct initial estimation efforts at the roughness
penalty rather than λ. Remember that one is interested in the penalty function
at the optimal value of the smoothing parameter for the given dataset. The
reasonable hope is that this is approximately the same as the penalty function
at the “true model” (I shall use the latter nomenclature without spelling out
the usual caveats). One might then think of reframing existing work on such
estimation problems (e.g. Hall and Marron (1987), Jones and Sheather (1991))
in terms of a further effective constraint instead of a bandwidth, or in the first
instance apply such theory as it is. But I am not confident of a positive outcome.
In practice, one has just the one dataset, with its own idiosyncracies relative to
the true model (see my next section), so disregarding these idiosyncracies to get
a handle on ρ must be just as hard as getting a good handle on λ (if not harder,
because the penalty functionals are harder to estimate than the original curve).
This, like much of the paper, leads me inexorably back to a number of well known
properties and arguments of and about smoothing which I come to next, starting
with that very problem of estimating λ appropriate to a particular dataset.

“Data–Specific Optimal λ” and ISE versus MISE

“The objective of model selection is thus to locate a data–specific optimal λ”.
This view is at first sight very laudable, but leads to considerable conceptual and
practical difficulties, as is already well known in the context of kernel density
estimation (and which is too briefly dismissed by Dr. Gu towards the end of
Section 4).
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The big point to make here is that achieving a “data–specific optimal λ” is
an inherently difficult problem. There can be no very successful practical solu-
tion, at least of a purely data–based type. Consider, for example, the density
estimation case in which your data truly come from a normal distribution. Few
if any such data samples will be “very normal” in appearance; most will exhibit
some kind of (usually small) apparent deviation from normality. Suppose one
particular sample “looks a little bimodal”. Then for that sample a bandwidth
selector is likely to choose a fairly small h, yet if the information were available
that the normal density were the true model, the best h choice would be large
to smooth out the inappropriate modes. Conversely, if the truth were (not es-
pecially well separated) bimodal, many samples would not be especially clearly
bimodal. Data–based selectors might well then choose large h signifying a uni-
modal distribution, while knowledge of the truth would suggest a small best h

choice, to retain any bimodality that is there. Scott (1988) gives a nice example
involving under/overdispersion relative to the truth. And it’s easy to think of
other situations like this, in regression as well.

So, a data–specific optimal λ or h requires knowledge of the right answer to
be drawn away from reflecting what the data looks like! This is, of course, the
source of the well known negative correlation between the “optimal” and cross–
validation smoothing parameters. It is also the source of negative correlation
between most data–based bandwidth selectors and the “optimal” (Caution 6 is
no surprise). While one or two authors may in the past have “charged cross–
validation for performing counter–intuitively” because of this, it is no longer a
big negative issue: this kind of behaviour, common to most approaches, and the
reasons for it, are by now well appreciated.

The same phenomenon shows up in further well understood smoothing the-
ory. Hall and Marron (1991) investigated how well you can possibly do when
estimating ĥ0, the minimiser of the ISE; this is precisely the kind of target Dr.
Gu is arguing for. The answer is a best relative rate of convergence (of any ĥ to
ĥ0) of O(n−1/10). This awfully slow rate — the inherent difficulty of the problem
— contrasts with the order n−1/2 rate available for estimating h0, the minimiser
of the MISE. (Note that these results are about how quickly ĥ’s approach ĥ0

(assuming a certain amount of smoothness) and not about the lesser question of
whether they tend to ĥ0 at all (though perhaps with less smoothness assumed),
which is the realm of Li (1986) and other papers.) Reasoning and results like
these fed various papers on the “ISE/MISE controversy”, e.g. Jones (1991), Hall
and Johnstone (1992) and Grund, Hall and Marron (1994).

My current view remains that estimating ĥ0 is not really on. I guess that
what one feels one might be doing instead is choosing an h that is appropriate
for datasets that are typical of the true model, and using it also for the atypical
datasets, when they should at least still show some sign of under/oversmoothing
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as indicated by the true model. At present, our best surrogate for this would still
seem to be to target h0. Whether Dr. Gu’s work can give us any new handle on
this, I have my doubts.

I should add that if you do continue to try to track ĥ0, how well various kernel
density estimation bandwidth selectors perform in this regard is also already well
known. See Hall and Johnstone (1992) and, particularly, Jones and Kappenman
(1992). In the latter paper, we show (least squares) cross–validation performing
poorly relative to a number of other choices, including those methods, such as
plug–in, attuned to estimating h0. Hall and Johnstone (1992) then provided
the first method to (theoretically) achieve the best possible performance, and in
Jones (1998), I believe I’ve stumbled across another (but not developed it for
practice).

Kullback–Leibler and All That

Dr. Gu also recognises the inadequacy of least squares cross–validation in
his Section 4, but ends up advocating likelihood cross–validation (KL) instead.
It is interesting to note that in the kernel density estimation literature it is
more accurately characterised (see above the definition of VKL) as an unpopular
criterion! The question raised is, should KL possibly be rehabilitated?

KL is unpopular because of its poor ISE performance. Concentrating on ISE
assessment for the moment, the reason is clear (and well known). KL takes much
more notice of the tails than do (M)ISE–based methods. This is best seen by
Taylor series approximation of LKL by the weighted ISE∫

(1/f(x))(fh(x|X) − f(x))2dx.

Hall (1987) theoretically developed some of the consequences of this, and was
influential in tolling a (partial?) death knell for KL. Sure enough, it is for the
heavy tailed densities f2 and f3 that KL fails badly in ISE terms. Given the
emphasis on tail behaviour, I suspect that KL (badly) oversmooths in these
cases. Its undersmoothing in Figure 5 for the bimodal test density would appear
to reflect (relatively) short tails here; I wonder whether, even when in this case
its ISE performance is not terribly bad, most of the actual density estimates are
a little like that in Figure 6 but less extremely so (i.e. ‘wobbly’ around something
like the true model).

I do agree with Dr. Gu that ISE is not a particularly attractive loss measure
except for its analytical tractability. Others have worried about this, motivated
by things like the end of the previous paragraph: ISE will tend to score wobbles
about the true model as better, for example, than excellently reproduced shapes
whose location is just a little bit out. Of course L1 error is often proposed, but
this makes little difference in these terms. The only serious alternative of which
I’m aware is some interesting work of Marron and Tsybakov (1995).
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KL’s tail emphasis does not appeal to me, except one has in the back of one’s
mind that this is the very thing that drives maximum likelihood’s full efficiency
in parametric fitting! But full efficiency comes at the expense of zero robustness.
In Basu, Harris, Hjort and Jones (1998), we explore, in a parametric setting, the
minimisation of a class of divergences bridging the gap between KL and LS. For
0 < α ≤ 1, this distance is

α−1
∫ {

αf1+α
h (x|X) − (1 + α)f(x)fα

h (x|X) + f1+α(x)
}
dx;

it is easily seen that α = 1 yields LS and α → 0 yields KL. We find that small
values of α afford good robustness and high efficiency.

If one wished to pursue this for density estimation, it is immediately clear
how a cross–validatory version would work: minimise

∫
f1+α

h (x|X)dx − (1 + α−1)n−1
n∑

i=1

fα
h (Xi|X(i)),

which covers VLS when α = 1 and (essentially) VKL when α → 0.
I agree with Dr. Gu that a very attractive property of cross–validation is its

“ready extensibility to more complicated settings” (I am not sure I rate its “con-
ceptual clarity” above that of other approaches, and “computational simplicity”
is overstressed when you need to optimise a quite possibly multimodal function).
Others have stressed this too. But this doesn’t mean that one has to stick with
existing forms of cross–validation. For a better, extensible, cross–validation–like
method (in another direction again), for example, see Hurvich, Simonoff and Tsai
(1998).

Conclusions

The point starting the paper about the stability of the effective constraint in
spline smoothing is novel and intriguing. However, my initial enthusiasm for this
has waned as I (and the author) have failed to get anything novel out of it, and
we have fallen back on what turns out actually to be largely a rehash of known
properties and arguments (at least in the kernel density estimation setting). The
author’s enthusiasm for cross–validation drives the remainder of the paper, but
I feel that the best path is not taken. I am not convinced that I should reinstate
likelihood cross–validation in my list of good(ish) bandwidth selection methods,
but have suggested some alternative avenues for exploration. I am grateful for
the opportunity to contribute to this discussion.

The Open University, Department of Statistics, Walton Hall, Milton Keynes MK7 6AA, United

Kingdom.

E-mail: M.C.Jones@open.ac.uk
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COMMENT

David W. Scott

Rice University

Professor Gu has written a thought-provoking article about some basic is-
sues in smoothing. The author’s experience and opinions are encapsulated in
two heuristics and seven cautions. The concept of a “natural model” behind
nonparametric estimation schemes is attractive, and the author argues that the
smoothing parameterization in a natural model will “largely remain invariant
over replicated data”. An alternative model, even though in one-to-one transfor-
mation of smoothing parameters, is claimed to be conceptually “incorrect” and
not “interpretable”. Such a surprising state of affairs deserves closer scrutiny.

The article uses nonparametric spline regression to motivate the heuristics,
and density estimation to evaluate them. For penalized least squares regression,
one may specify the penalty weight, λ, or a bound, ρ, on the penalty functional∫ 1
0 f ′′(x)2dx. For a particular data set, there is a one-to-one relationship between

λ and ρ, and one may plot λ = λ(ρ), as in the author’s Figure 1. Also in
that figure, the author shows that the values of λ and ρ minimizing the actual
penalized least squares criterion,

1
n

n∑
i=1

(Yi − f(xi))2 + λ

∫ 1

0
f ′′(x)2dx, (1)

across replicates are much more variable in the λ-space than in the ρ-space. How
should we compare λ and ρ? A dimensional analysis is instructive. Suppose we
are predicting household potato consumption (in pounds or #’s) as a function of
household income (in $’s). Then the units of f ′′(x) are measured in #/$2; hence,
the units of

∫ 1
0 f ′′(x)2dx (as well as those of ρ) are #2/$3. Similarly, since the

units of the first term in (1) are $2, then the units of λ must be $5/#2, so that
the two terms in equation (1) are commensurate. Even if the vertical units were
also in $, then λ and ρ are measured in $3 and 1/$, respectively. Thus λ and
ρ measure quite different quantities, and comparisons between them may be as
apples to oranges. In particular, other aspect ratios may be more appropriate
than the one chosen in the middle frame of the author’s Figure 1.

In my own work on biased cross-validation (BCV, an early example of a
plug-in method), I was impressed that the variation of ĥ was reduced from that
of least-squares cross-validation (LSCV), but never drew strong conclusions of



630 CHONG GU

uniform superiority (Scott and Terrell (1987)). BCV is just very different than
LSCV and lives at a different bias/variance point. I was more interested in cases
where the two algorithms differed and why. The data presented in the final frame
of the author’s Figure 1 can be understood in less profound terms. Certainly ρ

appears less variable than λ in this example, but given the difference in units
more caution is warranted with any interpretation. If a cross-validation method
exists that targets ρ directly, might it not be more susceptible to systematic bias
than methods targeting λ?

Along the way, Professor Gu criticizes squared error, a popular thing to do. A
number of misleading conclusions can be drawn because of particular properties
of L2 error. I call attention to my favorite “hard” density shown in Figure 1,
which is the mixture

3
4

φ(x|0, 1) +
1
4

φ(x|3, (1
3
)2). (2)

The integrated squared bias of a positive kernel estimator is asymptotically con-
trolled by

∫
f ′′(x)2dx. Recall that

∫
φ′′(x|µ, σ2)2dx = 3/8(π)1/2σ5. If we treat

the two components in Equation (2) as nonoverlapping for simplicity, then the
relative contributions to the total integrated squared bias are easily seen to be
in the ratio 1:27, respectively! Thus any “good” (fixed-bandwidth) estimator of
data from this mixture should essentially ignore the left component in favor of
the narrower component on the right. This common but largely ignored prop-
erty of the L2 criterion means that in any data set with a tight cluster (say by
chance alone), ĥ will be too small and f̂ likely to be significantly undersmoothed
over the entire domain of f . This is not so much a deficiency of L2-error as
of fixed-bandwidth estimators. Thus most multi-component simulations are not
illuminating because the contributions to error from non-dominant features only
affect the second or third significant digit in the L2 error. Locally adaptive
estimates can significantly improve the visual appearance, but usually provide
apparently insignificant decrease in the total L2 error because of this dominance
feature. (It would be better to compute and analyze the local spatial components
of the L2 error separately.) My concern is that many of the author’s simulations
are less illuminating than hoped, especially at these small sample sizes.

Many workers who visually prefer nonparametric estimates of the density in
Figure 1 that pay more attention to the left mode are essentially rejecting L2

error. Plug-in bandwidth algorithms that favor such estimates are indeed “over-
smoothing” with respect to L2 error and are ignoring the correct MISE criterion.
The author is correct in pointing out the deficiencies of plug-in methods, but
that is due to the difficulty of doing locally adaptive plug-in estimation, not the
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L2 error itself. Switching to KL or L1 per se does not really change complaints
that should be traced to the use of fixed rather than locally adaptive estimators.

Professor Gu also discounts the importance of the negative correlation be-
tween ĥ and ISE-minimizing bandwidths in the density estimation setting as
observed in Scott and Terrell (1987) — c.f. Figure 2 in the current paper. I wish
to argue that ISE-minimizing bandwidths are not the most appropriate target,
and that the negative correlation observation supports this claim. Given obvious
problems with multi-component densities, let us stick with samples from a single
normal density and examine the ISE of a kernel estimator as the bandwidth h

varies. Clearly the ISE is a function of the sample moments of the data. If we
focus on the first two moments, we see that if x̄ is quite different from the true
µ then no particular choice of h can help, as

∫
x f̂(x) dx = x̄ for all h (Scott

(1992)). However, the bandwidth h does directly affect the variance of the ker-
nel estimator f̂ . Suppose the sample variance is much less than σ2. Then the
ISE for the particular sample can usually be reduced by inflating the smoothing
parameter h and flattening the estimator. Conversely, reducing h in samples
where the sample variance is too large can reduce ISE (although the effect is less
pronounced). To the extent that ISE-minimizing smoothing parameters improve
error by “going against the sample variance,” I find them to be an inappropriate
target. The knowledge that the sample variance is too large or too small cannot
be known from the data alone. That is why many workers prefer MISE to ISE,
although the author certainly makes a case that MISE is not perfect. The nega-
tive correlation between bandwidths is a consequence of the negative correlation
between the ISE-minimizing bandwidths and the sample standard deviation. (In
mixture densities, this holds if we focus locally on the dominating component.)
Finally, I wonder if there isn’t a negative correlation in the ρ plot in the final
frame of the author’s Figure 2, where scaling choices obscure the scatter?

In summary, while I think Heuristic 1 is useful to study, I think the evi-
dence leading to Heuristic 2 is still weak. Further simulations with very carefully
constructed test cases might indeed bolster the author’s beliefs. If the author
wishes to pursue his empirical investigation further, he might consider using
the penalized least-squares linear density estimators devised by Terrell (1993).
These parallel the penalized regression formulation very well. Terrell shows that
many nonparametric density estimators, including the kernel, can be realized by
appropriate choice of penalty functional.
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Figure 1. Mixture of two normals: 0.75 φ(x|0, 1) + 0.25 φ(x|3, 3−2).
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COMMENT

Grace Wahba

University of Wisconsin-Madison

1. Thanks

We owe a strong vote of thanks for the author’s careful examination of the
‘well publicized’ negative correlation between the optimal λ (λopt) and the GCV
λ (λ̂), as observed in the middle panel of Gu’s Figure 2. (I am used to using
λ̂ for the GCV estimate of λ and will continue that here, this is λ∗ in Gu.)
The argument that it is an inherent property of the choice of the model index (as
shown, for example in the left panel of his Figure 5), and not the cross validation,
is an important piece of information.
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2. Related Work

Gu notes that with sample sizes of n = 100, GCV occasionally one gets
undersmoothed estimates. If the GCV function has a positive derivative at λ = 0,
then it will have a minimizer there and then the fitted curve will interpolate the
data. The probability of this event has been studied in Wahba and Wang (1995)
and is shown theoretically to decay exponentially rapidly with the sample size,
under general conditions. The GCV function for a smoothing spline with distinct
data points behaves as λ2/λ2 as λ tends to 0 so special search procedures are
required in this case. However, the probability of this event is generally too small
for it to be observed in 100 replications of the fitting which are based on a smooth
curve with white Gaussian errors of reasonable variance and n as small as 100. A
few percent of somewhat (as opposed to extremely) undersmoothed cases similar
to those in Figure 3 of Gu appear to be typical in n = 100 simulations, at least
from what I have observed in similar student simulations in my classes on Spline
Models. However this effect also appears to shrink rapidly with sample size, as
will be illustrated below, although no theory is offered here (see Li (1986)).

As Gu notes, GCV is being used with multiple smoothing parameters and
complex multivariate models. One recent reference is Gong, Wahba, Johnson and
Tribbia (1998) (preprint available via my home page, http://www.stat.wisc.edu/
~wahba -> TRLIST.), where the randomized trace technique (see Girard (1995))
is used to avoid matrix decompositions in the calculation of traceA(λ) in large
data sets. There five smoothing, weighting and physical parameters are chosen
by GCV in a nonparametric regression problem where a dynamical systems equa-
tion is included as a weak constraint. It is easy to unearth applications of GCV
in various fields via web searches.

3. A Historical Note

Let log λopt be the Optimal log10 n ∗ λ of the center panel of Gu’s Figure
2 and let log λ̂ be the CV log10 n ∗ λ of the same plot. In 1987 I gave a series
of CBMS lectures at Ohio State University, which were expanded into Wahba
(1990). At the lectures I announced that log λ̂ and log λopt, exhibit a strong
positive correlation. Iain Johnstone and David Scott immediately assured me
that I had got it backwards, or, rather, upside down. The negative correlation,
of which the center panel of Figure 2 is an example, was obviously known to
them and others, and has been a subject of a lot of discussion since.

Upon being asked to comment on the present very insightful paper, I dug
up Wahba and Wold (1975), upon which my comments back in 1987 had been
based, to try and figure out where I had gone wrong. Figure I of that paper
contains (among other things) four pairs of curves, each pair consisting of one
CV plot and one TR plot. Each CV plot is a leaving out 10% cross validation plot
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as a function of the indexing parameter. GCV hadn’t been invented yet, but
the results could be expected to be similar on this example. Each TR plot is the
true mean square error averaged over the data points also as a function of the
indexing parameter. Just as I had remembered, the four minima of CV vs the
corresponding minima of TR followed each other, and a recent crude hand plot
of the four pairs of minima, as read off the plots in that paper, fell almost on
a straight line through the origin with slope +1. But the ‘indexing’ parameter
for plotting purposes was in fact not λ but k, where k = k(λ, σ2, Y1, . . . , Yn) was
defined as

k =
1
n

n∑
i=1

(fλ(xi) − Yi))2/σ2. (1)

k is not of course a true indexing parameter because σ2 is unknown, but the
mean square residual r(λ) = 1

n

∑n
i=1(fλ(xi) − Yi))2 is, since it is (under some

assumptions of course) (along with ρ) a strictly monotone function of λ. We
may examine the correlation properties of k for the purposes of studying the
mean square residual as an indexing parameter, since σ2 will be the same for all
replications, and it will be convenient below to do so.

4. The Mean Square Residual as the Indexing Parameter

We decided to examine the behavior of k (equivalently, the mean square
residual) as an indexing parameter, by running a few simulations and plotting k̂

vs kopt. For Figure 1 we simulated observations Yi = f(xi)+ εi at equally spaced
points xi ∈ [0, 1] using

f(x) = w1βp1,q1(x) + w2βp2,q2(x), (2)

where βp,q is the β density with parameters p and q and w1 = .4, p1 = 12, q1 = 7;
w2 = .6, p2 = 4, q2 = 11. f was Example II in Craven and Wahba (1979). The εi

are pseudo-random i.i d. N (0, σ2). In Panels (a)-(c) of Figure 1 we used n = 100,
with σ = .01, .1, and 1.0 respectively. In Panel (d) we used n = 400 and σ = .1
We used the code smooth.spline() of Splus with cv = F (meaning that GCV
is used to choose the smoothing parameter), and allknots = T (meaning that
there is a knot at every data point, rather than an approximation), to obtain λ̂.
Once λ̂ was found 1

n

∑n
i=1(fλ(xi) − f(xi))2 was searched as a function of log10 λ

on a grid from log10 λ̂−4 to log10 λ̂+4 in increments of .05 to find the minimizer
λopt. We were not able to ascertain if the Splus code has a special procedure for
searching the GCV function as λ → 0. However, it does have an error message
(“smoothing parameter value too small or too large”). No error messages of this
type were obtained in our simulations, and, since our n was large enough to
assume that 0 was not the minimizer, we assume that it is not an issue in the
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present simulations. We also ran the example in Gu, with n = 100, σ = 1 and
the plot strongly resembles Panel (c).
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Figure 1. k̂ vs kopt. Panel (a): n = 100, σ = .01, Panel (b): n = 100, σ = .1,
Panel (c): n = 100, σ = 1.0, Panel (d): n = 400, σ = .1.

The correlation properties of k̂ and kopt are fairly obvious and do not need
a lot of comment, nor does the fact that the apparent undersmoothing of a
few percent of the cases in the n = 100 examples is no longer evident in the
n = 400 case. We note that the ‘spread’ in kopt in Panels (a)-(c) is about .6,
while the ‘spread’ in kopt in Panel (d) has been halved, to about about .3. We
think this is related to the fact that kopt has been normalized by σ2 whereas∑n

i=1 ε2
i /σ

2 has mean 1 and standard deviation (2/n)1/2. Thus the reduction in
the ‘spread’ of k in Panel (d) could be explained by the fact that (100

400 )1/2 = 1/2.
A propos of comparing simulations to theory, we note that the distribution of
kopt in Panels (a)-(c) appear to have the same ‘spread’ but there is a slight shift
upward along the diagonal as σ2 goes from .01 to 1.0. This is consistent with
the old (Wahba 1975b) theoretical result (roughly, under some assumptions) that
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kopt is centered about some number that is (asymptotically) bounded above by
1− (cm

‖f(2m)‖2

σ2n4m )
1

4m+1 , where m refers to splines of degree 2m−1, here m = 2. To
the extent that this bound is tight, it suggests that as either σ2 or n increases,
the center of the distribution of kopt rises towards 1.

5. A Conjecture and Challenge

We begin this section by noting that log ρ(λ), the mean square residual r(λ),
the degrees of freedom for signal (defined as traceA(λ) here, see Wahba(1983)), as
well as any other strictly monotone function of λ (including some other definitions
of degrees of freedom for signal) are all equivalent indexing parameters in the
smoothing spline case.

In the smoothing spline case it is typically numerically easiest to compute
with λ, whereas other indices may provide more intuition for examination and
plotting purposes. Hence the correlation properties of theˆand opt versions of
different indices are irrelevant, we certainly agree with Gu here. Comparing
the right panel of Gu’s Figure 2 and Figure 1 of these comments, it is clear that
between the mean square residual r, log λ, and log ρ, log ρ is the index that comes
closest to Gu’s Heuristic 2, at least with respect to GCV. These plots show that
the scatter in log ρopt is very small compared with the scatter in log ρ̂, while the
scatter in ropt = r(λopt) is similar to the scatter in r̂ = r(λ̂) since they are highly
positively correlated.

Nevertheless, if you want to see a plot like that in Panel (d), or even like
those in the other panels, we will make a conjecture that this is a fairly general
phenomenon.

We state our conjecture in very general terms, which include penalized log
likelihood estimates and other regularized estimates widely used in applications.
We let x ∈ T , f(x) a real valued link function on T . Yi is an observation from
a distribution Ff(xi) = Fftrue(xi) which depends on the parameter of interest
ftrue(xi), and possibly nuisance parameters independent of xi. The Yi are as-
sumed independent. fλ is the solution of a variational problem of the form: Find
f ∈ X , an appropriate class of functions, to minimize

L(Y, f) + λJ(f). (3)

Here

L(Y, f) =
n∑

i=1


(Yi, f(xi)), (4)

where 
(yi, f(xi)) is some pseudo distance or discrepancy measure between Yi

and the distribution Ff(xi), and J(f) penalizes complexity as defined in some
reasonable manner. We assume that the variational problem (3) has a unique
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solution for all data sets of possible interest. We assume that J(fλ) is a strictly
monotone decreasing function of λ and L(Y, fλ) is strictly monotone increasing
in λ. Then λ, J(λ) and L(Y, fλ) are equivalent indexing parameters. The ‘target’
is to choose λ to minimize

L(µtrue, fλ), (5)

where µtrue(xi) is a suitable ‘prediction’ of Yi given ftrue(xi). We let λopt be the
minimizer of L(µtrue, fλ). (Uniqueness is not actually guaranteed.) The usual
examples are: X is a reproducing kernel Hilbert space and J(f) is a squared
norm or seminorm on X . But it would be interesting to include cases where the
penalty involves a Banach Space or Besov Space norm (see, for example, Chen,
Donoho and Saunders (1995), Donoho, Johnstone, Kerkyacharian and Picard
(1995), DeVore and Lucier (1992), Rudin, Osher and Fatemi (1992), Wahba
(1975a)). We just need that point evaluations in X are appropriately bounded.
The usual suspect for L(Y, f) is the negative log likelihood, but robust functionals
(Cox (1983), for example), quantile functionals (Koenker, Ng and Portnoy (1994),
for example), and convex support vector machine functionals (Wahba (1997),
available via my home page) would be of interest. If L(Y, f) is the negative log
likelihood for an exponential family then it is natural to take µtrue = EY |Fftrue

and then the ‘target’ will be the comparative Kullback Liebler distance between
ftrue and fλ, taken over the xi. With regard to support vector machines used
for classification with binary data, if f is the log odds ratio for Yi = +1 vs Yi =
−1, one example of potential interest (see Wahba (1998)) is 
(Yi, f(xi)) = [1 −
Yif(xi)]+ where [τ ]+ = τ, τ > 0,= 0 otherwise.

For the conjecture about to be proposed, we probably need the existence
of a ‘Leaving Out One Lemma’ for the variational problem (3). This Lemma
says that if you leave out the kth data point, solve the variational problem (λ
fixed), obtain µλ(xk) as the prediction of Yk given fλ(xk), and then solve the
original variational problem with Yk replaced by µλ(xk), you will get fλ back
again. A Leaving Out One Lemma for different versions of (3) may be found
(aside from the original spline version in Craven and Wahba (1979)) in Xiang
and Wahba (1996) and Wahba (1997). In the support vector machine case just
given a definition of µ = µ(f) which ‘works’ is µ(x) = 1 if f(x) > 1, µ(x) = −1
if f(x) < −1, and µ(x) = 0 if f(x) ∈ [−1, 1].

Here is the conjecture: Let λ̂ be a suitable cross validation based estimate of
λ. (Candidates aside from the GCV in the non-Gaussian case include the GACV
in Xiang and Wahba (1996) and Wahba (1997)). Let λopt be the minimizer
of L(µtrue, fλ). Let r̂ = r(λ̂) = L(Y, fλ̂), ropt = r(λopt) = L(Y, fλopt). The
conjecture is that under some general circumstances (to be found), r̂ and ropt

are (strongly) positively correlated. The challenge is: What are the most general
circumstances?
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REJOINDER

Chong Gu

I am grateful to Professors Jones, Scott, and Wahba for an insightful and
stimulating discussion. The article itself consists of merely an interesting obser-
vation plus some of my readings of its logical consequences, but the ramifications
appear to extend further as attested to by the many important issues raised by
the discussants. As the comments from the discussants are more or less “orthog-
onal” to one another, I shall try to attend to the concerns of each discussant
individually in the sections to follow.

Jones

I agree with Professor Jones that the observation does not seem to lead
directly to the development of new tools for smoothing parameter selection. To
be precise, I am not advocating any attempt to estimate the “true ρ”, which,
as Professor Jones pointed out, is “just as hard as getting a handle on λ, if not
harder”. Nevertheless, the observation does help some, this author included, to
better understand the existing tools, and to avoid possible conceptual pitfalls
in the use or development of new tools. For example, working with a model
index that is not interpretable across-replicate, I would avoid resampling methods
for smoothing parameter selection. The practical help of the observation is to
caution people that “the nature of the model index used in smoothing parameter
selection may imply some dos and don’ts in its theory and practice”, to quote
from Section 5 of the article.

I am sorry that Professor Jones’ effort in emulating my simulations was not
very successful. For the record, let me report that my observation illustrated
in Figure 1 of the article was originally made in a density estimation setting,
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where the density f(x) = eg(x)/
∫ 1
0 eg on [0, 1] was estimated by the minimizer of

a penalized likelihood functional

− 1
n

n∑
i=1

{
g(Xi) − log

∫ 1

0
eg

}
+

λ

2

∫ 1

0
g̈2;

see Gu and Qiu (1993) and Gu (1993) for further details concerning this estimate.
See also the Wahba section below for some empirical results. In general one can
establish the equivalence of a penalized minimization problem

min A(g) + λJ(g),

and a constrained minimization problem

min A(g) s.t. J(g) ≤ ρ,

when A(g) is convex and Frechet differentiable and J(g) is quadratic, for g in
a linear space. I am not sure that such mathematical equivalence necessarily
extends to the penalized solution of Terrell (1990), as cited by Professor Jones,
where the constraints f > 0 and

∫
f = 1 are lurking in the background. I

probably would double check the theory before questioning the programming.
Concerning the data-specific optimal bandwidth, I would like to clarify that

there are two ways to measure how close one can get to it. One way is to calculate
the difference ĥ − ĥ0, and the other way is to calculate the ratio L(ĥ)/L(ĥ0).
The bandwidth only assumes its meaning through the estimation procedure but
typically has no place in the underlying stochastic structure, so the estimation of
ĥ0 has little direct statistical meaning except through the minimum loss L(ĥ0).
An “awful” estimate ĥ of ĥ0 in terms of ĥ − ĥ0 thus can in fact be a very good
one if L(ĥ)/L(ĥ0) is close to 1, depending on how flat the bottom of the loss
curve is. In light of this, I am not sure that the work of Hall and Marron (1991)
necessarily established the “inherent difficulty” of the problem. On the contrary,
the result of Li (1986), as quoted in equation (5) of the article, suggests that
the situation may not be as pessimistic as Professor Jones presumes, at least
not in regression problems when generalized cross validation is used to select the
bandwidth. Note that Li’s (1986) result applies to all methods admitting an
expression Ŷ = A(λ)Y, which include kernel regression and smoothing splines
as special cases. Similar results hold in kernel density estimation when the kernel
is chosen properly, as shown in Hall’s (1987) work cited by Professor Jones, see
below. With the “inherent difficulty” out of the way, it appears that Professor
Jones may also endorse loss over risk.

Professor Jones correctly points out that the data may not look at all like
the generating density. To guard against such circumstance, however, he suggests
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using bandwidth “appropriate for data sets that are typical of the true model”.
This no doubt is ideal in a simulation setting. In real life, however, all one has
is the data set at hand, and there often is little clue about what the true model
should look like. Instead of second guessing whether the data are “typical” or
“atypical”, my personal preference is to stick with a purely data-based method,
even if it may not be “very successful” in simulations. Of course if reliable
information outside of the data does exist, then one should certainly try to make
use of such information. On the same line, one should by all means use an
appropriate parametric model if one can be identified.

As for the discussion concerning Kullback-Leibler, I wish Professor Jones
had made it clearer whether it was the loss or the bandwidth selector that he
was referring to by the abbreviation “KL”. Assuming it was the loss, then I am
glad that KL is unpopular only in the kernel density estimation literature, but
not in the statistical community or information theoretical community at large.
I am also glad to know that the principal reason behind this was KL’s “poor ISE
performance”, which simply reads that KL and ISE can be very different, as is
well-known. As metrics for the discrepancy between two probability measures,
KL is invariant of a base measure substitution but ISE is sensitive to it, so I am
not sure being different from ISE is necessarily a bad thing.

As for Hall’s (1987) work, it might be appropriate to let the author himself
tell us what he actually proved. To quote from the abstract:

“... Kullback-Leibler loss is an appropriate measure of distance in
problems of discrimination. We examine it in the context of nonpara-
metric kernel density estimation and show that its asymptotic prop-
erties are profoundly influenced by tail properties of the kernel and
of the unknown density. We suggest ways of choosing the kernel so
as to reduce loss, and describe the extent to which likelihood cross-
validation asymptotically minimises loss. ...... if the kernel is chosen
appropriately, then likelihood cross-validation does result in asymp-
totic minimisation of Kullback-Leibler loss.”

Now to this reader, the message simply says that if the model (read kernel)
is wrong then the performance of VKL may not be ideal, but if the model is
appropriate then VKL does indeed track the KL loss effectively in kernel density
estimation, similar to the behavior of generalized cross validation in regression as
shown by Li (1986); so much “inherent difficulty” there is. Further, there seems
no question at all as to whether the KL loss is appropriate. I would need help to
comprehend how Hall’s (1987) work “tolls a death knell for KL”, whether it is
the loss or the bandwidth selector. To make sure that the partial quotation does
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not distort the message intended by the author, the interested reader is strongly
urged to read the full text of the original paper.

The work of Basu Harris, Hòort and Doneg (1997) bridging KL and ISE is
interesting, and it is good to know that small values of α (meaning a loss closer
to KL than to ISE) “afford good robustness and high efficiency”. It remains
unclear to me, however, in what sense the robustness and the efficiency are
defined. One usually talks about robustness and efficiency of methods in terms
of some criterion, but robustness and efficiency of criteria are new to me. I am
glad that Professor Jones appreciates the full efficiency of maximum likelihood,
but again I would need assistance to be sure about the meaning of robustness
in the context. In case the robustness is defined with respect to deviations from
a parametric model, then a penalized likelihood estimate as mentioned above,
which is the maximum likelihood estimate under a “soft model” of the form∫

g̈ ≤ ρ, may afford both good robustness and high efficiency.
Finally, I have to admit that I could not follow Professor Jones’ arguments

suggesting that the source of the negative correlation is that “a data-specific
optimal λ or h requires knowledge of the right answer to be drawn away from
reflecting what the data looks like”. I am lost. The original motivation of this
work was to understand the negative correlation, and I believe the source is
found to be in the across-replicate interpretability of the model index used. If
meaningful negative correlation shows up with a model index that is interpretable
across-replicate, I submit that one has every reason to worry about the behavior
of the bandwidth selector involved. By shrugging off the issue lightly, one may
be really in for the likes of “cross validation at all costs”.

Scott

Professor Scott makes it crystal clear that the scales of λ and ρ are not to
be compared. I wholeheartedly agree. It was for this reason, that I designed the
right frame of Figure 1 in the article to illustrate the scatter through the compar-
ative loss, where it is shown that moving ρ away from the data-specific optimum
but within the across-replicate “optimal range” yields hardly any performance
degradation, whereas doing the same to λ results in appreciable performance
changes. As for the middle frame of Figure 1, I doubt any conclusion could be
drawn from it with any aspect ratio.

I do not quite follow the discussion in the paragraph involving BCV, LSCV,
and the right frame of my Figure 1. To be specific, I do not understand why cross
validation has anything to do with that particular plot. It is true that later in
the article we use the finding there, that λ is not interpretable across-replicate,
to explain the mysterious negative correlation. But at this point, we are still



642 CHONG GU

investigating the properties of the two model indices, not yet charged to select
either of them for practical applications.

Indeed I do not like the particular square error ISE for density estimation,
but I would use the usual mean square error for regression, and I would suggest
the square error

∫
(log f̂ − log f)2f if one really needs a normed distance for

density estimation. I am not sure how popular ISE is outside of the kernel
density estimation literature. The reason for my lack of enthusiasm for ISE is
its sensitivity to a base measure substitution, i.e., a transformation of the data,
which is external to probability measures.

I agree with Professor Scott that when something goes wrong in estimation,
it is usually the model, but not the loss, that deserves closer scrutiny. After all,
the loss presumably should reflect the nature of the underlying problem, and the
performace of a model is to be assessed via the loss. That said, I do believe
that all losses are not created equal. The imbalance in the bias contribution
from the two components of Professor Scott’s favorite “hard” density may not be
any indication of the deficiency of ISE, but the following fact does make me feel
uncomfortable. Suppose that on an interval of positive length the true density
f = .9 is estimated by f̂ = .8, and on another interval of the same length the true
density is f = .1 and the estimate is f̂ = .2. The ISE takes equal contributions
from the two segments, whereas the quality of the estimate in the two segments
varies from very good to terrible.

Professor Scott makes a strong case for the use of locally adaptive estimates
when some systematic scale imbalance is present, as in his favorite “hard” den-
sity. Such scale imbalance is also common in highly skewed data that resemble
the likes of a log normal distribution. As a simple alternative to locally adaptive
estimates that are inherently difficult to implement, one may instead apply some
transformation to spread out points that are jammed together and to bring in
the outliers. This is usually done when histograms are drawn for highly skewed
data. Scaling is external to a probability measure, but when done properly it can
make the resulting density easier to estimate. As a matter of fact, the estimation
of a probability density with respect to a given base measure is equivalent to the
estimation of the base measure that yields a uniform density. From this perspec-
tive, an appropriate front end transformation serves to bring the density to the
neighborhood of a uniform one on a “macro” scale, and a subsequent density
estimation using smoothing methods finishes the job on a “micro” scale. By the
end of the day, however, one should transform the estimate back to the scale that
best suits the application. The bottom line is that a scale more appropriate for
interpretation is not necessarily the same as a scale more appropriate for estima-
tion, but one does not need to stick to a single scale for both purposes if that
makes life unnecessarily difficult. Naturally it is more appealing to have a loss
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that scores the same discrepancy between two probability measures no matter
which scale is used, but ISE does not fit that bill.

The observation Professor Scott makes concerning the relation between the
sample moments and the ISE-minimizing bandwidth is certainly very interest-
ing. Nevertheless, I am not sure that the largely intra-replicate observation offers
much explanation for the negative correlation, which is an across-replicate phe-
nomenon. As pointed out in the article, the negative correlation is meaningful
only when the h values are comparable across-replicate. Although much more
subtle here, the situation is actually similar to that in the middle frame of Fig-
ure 1 involving the scales of λ and ρ, as discussed earlier. The bandwidth h

conveniently indexes the effective models, but the same h value may correspond
to different effective models for different samples, as the empirical evidences seem
to suggest. When it is unclear whether one can compare one h with the next,
I would not rush to draw any conclusion from the negative correlation, whether
it is to dismiss the bandwidth selector or to dismiss the minimum loss. As for
the correlation in the ρ plot in the right frame of Figure 2, it is −0.0626, just for
the record. This correlation however is a nonissue because there is virtually no
spread on the horizontal axis of that plot, not measured by the scale used in the
plot but by the relative loss illustrated in the right frame of Figure 1.

As for the possibility of exploring the issues using Terrell’s penalized esti-
mates, another discussant, Professor Jones, had already made some attempt.
Please see Professor Jones’ comments for how successful the attempt was, and
my earlier reply for my reading of the results.

Wahba

First of all, I would like to thank Professor Wahba for her appreciation of
the work.

The fact that the failure rate of GCV decreases as n → ∞ comes as no
surprise, it is simply asymptotics at work. It is very nice that Wahba and Wang
(1985) actually worked out its rapid decay rate, providing important assurance
for practitioners. As for the Monte-Carlo GCV with randomized traceA(λ), I
would like to add that the same asymptotics as quoted in equation (5) of the
article still hold, as was shown by Girard (1991).

As for Professor Wahba’s k index, I observe that

σ2k(λ)

=
1
n

n∑
i=1

(Yi − fλ(xi))2

=
1
n

n∑
i=1

(Yi−f(xi))2+
1
n

n∑
i=1

(fλ(xi)−f(xi))2−
2
n

n∑
i=1

(Yi−f(xi))(fλ(xi)−f(xi))
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=
1
n

n∑
i=1

ε2
i + L(λ) − 2T (λ) − 2

n

n∑
i=1

εi(bi + vi),

where T (λ) = n−1 ∑n
i=1 ai,iε

2
i , bi =

∑n
j=1 ai,jf(xj) − f(xi), and vi =

∑
j �=i ai,jεj,

for ai,j the (i, j)th entry of A(λ). Following arguments developed by Li (1986), it
can be shown that n−1 ∑n

i=1 εibi = op(L(λ)) and n−1 ∑n
i=1 εivi = op(T (λ)). Now

as n−1 ∑n
i=1 ε2

i = σ2(1+Op(n−1)) and Op(n−1) = op(L(λ)), Op(n−1) = op(T (λ)),
one has

σ2k(λ) = σ2 + L(λ)(1 + op(1)) − 2T (λ)(1 + op(1)).

Hence, Professor Wahba’s plots show that L(λ̂) − 2T (λ̂) and L(λopt) − 2T (λopt)
are positively correlated. To go much further beyond this to explain the positive
correlation, one seems to need a big assumption that the ratio L(λ)/T (λ) remains
roughly a constant near λopt across-replicate, which however may not hold. In
any case the positive correlation in k is just as inconsequential as the negative
correlation in λ, as Professor Wahba pointed out, but the very fact that equivalent
model indices may yield completely different correlation patterns clearly indicates
that correlation patterns are nothing but artifacts due to model indexing.

As for Professor Wahba’s conjecture, that the index L(fλ|Y) affords a pos-
itive correlation between the optimal index and some cross validation index for
fλ, the minimizer of a penalized likelihood functional L(f |Y ) + λJ(λ), all I am
able to do at this point is to add further empirical evidence to its credit. A
simulation study was conducted for the penalized likelihood density estimates
mentioned in the reply to Jones above. Generated were 100 replicates of samples
of size n = 100 from the test density f1(x), the half-half mixture of N(.35, (.1)2)
and N(.65, (.1)2) truncated to [0, 1]. For each of the replicates, an automatic
estimate was computed using the performance-oriented iteration of Gu (1993),
which employs a λ selector that contains a cross validation component. Fixed λ

solutions were also calculated on a fine grid log10 λ = (−7)(.05)(−3). Recorded
on each estimate ĝ are λ, ρ =

∫ 1
0

¨̂g, L(f) = −(1/n)
∑n

i=1 ĝ(Yi) + log
∫ 1
0 eĝ, and

the symmetrized Kullback-Leibler loss L(λ) = µĝ(ĝ − g) + µg(g − ĝ), where
µg(h) =

∫ 1
0 heg/

∫ 1
0 eg. The counterparts of Figure 1 in the article are qualita-

tively indistinguishable from the one presented for regression, and are omitted
here. The counterparts of Figure 2 in the article are plotted in Figure 9, where
the left frame is replaced by the optimal versus the cross validation L(f) index.
Note that in this setting it is not clear what makes a “prediction” for Yi, nor
how a leaving-out-one lemma might look like, yet the conjecture still holds. This
certainly makes no case for the most general circumstances, but nevertheless
appears to be a bit beyond the scope originally anticipated by Professor Wahba.
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Figure 9. The correlation patterns in penalized likelihood density estimation.
Left: Cross-validation L(f) versus optimal L(f). Center: Cross-validation λ

versus optimal λ. Right: Cross-validation ρ versus optimal ρ.

To conclude, I would like to thank the discussants again for their thought-
provoking comments. The views of the parties are apparently very different at
places, which is natural given the subtleness of the issues involved. I hope we all
learned something from this discussion. At least I did.

I am indebted to the editors of the journal: Professor Jeff Wu who invited
the article, and Professor Ching-Shui Cheng who handled the article with care
and organized this discussion. Without their encouragement and understanding,
this work could not have made its way into a printed journal.
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