
Statistica Sinica 8(1998), 445-465

THE EXAMINATION OF RESIDUAL PLOTS

Chih-Ling Tsai, Zongwu Cai and Xizhi Wu

University of California, Southwest Missouri State University
and Nankai University

Abstract: Linear and squared residual plots are proposed to assess nonlinearity and

heteroscedasticity in regression diagnostics. It is shown that linear residual plots

are useful for diagnosing nonlinearity and squared residual plots are powerful for

detecting nonconstant variance. A paradigm for the graphical interpretation of

residual plots is presented.
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1. Introduction

Over the last three decades, residual plots (plots of residuals versus either
the corresponding fitted values or explanatory variables) have been widely used
to detect model inadequacies in regression diagnostics (see Anscombe (1961),
Draper and Smith (1966), Atkinson (1985), Carroll and Ruppert (1988), Chat-
terjee and Hadi (1988) and Cook and Weisberg (1982, 1994)). This type of plot
is often referred to as a “linear residual plot” since its y-axis is a linear function
of the residual. In general, a null linear residual plot shows that there are no ob-
vious defects in the model, a curved plot indicates nonlinearity, and a fan-shaped
or double-bow pattern indicates nonconstant variance (see Weisberg (1985), and
Montgomery and Peck (1992)). However, Cook (1994) recently presented ex-
amples which show that linear residual plots can be misleading, and may not
be sufficiently powerful by themselves to detect nonlinearity or heteroscedastic-
ity. This provides us with a motivation to develop a different perspective for
the interpretation of linear regression residual plots. While the primary assump-
tions for linear regression modelling are normality, linearity, homoscedasticity,
and independence, in this paper we will focus only on the use of residual plots
to examine those for homoscedasticity and linearity.

Cook and Weisberg (1983) proposed both a graphical method and a score
test to improve the assessment of nonconstant variance. The informal graphic
method they suggested plots squared studentized residuals versus the first deriva-
tive of the weighting variables or the fitted values. Since the y-axis of this plot
is a function of the squared residual, we refer to it as a “squared residual plot”.
A wedge-shaped pattern in a squared residual plot is taken as evidence that
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the variance depends on the quantity plotted on the abscissa; however, a wedge-
shaped pattern is not always present when variance is nonconstant. Furthermore,
the first derivative of the weighting function is not always nonzero for all cases
of nonconstant variance, and this plot cannot reflect the weighting function di-
rectly. Thus, we propose an alternative squared residual plot which does in fact
directly reflect the weighting function. This alternative plot can be viewed as
a complement to Cook and Weisberg’s plot, and for best data analysis results
the two should both be used, together with the formal score test, to assess het-
eroscedasticity.

In order to detect nonlinearity, it is usual to plot residuals against either
fitted values or explanatory variables. However, because Cook (1994), Examples
7.1 and 7.2) has shown that this type of plot may provide misleading information
when fitted values are used, we therefore suggest using the linear residual plot
(residuals versus explanatory variables case) for the detection of nonlinearity, and
we provide theoretical justification to support this method.

One of the most challenging problems in assessing nonlinearity of a regression
function arises when covariates are dependent on each other. Cook (1993) gener-
alized the partial residual plot (Ezekiel (1924)) to obtain the CERES (Combined
Conditional Expectations and RESiduals) plot. However, the CERES plot some-
times does not clearly reveal nonlinear components of a regression function, and
so analogously we have generalized the linear residual plot to obtain the CLRES
(Conditional Linear RESiduals) plot. But since neither the partial residual nor
linear residual plots from which these plots are derived are perfect in their as-
sessment of nonlinearity, we recommend that CERES and CLRES plots be used
together to detect nonlinearity.

The aim of this paper is to provide a systematic way to interpret residual
plots when evaluating heteroscedasticity and nonlinearity in regression analysis.
This does not imply that we have a single graphical recipe which can identify all
possible patterns of residual plots resulting from nonconstant variance or nonlin-
earity, but we can provide guidelines. Based on both theoretical justification and
the analysis of examples, we will show that squared residual plots are superior
to linear residual plots for assessing nonconstant variance. By contrast, linear
residual plots are most appropriate for examining nonlinearity.

For the case when the true model involves nonconstant variance, but the
fitted model assumes both linearity and constant variance, we will begin by ob-
taining the first and the second moments of residuals for given fitted values or
explanatory variables (Section 2). Linear and squared residual plots are also in-
vestigated through analytical examples. Section 3 examines linear and squared
residual plots when the true model includes nonlinear components, but the fit-
ted model is linear with constant variance. Section 4 presents three analytical
examples that illustrate the impact of sample size, the strength of the weight-
ing function and nonlinearity, high leverage points, and the effect of outliers and
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interdependent covariates on the pattern of residual plots. In addition, two exam-
ples are given to elucidate the interpretation of residual plots: the Speed-Braking
Distance example (Ezekiel and Fox (1959), p. 45), and the Land Rent example
(Cook and Weisberg (1994), p. 90). Section 5 gives concluding remarks.

2. Residual Plots for Examining Heteroscedasticity

For linear regression models, Cook and Weisberg (1983) obtained a score test
to diagnose the assumption of homoscedasticity, and in addition they suggested
using their squared residual plot to examine the heteroscedasticity. However,
neither the score test nor Cook and Weisberg’s residual plot can characterize the
weighting function directly. To illustrate this, in this section we apply linear,
squared, and Cook and Weisberg’s squared residual plots to assess heteroscedas-
ticity. While linear residual plots can characterize the square root of the weighting
function, squared residual plots directly identify the weighting function itself.
However, although it cannot reveal the weighting function directly, Cook and
Weisberg’s squared residual plot can be used to diagnose heteroscedasticity. In
practice, both the formal score test and informal graphical residual plots should
be used as counterparts in diagnosing heteroscedasticity (see Examples 4.3 and
4.4). Since the focus of this paper is on graphical plots, we will not investigate the
properties of the score test. Interested readers may refer to an article which com-
pares score tests for heteroscedasticity written by Lyon and Tsai (1996). In the
section that follows, we introduce true model structures with nonconstant vari-
ance, fitted model structures assuming constant variance, and the three residual
plots mentioned above that result for the fitted models.

2.1. Model structure and moments of residuals

The usual linear regression model can be represented as

Y = Xβ + e, (1)
e ∼ N(0, σ2I),

where Y = (y1, . . . , yn)′, e = (e1, . . . , en)′, X = (x′
1, . . . , x

′
n)′, xi = (xi1, . . . , xip)′

is a known vector for i = 1, . . . , n, β is a p × 1 vector of unknown parameters,
I is an n × n identity matrix, and σ2 is an unknown constant. Based on model
(1), the ordinary least squares estimator of β is β̂ = (X ′X)−1X ′Y and the
unbiased estimator of σ2 is σ̂2 = Y ′(I −H)Y/(n− p), where H = X(X ′X)−1X ′.
The fitted values and residuals that result are Ŷ = (ŷ1, . . . , ŷn)′ = HY and
ê = (ê1, . . . , ên)′ = (I − H)Y , respectively.

In regression analysis, it is not unusual for the underlying error variance to
be nonconstant. In other words, the true error covariance matrix is

σ2
0W, (2)
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where σ2
0 is the true scale parameter, W is an n × n diagonal matrix with ith

entry wi = w(zi, δ), z′i = (zi1, . . . , ziq), the ith row of an n × q known matrix Z,
and δ is a q × 1 vector.

If we fit the data with model (1), but in fact the underlying error covariance
matrix is (2), then

E(êi|zi) = 0, (3)

Var (êi|zi) = E(ê2
i |zi) =

{
(1 − hii)2wi +

∑
j �=i

h2
ijwj

}
σ2

0 , (4)

and
Var (ê2

i |zi) = 2{Var (êi|zi)}2, i = 1, . . . , n. (5)

The vertical bar in the expression (.|.) stands for the word “given”, but it also
means “conditioning on” if the quantity after the vertical bar represents specific
values of random variables. Also, hij = x′

i(X
′X)−1xj, hii = x′

i(X
′X)−1xi, and

hii is the ith leverage of H. We can further show that (êi, ŷi) is distributed as a
bivariate normal distribution:

N
(( 0

x′
iβ

)
,
( (1 − hii)2wi +

∑
j �=i h

2
ijwj hiiwi − ∑

j h2
ijwj

hiiwi − ∑
j h2

ijwj
∑

j h2
ijwj

)
σ2

0

)
.

Hence,

E(êi|ŷi) =
( hiiwi∑

j h2
ijwj

− 1
)
(ŷi − x′

iβ), (6)

Var (êi|ŷi) = (1 − ai)wiσ
2
0 , (7)

E(ê2
i |ŷi) = Var (êi|ŷi) + {E(êi|ŷi)}2, (8)

and
Var (ê2

i |ŷi) = 2{Var (êi|ŷi)}2, (9)

where

ai =
h2

iiwi∑
j h2

ijwj
. (10)

Since E(ê2
i |zi) depends on (1 − hii) even when W = I, Cook and Weisberg

(1983) suggest replacing êi with bi = êi/
√

(1 − hii). In this paper, the term
“linear residual plot” will refer to the plot of a linear function of êi versus a
function of ŷi (or zi). The term “squared residual plot” will refer to a plot of a
squared function of êi versus a function of ŷi (or zi).

2.2. Linear residual plots

If it is suspected that the variance is a function of the weighting variable zi,
a conventional graphical method is to plot bi (or êi ) versus zi. As can be seen
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from equations (3) and (4), the mean of bi|zi is zero. This implies that the shape
of this plot is only determined by the variance,

Var (bi|zi) = E(b2
i |zi)

=
{
(1 − hii)wi +

∑
j �=i

h2
ijwj/(1 − hii)

}
σ2

0. (11)

In order to view the weighting function w more clearly, we suggest removing
the factor (1 − hii) from the first term in braces of equation (11). We do this
by plotting ê(i) = bi/

√
1 − hii versus zi, where ê(i) = yi − x′

iβ̂(i), β̂(i) is the least
squares estimator with the ith case excluded, and ê(i) is Cook and Weisberg’s
(1982), p. 33 “predicted residual.”

wi = exp(|zi|) wi = exp(zi) wi = |zi|

zi zi zi

wi = exp(|zi|) wi = exp(zi) wi = |zi|

zi zi zi

Figure 1. Linear (row 1) and squared (row 2) residual plots for assessing het-
eroscedasticity. The labels on the Y -axes of the linear and squared residual
plots are (−s.e.(ê(i)|zi), s.e.(ê(i)|zi)) and (0, E(ê2

(i)|zi)+ s.e.(ê2
(i)|zi)), respec-

tively.

Figure 1 (row 1) presents linear residual plots obtained by plotting 0 +
s.e.(ê(i)|zi) and 0 − s.e.(ê(i)|zi) versus zi for three different weighting factors:
wi = exp(|zi|), wi = exp(zi), and wi = |zi|. The standard error is denoted
by s.e., zi(i = 1, . . . , 100) are randomly generated from N(0, 1), σ0 = 1, hii =
x′

i(X
′X)−1xi, xi = (1, zi)′, and X = (x1, . . . , xn)′. The top and the bottom of

each plot correspond to 0 + s.e.(ê(i)|zi) and 0 − s.e.(ê(i)|zi), respectively. Linear
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residual plots appear to be symmetric about zero in the presence of nonconstant
variance.

The second term in braces of equation (11) is
∑

j �=i(hjj(i) − hjj)wj , where
hjj(i) is the jth leverage after xi is deleted from X. If this term is ignored, then
the shape of the linear residual plot is determined by

√
wi. We have found little

difference in the plots that result between ignoring this term, or keeping it and
using the entire term in braces in (11).

If the variance is suspected to be a function of expected response, then
equations (6) and (7) indicate that the shape of the linear residual plot (êi versus
ŷi) is determined by E(êi|ŷi)± s.e.(êi|ŷi). The conditional mean, E(êi|ŷi), is not
completely known since x′

iβ is unknown (see equation (6)). If x′
iβ is replaced by

x′
iβ̂, then the shape of the linear residual plot can be approximated by plotting

0 ± s.e.(êi|ŷi) versus ŷi. In addition, if ai in equation (7) is ignored, then the
shape of the plot will be a function of

√
wi.

2.3. Squared residual plots

Since linear residual plots cannot identify the weighting function directly, we
recommend plotting the squared residual, ê2

(i), versus zi to detect heteroscedas-
ticity. The pattern of this plot is determined by E(ê2

(i)|zi) + s.e.(ê2
(i)|zi), where

s.e.(ê2
(i)|zi) =

√
2Var (ê(i)|zi). The lower bound of this plot is zero, as ê2

(i) is a
nonnegative value. Figure 1 (row 2) displays three squared residual plots which
correspond to the weighting functions exp(|zi|), exp(zi), and |zi|, respectively. If
the second term of (11) is ignored, then s.e.(ê2

(i)|zi) =
√

2wi. Hence, the pattern
of the squared residual plot can identify the weighting function wi directly, and
is better suited to assess the adequacy of the nonconstant variance assumption
than linear residual plots. Note that E(ê2

(i)|zi) = 1/(1 − hii) when W = I. Since
0 ≤ hii ≤ 1, and it is non-increasing in n for fixed p, the factor hii usually does
not play a significant role in assessing the function form of W , even when W = I.

If the variance is suspected to be a function of the expected response, we
recommend plotting ê2

i versus ŷi. The shape of this plot is determined by
E(ê2

i |ŷi) + s.e.(ê2
i |ŷi), where E(ê2

i |ŷi) and s.e.(ê2
i |ŷi) are defined in equations (8)

and (9). If we again replace x′
iβ (see equation (6)) by x′

iβ̂, and ignore the compo-
nent ai (see equation (7)), the squared residual plot will characterize the shape
of the weighting function wi (see equations (7) and (9)). As above, we therefore
prefer the squared residual plot to the linear residual plot for the elucidation of
heteroscedasticity.

2.4. Cook and Weisberg’s squared residual plots

Cook and Weisberg (1983) proposed replacing w(zi, δ) in equation (11) by
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w(zi, δ
∗) + (δ − δ∗)ẇi, where ẇi = ∂w(zi,δ)

∂δ

∣∣∣
δ=δ∗

and w(zi, δ
∗) = 1. This yields

E
(
b2
i /σ

2
0 |zi

)
� 1 + (δ − δ∗)

{
(1 − hii)ẇi +

∑
j �=i

ẇjh
2
ij/(1 − hii)

}
, (12)

which is Cook and Weisberg’s (1983) equation (16). Thus, if the second term in
braces of (12) is ignored, the shape of the squared residual plot of b2

i /σ
2
0 versus

(1 − hii)ẇi will be characterized by {1 + (δ − δ∗)(1 − hii)ẇi} + s.e.(b2
i /σ

2
0 |zi),

where s.e.(b2
i /σ

2
0 |zi) =

√
2(1 − hii)wi/σ

2
0 =

√
2(1 − hii)(1 + (δ − δ∗)ẇi)/σ2

0 (see
equations (5) and (11)). The lower bound of this plot is zero, since b2

i /σ
2
0 is

a nonnegative value. This implies that the resulting squared residual plot will
show a wedge-shaped pattern in the case of nonconstant variance. This is the
main difference between Cook and Weisberg’s squared residual plot and the plot
discussed in Section 2.3. While Cook and Weisberg’s plot has a wedge shape when
nonconstant variance is present, the squared residual plot in Section 2.3 directly
identifies the weighting function wi. If ẇi is zero, then Cook and Weisberg’s
squared residual plot cannot be determined. If this is the case, we suggest plotting
b2
i /σ

2
0 versus (1 − hii)ẅi, where ẅi = ∂2w(zi,δ)

∂δ∂δ′

∣∣∣
δ=δ∗

. As above, the plot will still
have a wedge-shaped pattern (See Example 2, Section 4).

In practice there may be additional complications. Outliers may appear in
the data set that mask the pattern of squared or Cook and Weisberg’s squared
residual plots. There are two possible remedies for this problem: the first is to
adopt Carroll and Ruppert’s (1988), p. 30 suggestion to plot the function of resid-
uals instead of the square of the residuals. Using this concept, we propose plotting
log(1+(ê(i)/σ̂)2) versus xi. If (ê(i)/σ̂)2 is small, then log(1+(ê(i)/σ̂)2) � (ê(i)/σ̂)2.
Hence, this log transformation will usually maintain the original shape of the
squared residual plot after shrinking outliers. In other words, this transformation
can prevent outliers from obscuring a nonconstant variance pattern (see Exam-
ple 1, Section 4). The second possibility is to use a statistical software package
to interactively rescale the plot to the bulk of the data, effectively deleting the
outliers from the plot. For example, Data Desk (1995) has this capability. Due
to limitations in our computing facility, we are unable to illustrate this method
in this paper.

When both the true and fitted models have constant variance, equations
(4) through (9) indicate that both the linear and squared residual plots will not
reveal any pattern. We refer to these as null plots.

3. Residual Plots for Assessing Nonlinearity

In this section, we consider the mean function of the fitted and the underlying
true models to be

Xβ + Zγ and Xα + g(Z), (13)
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respectively, where X and β are defined as in equation (1), α is a p × 1 vector,
and the quantities Z and γ are adopted from equation (2) with dimension q = 1.
Furthermore, we assume that the errors for the fitted and true models ei, i =
(1, . . . , n), are independent and identically distributed as N(0, σ2), and N(0, σ2

0),
respectively. Note that Z in Section 2 is used in reference to the weighting
function, but here is used in reference to the mean function. In practice, it may
not be known if there are problems with nonlinearity or heteroscedasticity with
respect to any particular covariate; hence, we use the same notation (Z) for
examining residual plots.

In subsections 3.1 and 3.2, we study the linear, partial, and squared residual
plots where both X and Z are fixed, and discuss how to extend our results to
the case where both variables X and Z are random, at the end of subsection
3.2. Also, in subsection 3.3, we examine Cook’s (1993) partial residual plot and
propose a complementary plot for use in assessing nonlinearity.

3.1. Linear residual plots

After straightforward computations, we can show that

E(ê(i)|zi) = g(zi) −
∑
j �=i

hijg(zj)/(1 − hii), (14)

Var (ê(i)|zi) = σ2
0/(1 − hii), (15)

E(ê2
(i)|zi) = σ2

0/(1 − hii) + {E(ê(i)|zi)}2, (16)

and
Var (ê2

(i)|zi) = 2σ4
0/(1 − hii)2, and i = 1, . . . , n, (17)

where ê(i) and hii are defined as in Section 2, with the exception that the mean
function of the fitted model, Xβ, is replaced by Xβ + Zγ. Specifically, ê =
(ê1, ..., ên)′ = (I − H)Y , ê(i) = êi/(1 − hii), where hii is the ith leverage of H,
H = X̃(X̃ ′X̃)−1X̃ ′ and X̃ = (X,Z). In addition, by following the techniques
used in Section 2.1 to derive equation (6) we can show that

E(ê(i)|ŷi) = E(ê(i)|zi). (18)

If we suspect that the mean function is nonlinear in z, then the linear residual
plot of ê(i) versus zi will usually reveal the nonlinear form, since the pattern of
the linear residual plot is determined by E(ê(i)|zi) ± s.e.(ê(i)|zi). This means
that the resulting linear residual plots are not symmetric about zero, unlike the
linear residual plots in Figure 1. If the second term of equation (14) is ignored,
then the pattern of the linear residual plot depends on g(zi). We have found
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little difference in the plots that result between using this quantity and using the
entire term in (14).

If g(Z) is not a function of Xβ, then equations (14) and (18) indicate that the
plot of ê(i) (or êi) versus ŷi might not reveal a nonlinear pattern even though the
true mean function includes the nonlinear component, g(Z). Cook’s Example 7.1
(1994) illustrates this point. In practice, the linear residual plot may not clearly
characterize the nonlinear function (see Mansfield and Conerly (1987) and Berk
and Booth (1995)). If this is the case, there are a few possible alternative plots
that can be used to examine nonlinearity. In this paper we consider only one of
these, the partial residual plot (see Ezekiel (1924), Larsen and McCleary (1972),
and Mansfield and Conerly (1987)), which is constructed by plotting

ê + Zγ̂ versus Z, (19)

where ê = Y − Xβ̂ − Zγ̂. There are two reasons for choosing to examine the
partial residual plot as well as the linear residual plot:

(1) It has the ability to detect nonlinearity (see Mansfield and Conerly (1987)).
(2) It has recently been generalized and explored by Cook (1993), which leads us

to adopt his approach to the exploration of the linear residual plot (Section
3.3), and also leads to a plot which complements Cook’s.
We usually do not know beforehand whether the residual or partial residual

plot will provide a more accurate characterization of the function g. If both plots
show the same pattern, we can comfortably draw conclusions as to the nature of
g. Otherwise, formal tests for nonlinearity (see Su and Wei (1991), Eubank and
Hart (1992), and Azzalini and Bowman (1993)) should be considered.

3.2. Squared residual plots

Based on equations (16) and (17), the pattern of squared residual plots (ê2
(i)

versus zi) is determined by E(ê2
(i)|zi)+ s.e.(ê2

(i)|zi). This does not directly reflect
the pattern of the nonlinear component g(zi), but reflects the squared pattern
of g(zi). Hence, the squared residual plot can supplement the linear residual
plot in identifying the nonlinear pattern, but overall we recommend using the
linear residual plot to assess nonlinearity since it directly identifies the form of
the nonlinear function.

We have discussed linear and partial residual plots for the case where both
variables X and Z are fixed. However, if both variables are random, we need
to adopt the assumption that E(e|X,Z) = 0 (Cook (1993)) in order to evaluate
residual plots. Under this assumption, equations (14) and (15) will be valid
when zi (on the right hand side of the (.|.) expression) is replaced by X and Z,
and hence the resulting linear and partial residual plots can be used to assess
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nonlinearity. Analogous modifications can be made to obtain residual plots when
one variable X or Z is random and the other is fixed.

3.3. Conditional linear residual plots

We now consider linear and partial residual plots when both X and Z are
random variables. We first review Cook’s version of the partial residual plot, and
then propose a modified version of the linear residual plot which can be used as
a complement to Cook’s plot. Continue to assume that E(e|X,Z) = 0.

For the case where g is not a linear function, Cook (1993) generalized partial
residual plots (see equation (19)) to obtain CERES plots, which can be used
to identify nonlinearity in g. Specifically, Cook’s CERES plot is constructed by
fitting the model Y = Xβ + m(Z)γ∗ + error, and then plotting ê∗ + m(Z)γ̂∗

versus Z, where m(Z) = E(X|Z) − E(X), ê∗ = Y − Xβ̂ − m(Z)γ̂∗, and β̂ and
γ̂∗ are the least squares estimators of β and γ∗, respectively. In practice, m(Z)
is often unknown. Cook suggested using the lowess (locally weighted scatterplot
smoother) smoothing technique to estimate m(Z). Useful references on this topic
can be found in Cleveland (1979), Härdle (1990), p. 192 and Cook and Weisberg
(1994), p. 31.

When both variables X and Z are fixed, Mansfield and Conerly (1987) used
a few examples to illustrate the strong and weak performance of residual and
partial residual plots. For instance, their Figure 3 shows that the partial residual
plot performs better than the residual plot with respect to nonlinearity, whereas
their Figure 5 indicates that the residual plot performs better than the partial
residual plot. Recently, Berk and Booth (1995), Figure 9 have illustrated that
Cook’s CERES plot may not always be able to detect nonlinearity. Because of
this finding and the fact that Cook’s CERES plot is an extension of the partial
residual plot, we suggest making the natural extension of the linear residual plot
to obtain CLRES plots (Conditional Linear RESiduals) by plotting ê∗ versus Z.

Cook (1993) applied his Lemma 4.1 to obtain the population version of the
CERES plot, g(Z) − E(g(Z)) + e versus Z, assuming that E(X) = E(Z) = 0.
To study the property of CLRES plot, we first let (β̃′, γ̃∗′) = arg minR(β′, γ∗′),
where R(β′, γ∗′) = E{(Y − Xβ − m(Z)γ∗)′(Y − Xβ − m(Z)γ∗)/n}, and the
expectation is computed with respect to the joint distribution of Y and (X,Z).
Then, adopting Cook’s (1993), pages 353 and 355 results and arguments, we can
show that (β̂′, γ̂∗′) is the Fisher consistent estimator of (β̃′, γ̃∗′), and the resulting
population version of the CLRES plot is g(Z)−E(g(Z))−m(Z)γ̃∗ + e versus Z.
Now, we address the reason that the CLRES plot is a useful adaptation: suppose
that the component m(Z)γ̃∗ dominates the function g(Z) over the given range
of Z, but does not reflect the true relationship between g(Z) and Z. If this is the
case, then removing the overlapping effect m(Z)γ̃∗ from g(Z) (i.e. g(Z)−m(Z)γ̃∗)
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will better portray the correct form of g. This allows the CLRES plot to perform
better than the CERES plot in identifying the true relationship between g(Z)
and Z. From the discussion above, we conclude that the respective role of the
CLRES and CERES plots parallel those of the residual and partial residual plots;
that is, the CLRES plots complement Cook’s CERES plots, and both should be
used to obtain the best assessment of nonlinearity when E(X|Z) is not linear
in Z. An analytical example (Example 3) is given in Section 4 to illustrate the
combined use of CERES and CLRES plots.

The residuals ê(i), bi, and êi discussed thus far in Sections 2 and 3 are not
unit free. Subsequently, we will divide them by σ̂ for the purposes of illustrating
the process of data analysis. The quantity bi/σ̂ is conventionally called the
studentized residual, which we denote by ri. We can also view ri as a replacement
for bi/σ0 in Section 2.4, since σ0 is not known in practice.

4. Examples

Three analytical examples are presented here to illustrate the effects of: (1)
sample size, (2) the strength of the weighting function and nonlinearity, high
leverages, and outliers, and (3) dependent covariates on the patterns of linear
and squared residual plots. Two practical examples are also given. Our purpose
in presenting these examples is to demonstrate the use of linear and squared
residual plots to diagnose nonlinearity and nonconstant variance problems, and
then to use this diagnostic information to find a reasonable model to describe the
given data set. However, this does not imply our final model is the best choice.

4.1. Nonconstant variance

We present two examples with which to study the performance of linear
and squared residual plots in assessing nonconstant variance. Both examples
are fitted using the simple linear model, E(yi) = β0 + β1xi, where β0 and β1

are unknown parameters. The fitted models are estimated with ordinary least
squares.

Example 1. Consider the simple linear model,

yi = 1 + xi + ei (i = 1, . . . , 50), (20)

where values for xi were chosen randomly from N(0, 1). Errors were simulated
from the normal distribution, with mean zero, variance w(xi, δ)σ2

0 , and σ2
0 = 1.

The weighting functions w(xi, δ) are exp(|xi|), exp(xi) and |xi|. The linear and
squared residual plots (rows 1 and 2, respectively, in Figure 2) clearly show non-
constant variance patterns when compared to the corresponding plots in Figure
1 (rows 1 and 2).
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wi = exp(|xi|) wi = exp(xi) wi = |xi|

xi xi xi

wi = exp(|xi|) wi = exp(xi) wi = |xi|

xi xi xi

Figure 2. The linear and squared residual plots for assessing the heteroscedas-
ticity. The labels on the Y -axes of the linear and squared residual plots are
ê(i)/σ̂ and (ê(i)/σ̂)2, respectively.

To assess the impact of high leverage points, we simulated the x values from
contaminated normal distributions: 95%N(0, 1) + 5%N(0, 9) and 85%N(0, 1) +
15%N(0, 9). Here the mean function is the same as that in equation (20), the
weighting function is exp(|xi|), and the sample size n = 60. Under these cir-
cumstances, Figure 3 shows that linear residual plots do not exhibit a clear
right-opening megaphone pattern, which would indicate nonconstant variance,
nor do the squared residual plots ((ê(i)/σ̂)2 versus xi) have a parabolic pattern
(see Figure 1, row 2 and column 1). Neither do Cook and Weisberg’s residual
plots clearly show a wedge-shaped pattern. In other words, high leverages and
outliers have caused masking effects on the nonconstant variance patterns. Close
observation of the residual plots reveal a few outliers. As described in Section
2, we plot log(1 + (ê(i)/σ̂)2) versus xi to overcome this difficulty. The resulting
transformed plots (last column of Figure 3) now show clear patterns when we
compare them to the corresponding plots in Figure 1 (see row 2 and column 1).
We can also apply this log transformation to Cook and Weisberg’s residual plot
by plotting log(1 + r2

i ) versus (1−hii)|xi|. The resulting transformed plots (Fig-
ure 3, column 3) show a slight improvement over those plots that have not been
transformed (Figure 3, column 2). In general, the log-transformation operator
can be used to amend the deficiency in squared residual plots caused by outliers.
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xi (1−hii)|xi| (1−hii)|xi| xi xi

xi (1−hii)|xi| (1−hii)|xi| xi xi

Figure 3. The linear and squared residual plots for assessing the heteroscedas-
ticity as X is simulated from 95%N(0, 1)+5%N(0, 9) (row 1) and 85%N(0, 1)
+15%N(0, 9) (row 2), respectively. The labels on the Y -axes of plots in each
column correspond to ê(i)/σ̂, r2

i , log(1 + r2
i ), (ê(i)/σ̂)2 and log(1 + (ê(i)/σ̂)2),

respectively. The weighting function is wi = exp(|xi|).

n=20, δ=1 n=100, δ=1 n=20, δ=4

xi xi xi

n=20, δ=1 n=100, δ=1 n=20, δ=4

xi xi xi

Figure 4. The linear (row 1) and squared (row 2) residual plots for assesing
the heteroscedasticity as wi = |xi|δ, n = 20, 100 and δ = 1 and 4. The
labels on the Y -axes of the linear and squared residual plots are ê(i)/σ̂ and
(ê(i)/σ̂)2, respectively.
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We now examine the effect of sample size and the strength of the weighting
function on residual plots. Figure 4 presents the linear and squared residual plots
that result when the true model is as given in equation (20) and the variance
w(xi, δ)σ2

0 = |xi|δ. As the sample size increases or the weighting parameter
δ gets large, both the linear and squared residual plots more closely resemble
the corresponding patterns in Figure 1. This is not surprising, since the leverage
given in (11) decreases in n, and the effect of nonconstant variance, |xi|δ increases
in δ.

Example 2. Consider the regression model,

yi = 1 + xi + ei (i = 1, . . . , 100),

where xi and ei were chosen randomly from U(−2, 2) and N(0, wi), respectively,
and wi = w(xi, δ) = 4|xi|δ/(1 + |xi|δ)2 with w(xi, 0) = 1. Since ẇi = ẇ(xi, 0) =
0, Cook and Weisberg’s squared residual plot cannot be executed directly; an
alternative procedure is to plot the squared residual (bi/σ̂)2 versus (1 − hii)ẅi.
Figure 5 presents the squared residual plots for δ = 2. From these, it is apparent
that Cook and Weisberg’s squared residual plot shows the wedge-shaped pattern
characteristic of nonconstant variance, and the squared residual plot reflects the
weighting function wi.

r2
i (

ê(i)
σ̂

)2

(1−hii)wi xi

Figure 5. The squared linear residual plots for assessing the heteroscedasticity
as wi = 4x2

i /(1 + x2
i )

2.

g
(z

i )−
3
(z

i
+

z
2i )

zi zi

Figure 6(a). Partial residual plot, (zi + 1)3 Figure 6(b). Linear residual plot.
versus zi, denoted by “◦”, and the plot of
3(zi + z2

i ) versus zi, denoted by “��”.
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4.2. Nonlinearity

Example 3. Let zi be generated from U(−1, 1) for i = 1, . . . , 50. In this case,
the function g(Z) = (Z + 1)3 versus Z can only exhibit an exponential pattern
(see Figure 6(a)). This is primarily because the linear and quadratic terms for
(Z + 1)3, 3(Z + Z2), dominate the function over the range of (−1, 1) for Z, and
hence g(Z) and 3(Z + Z2) show similar exponential patterns (see Figure 6(a)).

Now assume that g(Z) is defined as above and m(Z)γ̃∗ = 3(Z + Z2). This
implies that the overlap between g(Z) and m(Z)γ̃∗ is 3(Z + Z2), which has
a stronger impact on g than the cubic term. Therefore, we can see that the
resulting CLRES plot (ignoring the constant E(g(Z)) = 4) in the population,
Z3 + 1 versus Z, can accurately characterize the function g as cubic (see Figure
6(b)). Thus, if we are only interested in finding the relationship between the g(Z)
and Z over the observed range of Z, then the exponential function indicated by
the CERES plot should be considered. However, if we are interested in finding
the true relationship between the g(Z) and Z, then the cubic function identified
by the CLRES plot should be considered.

4.3. Speed-braking distance example

This data set is taken from Ezekiel and Fox (1959), p. 45, and was also
analyzed by Sen and Srivastava (1990), p. 112. The explanatory variable (x) is
automobile speed, and the response (y) is the distance required to come to a
standstill after braking. Note that Sen and Srivastava ignored the data point
(x, y) = (22, 35) and recoded the data (x, y) = (7, 6) to (x, y) = (7, 7) in their
data set. These data modifications also appear in Weisberg’s book (1985), p. 161.

Since the stopping distance is zero when speed is zero, we propose an initial
model

yi = β1xi + ei (i = 1, . . . , 63), (21)

where ei is randomly distributed from N(0, σ2). Figure 7 (row 1) presents the
scatter plot of yi versus xi, and the linear, squared, and Cook and Weisberg’s
squared residual plots resulting from fitting the data with model (21). No clear
nonlinear pattern is evident in the scatterplot. However, the curved pattern in
the linear residual plot, as well as its asymmetry about zero, indicates that a
nonlinear function may provide a better fit. Furthermore, the squared and Cook
and Weisberg’s squared residual plots reveal nonconstant variance. At this point
we can choose either to add nonlinear components into model (21) or to fit the
data assuming nonconstant variance. We first try adding a nonlinear component
into model (21).
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yi

ê1(i)
σ̂1

(
ê1(i)

σ̂1

)2
r2
1i

xi xi xi (1−hii)xi

ê2(i)
σ̂2

(
ê2(i)

σ̂2

)2

xi xi

ê3(i)
σ̂3

(
ê3(i)

σ̂3

)2
r2
3i

xi xi (1 − h̃ii)xi log(xi)

Figure 7. The scatter, linear and squared residual plots for the Speed Brak-
ing Distance Data. The ê1(i)/σ̂1 (and r1i), ê2(i)/σ̂2, and ê3(i)/σ̂3 (and r3i)
correspond to the scaled predicted residuals (and the studentized residuals)
by fitting model (21), model (22) with constant variance, and model (22),
respectively. The hii and h̃ii are the leverages of hat matrices H and H̃ ,
where H and H̃ are computed from matrices (xi) and (xi, x

2
i ), respectively.

Observe that the linear residual plot shows a parabolic pattern, and thus we
refit the data by adding x2 to model (21). Figure 7 (row 2) presents the resulting
linear and squared residual plots. The linear residual plot shows a right-opening
megaphone pattern starting at positive values of x, and is symmetric about
zero. In addition, the squared residual plot shows a wedge-shaped pattern. Both
indicate possible nonconstant variance. Comparing both the linear and squared
residual plots with the corresponding patterns in Figure 1, we find that the
weighting function wi could either be in the family of |xi|δ or in the family of
exp(δxi). For simplicity, we choose wi = x2

i . A score test (Cook and Weisberg
(1983)) with a p-value of less than 0.01 rejects the null hypothesis (H0 : δ = 0) for
the weighting function wi = |xi|δ. The linear, squared, and Cook and Weisberg’s
squared residual plots that result from the weighted model are given in Figure
7 (row 3). None of them now show clear patterns. We can thus conclude that
the model we have developed is appropriate to illustrate the relationship between
braking distance and speed:

yi = β1xi + β2x
2
i + ei (i = 1, . . . , 63), (22)
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where ei is randomly distributed from N(0, x2
i σ

2). This model was also recom-
mended by Hald (1952), p. 570. It proposes that the distance to stop from the
moment the brakes are applied is proportional to the square of the speed, and
the variation of the distance is also proportional to the speed.

An alternative analytical approach for this data set would be to first find an
appropriate weighting function after examining the residual plots from the least
squares fit of model (21) (Figure 7, row 1). Then introduce appropriate nonlinear
components by examining the residual plots from a weighted least squares fit.
For this data, either approach will lead to the model given in (22).

4.4. Land rent example

Cook and Weisberg (1994), p. 90 presented this example in their Exercises.
This data studies the variation in rent paid for agricultural land planted with
alfalfa in 1977. The response variable (y) is the average rent per acre planted
with alfalfa, and the three explanatory variables are average rent paid for all
tillable land (x1), density of dairy cows (x2), and the proportion of farmland in
the county used as pasture (x3).

We first fit the data with the linear regression model,

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ei (i = 1, . . . , 67), (23)

where ei is a random variable distributed as N(0, σ2). The resulting linear and
squared residual plots are presented in Figure 8 ((a),(b), and (c)) and Figure
8 ((d), (e), and (f)), respectively. They indicate a quadratic relationship for
variables y and x2, and nonconstant variance for both variables x1 and x3. A
comparison of the squared residual plots with the plots in Figure 1 suggests that
the weighting function is exponential. Also, because the p-values for testing
H0 : β1 = 0, H0 : β2 = 0 and H0 : β3 = 0 are 0.000, 0.000 and 0.356, respectively,
we can conclude that variable x3 does not play a significant role in explaining
variation in y. Thus, we refit the data without x3 but including x2

2 with the
weighted regression model

yi = β0 + β1xi1 + β2xi2 + β22x
2
i2 + ei (i = 1, . . . , 67), (24)

where ei are randomly distributed from N(0, exp(δ1xi1 + δ2xi3)σ2). The p-value
of the score test for testing the null hypothesis H0 : δ1 = δ2 = 0 is less than 0.01,
and hence we reject the assumption of constant variance. After fitting model
(24), the resulting plots of linear and squared residuals show no clear pattern,
but do show three outliers: cases 19, 36, and 67. After removing these three
points and refitting the remaining data with model (24), the weighted regression
function is

ŷi = −6.911 + 0.884xi1 + 0.709xi2 − 0.007x2
i2, (25)
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(a) (b) (c)

xi1 xi2 xi3

(d) (e) (f)

xi1 xi2 xi3

Figure 8. (a)-(f) The linear (row 1) and squared residual (row 2) plots for Land
rent Data. The scaled predicted residuals are calculated by fitting the data with
model (23). The labels on the Y -axes of the linear and squared residual plots are
ê(i)/σ̂ and (ê(i)/σ̂)2, respectively.

(g) (h) (i)

xi1 xi2 xi3

(j) (k) (l)

xi1 xi2 xi3

Figure 8. (g)-(l) The linear (row 1) and squared residual (row 2) plots for
Land rent Data. The scaled predicted residuals are calculated by fitting the
data with model (25). The labels on the Y -axes of the linear and squared
residual plots are ê(i)/σ̂ and (ê(i)/σ̂)2, respectively.
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with the estimated weights ŵi = exp(0.068xi1 + 5.488xi3) for i = 1, . . . , 64.
Figure 8 ((g), (h), and (i)) and Figure 8 ((j), (k), and (l)) present resulting linear
and squared residual plots, respectively. They do not exhibit any clear pattern.
The coefficient of determination is 0.933, and all p-values for testing regression
coefficients are less than 0.01. Equation (25) shows that the average rent per
acre planted with alfalfa increases as the average rent paid for all tillable land
increases. It also indicates that the average rent per acre planted with alfalfa first
increases to the maximum amount, and then drops as the number of dairy cows
per square mile increases. This finding is sensible. We can conclude that the use
of linear and squared residual plots leads to an adequate model for describing
the data.

5. Discussion

This article has introduced and discussed various linear and squared resid-
ual plots. From both a theoretical and empirical standpoint, the linear residual
plot is useful for assessing nonlinearity. By contrast, the squared residual plot
is preferred to detect nonconstant variance. In practice, we suggest using both
Cook and Weisberg’s and our squared residual plots (Section 2.3) to assess het-
eroscedasticity, since these plots complement each other (especially when the
sample size is small or when high leverages or outliers exist).

In data analysis, we conventionally examine the residual plot, êi versus ŷi

(or ri versus ŷi), to assess nonlinearity or heteroscedasticity. Based on our theo-
retical and analytical results, this plot may not be sufficient by itself to diagnose
nonconstant variance or nonlinearity, and it sometimes may provide misleading
information. This plot is useful for assessing heteroscedasticity only when the
variance is known to be proportional to the mean function, and the mean func-
tion contains more than one explanatory variable. In addition, the conventional
residual plot is useful for examining nonlinearity only when the nonlinear compo-
nent g(Z), given in equation (13), is a function of Xβ. For all but these special
cases, the other linear or squared residual plots discussed in Sections 2 and 3
should be considered when evaluating nonlinearity or heteroscedasticity.

If the true model has nonlinear components with nonconstant error variances
and independent covariates, then we can adapt the techniques in Sections 2,
3.1, and 3.2 to obtain conditional means and variances for residuals, calculated
through the least squares fits. Since these results involve both nonlinear and
weighting functions, the interpretation of residual plots can get complicated. In
this case we propose using a sequential procedure, as we did in Sections 4.3 and
4.4, to form an appropriate final model. In other words, resolve nonlinearity
(or nonconstant variance) first by adding nonlinear components into the model
(or by fitting the data with weighted least squares). Then analyze the resulting
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residual plots and amend any deficiencies caused by nonconstant variance (or
nonlinearity). In conclusion, we suggest that both linear and squared residual
plots should be used routinely in data analysis.

If the true model has nonlinear components with nonconstant error variances
and interdependent covariates, then we propose first using CERES and CLRES
plots to identify nonlinear components. Then add the nonlinear components into
the model and examine the squared residual plots, discussed in Section 2, and
use them to amend any deficiency caused by nonconstant variance. The above
suggestions are heuristic, and certainly need to be further explored. This is under
investigation.
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