
Statistica Sinica 8(1998), 429-443

A RENEWAL THEORY FOR PERTURBED MARKOV

RANDOM WALKS WITH APPLICATIONS TO

SEQUENTIAL ANALYSIS

Yeong-Tzay Su

Kaohsiung Normal University

Abstract: Let Zn be a perturbed Markov random walk. We prove that under certain

conditions
∑

n
P{a < Zn ≤ a + h} converges to a finite limit, as a → ∞, for each

h > 0. We also present an important class of processes satisfying these conditions

and then apply these results to sequential analysis and obtain an expression for the

asymptotic value of the expected sample size for a repeated likelihood ratio test

problem.
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1. Introduction

Let {Xn}n≥1 be i.i.d. random variables with mean µ ∈ (0,∞], Sn = X1 +
· · · + Xn, (n ≥ 1), and U(a, h) =

∑
n≥0 P{a < Sn ≤ a + h}. Blackwell (1952)

showed that if X1 is non-arithmetic, then for all h > 0, U(a, h) → h/µ, 0 as a →
∞,−∞. If X1 is arithmetic with span λ, then for each integer k, U(a, kλ) →
kλ/µ, 0 as a → ∞,−∞ where x/µ = 0 if µ = ∞. Lai and Siegmund (1977,
1979) developed a ‘nonlinear renewal theory’ for a class of perturbed random
walks and demonstrated its usefulness in sequential analysis. In some cases such
as the problem of hypothesis testing as in Section 2, the samples are not taken
from the same population but from several different populations, with changes
of populations following certain probability law. Hence an analogous argument
for ‘Markov random walks’ is necessary.

Let {Yn}n≥0 be a Markov chain on the state space Y = {0, 1, . . . , d} with
transition probabilities pij > 0 and stationary distribution νj > 0 (i, j ∈ Y).
Assume that for each y ∈ Y there is an assigned probability distribution Fy with
finite mean and variance. Suppose that {Xn}n≥1 is a stochastic process such
that

L(Xn|{Xj}j<n, {Yj}j≥0) = FYn−1 , n ≥ 1. (1)

Let Sn = X1 + · · ·+Xn, (n ≥ 1). Then Sn is called a Markov additive process or
a Markov random walk related to the driving process {Yn}. Set µy = E(X1|Y0 =
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y), (y ∈ Y), and µ =
∑

y∈Y νyµy. Assume µ ∈ (0,∞). By renewal theorems
of Kesten (1974), for every jointly continuous function g : Y ⊗ � → � which is
directly Riemann integrable and for every y0 ∈ Y,

lim
t→∞Ey0

{ ∞∑
n=0

g(Yn, t − Sn)
}

=
∑
y∈Y

νy

∫
�

g(y, s)ds /µ. (2)

A measurable function g : Y ⊗ � → � is said to be directly Riemann integrable
(DRI) if for all y ∈ Y

lim
b↓0

b
∞∑

l=−∞
sup

lb−b≤t≤lb
g(y, t) = lim

b↓0
b

∞∑
l=−∞

inf
lb−b≤t≤lb

g(y, t) ∈ (−∞,∞). (3)

It is not difficult to see from (2) that if Sn is non-arithmetic for all n then,
for all h > 0,

lim
a→∞

∞∑
n=0

P y0(Yn = y, a < Sn ≤ a + h) = νyh/µ for all y ∈ Y. (4)

In particular,

lim
a→∞

∞∑
n=0

P y0(a < Sn ≤ a + h) = h/µ. (5)

Let ξn, n ≥ 1, be a stochastic process such that for each n, ξn is independent
of σ(Xn+1,Xn+2, . . .), and let Zn = Sn + ξn, n ≥ 1, be a perturbed Markov
random walk. In this paper we extend the results of (2), (4), and (5) to nonlinear
Markov random walks.

Theorem 1. Assume that there exists 1
2 < p ≤ 1 such that the following three

conditions hold:

Ey(|X1|2/p) < ∞ for all y, (6)

∞∑
n=1

P y{|ξn| > npε} < ∞ for all ε > 0, y ∈ Y, (7)

and for each η > 0 there exist n′ and ρ > 0 such that∑
n<j≤n+ρnp

P y{|ξj − ξn| ≥ η} < η for all n ≥ n′, y ∈ Y. (8)

Set τ(0) = inf{n > 0 : Sn > 0}. If, in addition, Sτ(0) is non-arithmetic, and
0 < µ < ∞, then for every y0, y ∈ Y and h > 0,

lim
a→∞

∞∑
n=1

P y0{Yn = y, a < Zn ≤ a + h} = νyh/µ. (9)
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In particular,

lim
a→∞

∞∑
n=1

P y0{a < Zn ≤ a + h} = h/µ. (10)

Theorem 2. Assume that g : Y ⊗� → � is DRI. If conditions (6), (7), and (8)
hold, Sτ(0) is non-arithmetic, and 0 < µ < ∞, then for every y0 ∈ Y

lim
a→∞Eyo

( ∞∑
n=1

g(Yn, a − Zn)
)

=
∑
y∈Y

νy

∫
�

g(y, s)ds/µ. (11)

Proposition 1 below presents an important class of processes satisfying con-
ditions (6)–(8) for Theorems 1 and 2.

Proposition 1. Let W 1
n , . . . ,W I

n be Markov random walks related to {Yn}. Sup-
pose there is a constant α > 2 such that, for any initial distribution, E(W i

1)
2α <

∞ for i = 1, . . . , I. Set W∼ n
= (W 1

n , . . . ,W I
n)t and m

˜
= (m1, . . . ,mI)t, where

Eν(W i
1) = mi. Let g : �I → � be a function which is C3 in a neighborhood of

m
˜

, and satisfies g(m
˜

) > 0 and

sup
|x|≤R

|g(x)| = o(Rα/2) as R → ∞. (12)

If Zn = ng(W∼ n
/n), and ξn = Zn−ng(m

˜
)−∇g(m

˜
)t(W∼ n

−nm
˜

), then assumptions
(6), (7) and (8) hold with µ = g(m

˜
) for any p ∈ (1/2, 1].

The proofs of Theorems 1 and 2 and Proposition 1 are given in Section 4.
Section 3 extends a result of Katz (1963) in order to rule out the tail parts
of summation (10). This will be used in the proof of Theorem 1. In Section
2 we study a repeated likehood ratio test for the transition probabilities of a
finite Markov chain and apply the results of non-linear Markov renewal theory
to obtain an expression for the asymptotic value of the expected sample size.

2. Repeated Likelihood Ratio Tests for Markov Dependence

Let {Yn}n≥0 be a Markov chain on the state space Y = {0, 1, . . . , d} with
unknown transition probabilities θij > 0 but known stationary distribution νj >

0 (i, j ∈ Y). Set θ
˜0 = (θo

ij) with θo
ij = νj for every i, j and let Θ be the collec-

tion of all transition probability matrices with stationary probability distribution
{νj}d

j=0; that is

Θ =
{
θ
˜

= (θij) : θij > 0,
d∑

j=0

θij = 1 for all i, and
d∑

i=0

νiθij = νj for all j
}
.
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Then under θ
˜

= (θij) ∈ Θ, Yn, n ≥ 0 are mutually independent if and only if
θij = νj for all i, j.

For testing the hypothesis

H0 : θ
˜

= θ
˜0 versus H1 : θ

˜
	= θ

˜0,

consider, for each n ≥ 1 and each θ
˜
∈ Θ, the log-likelihood ratio statistic

ln(θ
˜
) = ln(θ

˜
: Y0, . . . , Yn) = log

P y
θ
˜
(Y0, . . . , Yn)

P y
0 (Y0, . . . , Yn)

=
d∑

i,j=0

nij log(θij/νj),

where nij =#{1 ≤ k ≤ n : (Yk−1, Yk) = (i, j)}, i, j ∈ Y. Let Λn = supθ
˜
∈Θ ln(θ

˜
) =

ln(θ̂
˜n), n ≥ 1, and T = T (a) = inf{n > 0 : Λn > a}, (a ≥ 0). Fix some γ > 0,

stop sampling at T ∧ aγ and reject H0 if and only if T ≤ aγ.
Expressions for the asymptotic values for the power of the test are provided

in Su (1994). In this section we study the asymptotic expansions for the expected
value of T .

Set A = {x = (xij)0≤i,j≤d : xij > 0 for all i, j} and νΘ = {νθ
˜
| θ

˜
∈ Θ},

where νθ
˜

= (νiθij). Then νΘ ⊂ A. Let θ
˜

= (θij) denote the true transition
probability matrix. It has been shown in Su (1994) that there exist a neigh-
borhood U of νθ

˜
in A and a function θ̂ ∈ C∞(U), which does not depend on

n, such that θ̂
˜n = θ̂((nij/n)) for all n with nij > 0 for all i, j ∈ Y and

θ̂(νθ
˜
) = θ

˜
for all θ

˜
∈ Θ. Consequently, there also exists a function g ∈ C∞(U)

with Λn = ng((nij/n)). In addition, there is a function H = Hθ
˜

such that for
any y ∈ Y,

lim
a→∞P y

θ
˜
{ΛT − a ≤ x} = H(x) x > 0. (13)

Theorem 3. For θ
˜

= (θij) ∈ Θ let µ = µ(θ
˜
) =

∑
i,j νiθij log(θij/νj) and vn =

Eν
θ
˜
(ξn). Then v = limn→∞ vn exists and

lim
a→∞µ Eν

θ
˜
(T ) − a =

∫ ∞

0
(1 − H(x)) dx − v. (14)

Proof. Set xn = (nij/n), Sn = ng(νθ
˜
) + n∇g(νθ

˜
)t(xn − νθ

˜
), and ξn = Λn − Sn.

Then Eν
θ
˜
(S1) = g(νθ

˜
) =

∑
i,j νiθij log(θij/νj), ξn − n(xn − νθ

˜
)t∇2g(νθ

˜
)(xn −

νθ
˜
)/2 = O(n | xn − νθ

˜
|3) converges to 0 in distribution, and n(xn − νθ

˜
)t

∇2g(νθ
˜
)(xn − νθ

˜
)/σ2 converges to χ2

d2 in distribution, where σ2 is a constant
which can be easily evaluated from ∇2g(νθ

˜
) and Cov(x1), the covariance matrix

of x1 under the true transition probability matrix θ
˜

and initial distribution ν. By
Wald’s identity, µEν(T ) = Eν(ST ) = a + Eν [(ΛT − a) − ξT ]. To show Theorem
3, it suffices to prove that {ΛT − a} and {ξT } are uniformly integrable.
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Since S1 and components of xn are all bounded, assumptions for Proposition
(1) automatically hold. The uniform integrability of ξT follows immediately from
(7), and it is sufficient to show that {ΛT − a} is uniformly integrable. By (10) of
Theorem 1, we can choose ko such that for all y ∈ Y, µ

∑∞
n=0 P y{k − 1 < Λn ≤

k} < 2 for all k ≥ ko. But
∑∞

n=0 P y{Λn ≤ ko} < ∞ by Lemma 3. Thus one has

A := sup
k∈N

∞∑
n=0

P y{k − 1 < Λn ≤ k} < ∞.

Let Xn = Sn − Sn−1, n ≥ 1; then for each x > 0

P y{ΛT − a ≥ 2x} − P y{sup
n

(ξn − ξn−1)+ ≥ x}

≤
∞∑

n=0

P y{Λn ≤ a,Λn + Xn+1 ≥ a + x}

≤
∞∑

n=0

[a]+1∑
k=−∞

∑
y′∈Y

P y{k − 1 < Λn ≤ k, Yn = y′}P y′{X1 ≥ a + x − k}

≤ A
∑
y′∈Y

∫ ∞

x−2
P y′{X1 ≥ t}dt.

But (8) implies that {(ξn − ξn−1)+, n ≥ 1} is uniformly integrable. Thus {ΛT −
a, a ≥ 0} is uniformly integrable and Theorem 3 follows.

3. Convergence Rates of the Law of Large Numbers for Markov Ran-
dom Walks

Theorem 4. Suppose that {Xn}n≥1 is a stochastic process satisfying (1). Let
α > 1, 1

2 < p ≤ 1, and t = α/p. If Ey (|X1|t) < ∞ for all y ∈ Y, then

∑
n≥1

nα−2P y
{
|

n∑
k=1

(Xk − Ey[Xk])| > npε
}

< ∞ for all ε > 0 and y ∈ Y. (15)

Proof. We may assume with no loss of generality that ε = 1 and Ey (X1) = 0
for all y ∈ Y. Note that Ey (Xk) =

∑
z P y{Yk−1 = z}Ez (X1) = 0 for all

k ≥ 1. Following Katz (1963), we define An = {|∑n
k=1 Xk| > np}, n ≥ 1, ay

j =
P y{|X1| > 2jp}, j ≥ 0, y ∈ Y, and aj =

∑
y∈Y ay

j , j ≥ 0. Letting V = |X1|1/p,
it is easy to see that for each y ∈ Y,

2−α
∑
j≥1

2jαay
j ≤

∑
n≥1

∫ n

n−1
xα−1P y{V > x}dx ≤ 2α−1

∑
j≥0

2jαay
j .
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So
∑

j≥0 2jαay
j < ∞ iff Ey (V α) < ∞ iff Ey(|X1|t) < ∞, and by the assumption

that Ey(|X1|t) < ∞ for all y ∈ Y, one has
∑
j≥0

2jαaj < ∞. (16)

Choose a constant β ∈ ([(α + 1) ∨ t]/(2α), 1). For j ≥ 0 and 2j ≤ n < 2j+1,
let Xnk = Xk1{|Xk |≤npβ}, k = 1, . . . , n, and define A

(1)
n = {maxk=1,...,n |Xk| >

2(j−2)p}, A(2)
n = {|Xk1 | > npβ, |Xk2 | > npβ for some k1 < k2 ≤ n}, and A

(3)
n =

{|∑n
k=1 Xnk| > np/2}. Then on the complement of A

(1)
n ∪A

(2)
n ∪A

(3)
n , #{k ≤ n :

|Xk| > npβ} ≤ 1, and maxk=1,...,n |Xk| ≤ 2(j−2)p. Hence

∣∣∣
n∑

k=1

Xk

∣∣∣ ≤
∣∣∣

n∑
k=1

Xnk

∣∣∣ + max
k=1,...,n

|Xk| ≤ np/2 + 2(j−2)p. (17)

Since p > 1/2 and β < 1, there is an no <∞ such that npβ < 2(j−2)p < np/2 for
all n ≥ no. Therefore, (17) implies that An ⊂ A

(1)
n ∪ A

(2)
n ∪ A

(3)
n for all n ≥ no

and it suffices to show that
∑∞

n=1 nα−2P y(A(l)
n ) < ∞ for l = 1, 2, 3.

For any y ∈ Y,

P y(A(1)
n ) ≤

n∑
k=1

P y{|Xk| > 2(j−2)p} ≤ naj−2. (18)

Thus by (18) and (16),

∑
n≥4

nα−2P y(A(1)
n ) ≤

∑
j≥2

2j+1−1∑
n=2j

nα−1aj−2 ≤ 23α
∑
j≥0

2jα aj < ∞. (19)

Let M = Mt = maxz∈Y Ez(|X1|t) and p
(k)
zz′ = P z(Yk = z′). Then M < ∞

and

P y(A(2)
n ) ≤

∑
1≤k1<k2≤n

P y{|Xk1 | > npβ, |Xk2 | > npβ}

≤
∑

1≤k1<k2≤n

M2n−2αβ ≤ M2n2−2αβ .

Since 2αβ > α + 1, we have α(1 − 2β) < −1 and
∑
n

nα−2P y(A(2)
n ) ≤ M2

∑
n

nα(1−2β) < ∞. (20)

It remains to show that
∑

n nα−2P y(A(3)
n ) < ∞. Let j and m be the smallest

integers such that j ≥ t and m > (αβ − 1)/(j(2pβ − 1)). Notice that β >
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((α + 1) ∨ t)/2α implies that αβ > 1, 2pβ > 1, and 2mjpβ − αβ + 1 > mj.
For n ≥ 1 and 1 ≤ k ≤ n, recall that Xnk = Xk1{|Xk |≤npβ}, and let Vk =
Xnk − Ey[Xnk]. Then Ey[Vk] = 0 and by Lemma 1 below, for some constants c

and n0 ∈ (0,∞),

Ey
(
|

n∑
k=1

Vk|2mj
)
≤ c n2mjpβ−αβ+1 for all n ≥ n0. (21)

Since Ey(Xk) = 0 and Ey(|Xk|t) < ∞ for all k, we have, as n → ∞,

|Ey(Xnk)| = |Ey(Xk1{|Xk|>npβ}|) ≤ npβ(1−t)Ey(|Xk1{|Xk|>npβ}|t) = o(npβ(1−t)).

It follows from αβ ≥ (α + 1)/2 > 1 that 1 + pβ(1 − t) − pβ = 1 − αβ < 0. So∑n
k=1 |Ey (Xnk)| = o(n1+pβ(1−t)) = o(npβ) = o(np). Thus for some constants

c1, c2, c3, and n1 ∈ (0,∞),

∑
n>n1

nα−2P y(A(3)
n ) ≤

∑
n>n1

nα−2P y
{
|

n∑
k=1

Vk| > c1n
p
}

≤ c2

∑
n>n1

nα−2Ey
[
|

n∑
k=1

Vk|2mj
]
/n2mjp

≤ c3

∑
n>n1

n(2mjp−α)(β−1)−1 (by 21)

< ∞.

The proof of Theorem 4 is complete.

Lemma 1. Let α, β, p,m, j and Vk’s be as in Theorem 4. Then there are con-
stants n0 and c < ∞ such that

Ey
(
|

n∑
k=1

Vk|2mj
)
≤ c n2mjpβ−αβ+1 for all n ≥ no. (22)

Proof. It is easy to see that for each y ∈ Y and for each k ≥ 1, Ey(Xk) =
0 (from the assumption that Ez(X1) = 0 for all z) and Ey(Xd1

1 · · ·Xdk
k ) =

Ey(Xd1
1 ) · · ·Ey(Xdk

k ) for all d1, . . . , dk = 0, 1, . . . So we can write

Ey
(
|

n∑
k=1

Vk|2mj
)

=
n∑

k=1

Ey(V 2mj
k ) + · · · + c′

∑
k1<···<kτ

Ey (V 2
k1

) · · ·Ey (V 2
kτ

), (23)

where τ ≤ mj. Set b(y) = Ey (Xn1) and b =
∑

y |b(y)|. It follows from Ey(X1) =
0 that b(y) → 0 as n → ∞ for all y; so b → 0 as n → ∞. If N > t, then for every
z ∈ Y and for every large n,

Ez (|V1|N ) = Ez (|V1|N−t|V1|t) ≤ (npβ + b)N−tEz(|X1| + b)t ≤ c(z)nNpβ−αβ ,
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where 0 < c(z) < ∞ is a constant depending only upon z. Set c1 = maxz c(z).
Then

Ey (|Vk|N ) =
∑
z∈Y

P y(Yk−1 = z)c(z)nNpβ−αβEz (|V1|N ) ≤ c1 nNpβ−αβ. (24)

So
∑n

k=1 Ey (|Vk|N ) ≤ c1 nNpβ−αβ+1 for all N > t; in particular,

n∑
k=1

Ey (|Vk|2mj) ≤ c1 n2mjpβ−αβ+1 for all n.

Now consider any other sum of the right-hand-side of (23). Each of such summand
could be written in the form

Ey (V d1
k1

) · · ·Ey (V dq

kq
) Ey (V d′1

k′
1
) · · ·Ey (V

d′
l

k′
l
),

where 1 ≤ k1 < · · · < kq ≤ n, 1 ≤ k′
1 < · · · < k′

l ≤ n, d1, . . . , dq > t, d′1, . . . , d′l ≤
t, and {k1, . . . , kq} ∩ {k′

1, . . . , k
′
l} = ∅. Set B = maxz∈Y ,d≤t Ez (|V d

1 |). Then
B < ∞ and by (24), for some constant c2 < ∞,

| Ey (V d1
k1

) · · ·Ey (V dq

kq
) Ey (V d′1

k′
1
) · · ·Ey (V

d′l
k′

l
) | ≤ c2 Bln(d1+···+dq)pβ−qαβ.

For each pair of fixed q, l, the number of all possible choices of k1, . . . , kq, k
′
1, . . . , k

′
l

is n!/[q!l!(n−q −l)!] ≤ nq+l, and the number of all choices of d1, . . . , dq, d
′
1, . . . , d

′
l

is independent of n provided that n is large enough, say, n ≥ 2mj. Furthermore,
d1 + · · · + dq + 2l ≤ 2mj, so the summand of such terms is bounded by

c3 n(d1+···+dq)pβ−qαβ+q+l ≤ c3 n2mjpβ+q(1−αβ)+l(1−2pβ) (25)

for some constant c3. Since β has been chosen so that 2αβ > (α+1)∨ t, we have
(1 − αβ) < 0 and (1 − 2pβ) < 0. Hence the right-hand-side of (25) is decreasing
in both q and l. Therefore all sums that have summands where at least one
exponent of a Vki

is > t, i.e. q ≥ 1, is bounded by c3 n2mjpβ−αβ+1.
If all the exponents of the Vki

for a particular sum on the right-hand-side
of (23) are ≤ t, that is q = 0, then a bound of such a sum is given by c4 nl ≤
c4 nmj ≤ c4 n2mjpβ−αβ+1for some constant c4 < ∞. Therefore, for some constant
c < ∞,

Ey|
n∑

k=1

Vk|2mj ≤ c n2mjpβ−αβ+1.

4. The Non-Linear Markov Renewal Theory

Proof of Theorem 1. Let yo and y be two elements in Y, and let p, η, ρ

and n′ be as in the theorem. Set µn = EySn, n = 1, 2, . . . Since Ey (Xn) =
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∑
z∈Y p

(n−1)
yz Ez (X1) →

∑
z∈Y rzE

z (X1) = µ as n → ∞, there exists an n′′ ≥ n′

such that for all n ≥ n′′,

µn > µk for all k < n and |µk − µk−1 − µ| < µ/2 for all k ≥ n/2. (26)

By (7) and (6) together with Theorem 4, there exists an n′′′ ≥ n′′ ∨
(11h/(ρµ))1/p such that

∑
n≥n′′′

(P y0{|ξn| > npε} + P y0{|Sn − µn| > npε}) < η. (27)

Observe
∑

n≤n′′′ P y0{Zn > a} → 0 as a → ∞, so we can choose a0 > 2µn′′′ such
that

∑
n≤n′′′

P y0{Zn > a0} < η. (28)

For a > a0 set n0 = n0(a) = max{n ≥ n′′′ : µn ≤ a + h}, na = [ρnp
0/5], n1 =

n0 − na, and n2 = n0 + na. Let a > a0 be fixed such that np
0 ≥ 11h/(ρµ), and

let 0 < ε < ρµ/22. If n′′′ ≤ n ≤ n1, then |ξn| ≤ npε, and |Sn − µn| ≤ npε. Then
Zn = Sn + ξn ≤ µn1 + 2npε ≤ a+ h− ρµnp

0/11 < a . So by (27) and (28) we have
∑

n≤n1

P yo{a ≤ Zn ≤ a + h}

≤
∑

n≤n′′′
P yo{Zn ≥ a0}+

n1∑
n=n′′′

(P yo{|ξn| > npε} + P yo{|Sn − µn| > npε}) < 2η.

Similarly, for n ≥ n2, if |ξn| ≤ npε and |Sn − µn| ≤ npε, then Zn > a + h. So
∑

n≥n2

P yo{a ≤ Zn ≤ a + h}≤
∑

n≥n2

(P yo{|ξn|>npε}+P yo{|Sn−µn|>npε}) < η.

Thus
∞∑

n=1

P yo{a < Zn ≤ a + h} ≤
n2∑

n=n1

P yo{a < Zn ≤ a + h} + 3η (29)

and it suffices to show that

lim
a→∞

n2∑
n=n1

P yo{a < Zn ≤ a + h} = h/µ.

For n1 ≤ n ≤ n2 and j = n − n1, set S′
j = Sj+n1 − Sn1 ; then

P yo{a < Zn ≤ a + h} − P yo{|ξn − ξn1| ≥ η}
≤ P yo{a − η < Zn1 + (Sn − Sn1) ≤ a + h + η}
= P yo{a − η − Zn1 < S′

j ≤ a − η − Zn1 + (h + 2η)}. (30)
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By (6), (7), Theorem 4, and the Borel-Cantelli Lemma, Zn1 = µn1 + o(np
1) =

a − cap + o(ap) for some constant c > 0. Take ε = c/3; then for large a,

P yo{a − η − Zn ≤ apε} = P yo{3εap + o(ap) − (Zn1 − µn1) < ε}
≤ P yo{Zn1 − µn1 > εap} → 0 as a → ∞.

By Lemma 2 below, B := supt

∑∞
n=1 P yo{t < Sn ≤ t + h + 2η} < ∞. So

Eyo

( n2−n1∑
j=1

P{a − η − Zn1 < S′
j ≤ a − η − Zn1 + (h + 2η)}1{a−η−Zn1 <apε}

)

≤ BP yo{a − η − Zn1 < apε} → 0 as a → ∞. (31)

Furthermore,
∑n2−n1

j=1 P yo{a−η−Zn1 < S′
j ≤ a−η−Zn1+(h+2η)}1{a−η−Zn1 >apε}

≤ B and converges almost surely to (h+2η)/µ as a → ∞. Thus by the dominated
convergence theorem,

lim
a→∞Eyo

[ n2−n1∑
j=1

P{a−η−Zn1 < S′
j ≤ a−η−Zn1 + (h + 2η)}1{a−η−Zn1 >apε}

]

≤ (h + 2η)/µ.

Hence by (8), (30), and (31), we have

lim
a→∞

n2∑
n=n1

P yo{a < Zn ≤ a + h} ≤ η + (h + 2η)/µ.

Similar arguments imply that lima→∞
∑n2

n=n1
P yo{a < Zn ≤ a+h} ≥ (h−2η)/µ.

Therefore, for any η > 0,

(h − 2η)/µ ≤ lim
a→∞

∞∑
n=1

P yo{a < Zn ≤ a + h} ≤ (h + 2η)/µ + 3η

and similarly,

νy(h − 2η)/µ ≤ lim
a→∞

∞∑
n=1

P yo{Yn = y, a < Zn ≤ a + h} ≤ νy(h + 2η)/µ + 3η.

Letting η → 0, the proof of Theorem 1 is complete.

Lemma 2. Let Sn, n ≥ 1, be a Markov random walk related to Y with Eν(S1) =
µ > 0, where Y is a finite Markov chain with stationary distribution ν. Then

sup
t

∞∑
n=1

P yo{t < Sn ≤ t + c} < ∞ for all c > 0, y ∈ Y.
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Proof. For z ∈ Y, set τ0(z) = 0 and τk(z) = inf{n > τk−1(z) : Yn = z}, k ≥ 1.
Then {(τk+1(z) − τk(z), Sτk+1(z) − Sτk(z))}k=1,2,... are i.i.d. with Ez(Sτk+1(z) −
Sτk(z)) > 0. So the process {Sτk+1(z) − Sτk(z)}k≥1 is transient (cf. Feller (1972) )
and

∞∑
k=1

P z{−c < Sτk(z) ≤ c} < ∞ for all c > 0, z ∈ Y.

Set ζ(t) = inf{n > 0 : t < Sn ≤ t + c}, t ∈ �. Then

∞∑
n=1

P y{t < Sn ≤ t + c} =
∞∑

j=1

∑
z∈Y

∞∑
n=j

P y{ζ(t) = j, Yj = z, t < Sn ≤ t + c}

≤ 1 +
∑
z∈Y

∞∑
k=1

P z{−c ≤ Sτk(z) ≤ c} < ∞.

Since the last term in the inequality is independent of t, the lemma follows.

The proof of Theorem 2 will use the following:

Lemma 3. Let Zn = Sn + ξn, n ≥ 1, be a perturbed Markov random walk related
to Y with Eν(S1) = µ > 0, where Y is a finite Markov chain with stationary
distribution ν. If conditions (6), (7), and (8) hold, then

sup
a

∞∑
n=1

P y{a < Zn ≤ a + c} < ∞ for all c > 0, and y ∈ Y.

Proof. Let η, ρ, and n′ be as in condition (8). For a > 0 set n0 = n0(a) = [a/µ],
n1 = n1(a) = n0 − [ρnp

0/2], and n2 = n2(a) = n0 + [ρnp
0/2]. Let 2η < c < ∞ be

fixed but arbitrary. Then by the argument in the proof of (29),

lim
a→∞

( ∑
n≤n1

P y{a ≤ Zn ≤ a + c} +
∑

n≥n2

P y{a ≤ Zn ≤ a + c}
)

= 0.

Thus we can choose a0 < ∞ such that n1(a0) > n′ and
∑

n≤n1

P y{a ≤ Zn ≤ a + c} +
∑

n≥n2

P y{a ≤ Zn ≤ a + c} ≤ 1 for all a ≥ a0. (32)

By (7) and the strong law of large numbers, P y{limn→∞ Zn/n = limn→∞ Sn/n =
µ > 0} = 1, thus

sup
a≤a0

∑
n≥1

P y{a ≤ Zn ≤ a + c} ≤
∞∑

n=1

P y{Zn ≤ a0 + c} < ∞. (33)
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It remains to show that for some constant B < ∞,
∑n2

n=n1
P y{a ≤ Zn ≤ a+ c} ≤

B for all a > a0.
Let B = 1 + η + maxy

∑
n≥1 P y{−2c ≤ Sn ≤ 2c}. Then B < ∞ by Lemma

2. Set ζ(a) = inf{n ≥ n1 : a < Zn ≤ a + c}, a > a0. For n1 ≤ j < n ≤ n2, if
ζ(a) = j, |ξj −ξn1| < η, |ξn−ξn1| < η, and a < Zn ≤ a+c, then −2c ≤ −c−2η ≤
Sn − Sj ≤ 2c; thus

n2∑
n=n1

P y{a < Zn ≤ a + c} =
n2∑

j=n1

∑
z∈Y

n2∑
n=j

P y{ζ(a) = j, Yj = z, a < Zn ≤ a + c}

≤ 1 +
∑
z∈Y

n2∑
j=n1

P y{ζ(a) = j, Yj = z} ×
n2∑

n=j+1

(P z{−2c ≤ Sn−j ≤ 2c} + P z{|ξn − ξn1| ≥ η})

≤ B. (34)

The lemma follows from (32), (33), and (34).

Proof of Theorem 2. We may first assume that for some integer L < ∞,
g(y, x) = 0 for all |x| ≥ L, y ∈ Y. For k = 1, 2, . . . and for −2kL ≤ j ≤ 2kL, set
Ikj = [(j − 1)2−k, j2−k], uykj = sup{g(y, x) : x ∈ Ikj} , and lykj = inf{g(y, x) :
x ∈ Ikj}. Then for each k,

2kL∑
j=−2kL

∞∑
n=0

lykjP
yo{Yn =y, a−Zn ∈ Ikj} ≤ Eyo

( ∞∑
n=0

g(Yn, a−Zn)1{Yn=y}
)

≤
2kL∑

j=−2kL

uykj

∞∑
n=0

P yo{Yn =y, a−Zn ∈ Ikj}

→
2kL∑

j=−2kL

uykjνy2−k/µ as a → ∞

by Theorem 1. So we have, for all k,

2kL∑
j=−2kL

lykjνy2
−k

/µ≤ lim
a→∞Eyo

( ∞∑
n=0

g(Yn,a−Zn

)
1{Yn=y})≤

2kL∑
j=−2kL

uykjνy2
−k

/µ. (35)

Since g is DRI we have

lim
k→∞

2−k
2kL∑

j=−2kL

lykj = lim
k→∞

2−k
2kL∑

j=−2kL

uykj =
∫
�

g(y, s)ds for all y ∈ Y. (36)
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Combining (35) and (36) yields

lim
a→∞Eyo

{ ∞∑
n=0

g(Yn, a − Zn)
}

=
∑
y

νy

∫
�

g(y, s)ds/µ.

This proves (11) for the case that g is supported on Y × [−L,L]. For the general
case, if g is only assumed to be DRI, then for any ε > 0, we can choose L < ∞
such that | ∫� g(y, s)1{|s|≥L}ds| < ε for all y and it suffices to show that

lim
L→∞

lim
a→∞Eyo

{ ∞∑
n=0

g(Yn, a − Zn)1{|a−Zn|≥L}
}

= 0.

For j, k = 1, 2, . . ., set Ik,j = [j2−k, (j + 1)2−k], Ak,j = {|a − Zn| ∈ Ikj}, and
ukj(y) = sup{|g(y, x)| : x ∈ Ikj}, y ∈ Y. Then for each y ∈ Y

Eyo

(
|

∞∑
n=1

g(Yn, a − Zn)1{Yn=y}Akj}|
)
≤

∞∑
j=2kL

ukj(y)
∞∑

n=1

Eyo(1Akj
)≤M

∞∑
j=2kL

ukj(y),

where M :=
∑∞

n=1 P yo{|a − Zn| ∈ Ikj} < ∞ by Lemma 3. But g is DRI, so for
any ε > 0, there is a K < ∞ such that for all k ≥ K,

∞∑
j=2kL

ukj − ε ≤
∫

g(y, s)1{|s|≥L}ds → 0 as L → ∞

since g(y, ·) is Riemann integrable. The proof of Theorem 2 is complete.

Proof of Proposition 1. Since 2α > 4 > 2/p, assumption (6) follows immedi-
ately. The strong law of large numbers and the assumption g ∈ C3 ensure that,
as n → ∞,W∼ n

/n → m
˜

and Zn/n = g(W∼ n
/n) → g(m

˜
) = µ w.p.1. By Taylor’s

expansion,

ξn = 2−1n(W∼ n
/n − m

˜
)t∇2g(m

˜
)(W∼ n

/n − m
˜

) + O(n|W∼ n
/n − m

˜
|3) (37)

converges in distribution to a random variable with finite mean and finite vari-
ance. Thus there is a finite constant K such that for all n ≥ K, |Ey(ξn)| < npε/2
and

P y{|ξn| > npε} ≤ P y{|ξn − Ey(ξn)| > npε} ≤ cn−2p

for some suitable constant c ∈ (0,∞) by Chebychev’s inequality. Since p > 1/2
assumption (7) follows.

We now show condition (8) holds for every fixed ρ>0. Set V
˜ l =(V 1

l , . . . , V I
l )t

= W∼ l
− lm

˜
, l = 1, 2, . . ., V

˜ n,k = V
˜ n − V

˜ n+k, and d(n, k) = 1/n − 1/(n + k).
Then, by (37), there exists a constant c1 > 0 such that

2|ξn − ξn+k| ≤ |V
˜

t
n∇2g(m

˜
)V
˜ n/n − V

˜
t
n+k∇2g(m

˜
)V
˜ n+k|

+c1n(|W∼ n
/n − m

˜
|3 + |W∼ n+k

/(n + k) − m
˜
|3) (38)
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and

V
˜

t
n∇2g(m

˜
)V
˜ n/n − V

˜
t
n+k∇2g(m

˜
)V
˜ n+k/(n + k)

= d(n, k)V
˜

t
n+k∇2g(m

˜
)V
˜ n+k + (V

˜
t
n,k∇2g(m

˜
)V
˜ n,k − 2V

˜
t
n,k∇2g(m

˜
)V
˜ n)/n. (39)

So for all δ > 0,

P y{|ξn − ξn+k| > 4δ} ≤ P y{(|V
˜ n|3 + |V

˜ n+k|3) > n2c1δ}
+P y{d(n, k)|V

˜
t
n+k∇2g(m

˜
)V
˜ n+k| > δ}

+P y{|V
˜

t
n,k∇2g(m

˜
)V
˜ n,k| > nδ}

+P y{|V
˜

t
n,k∇2g(m

˜
)V
˜ n| > nδ}. (40)

By Nagaev’s inequality for Markov random walks (c.f. Su (1993)) with r ∈
(4, 2α), there is a constant cr such that for all sufficiently large x, P y{|V

˜ l| >
x} < crlx

−r for all l. Thus there exists some suitable constant 0 < c < ∞ such
that for all large n and for 1 ≤ k ≤ n,

P y{(|V
˜ n|3 + |V

˜ n+k|3) > n2c1δ} ≤ c n1−2r/3, (41)

P y{d(n, k)|V
˜

t
n+k∇2g(m

˜
)V
˜ n+k| > δ} ≤ c

k

n

r/2

(n + k)1−r/2 ≤ c n1−r/2, (42)

and

P y{|V
˜

t
n,k∇2g(m

˜
)V
˜ n,k| > nδ} ≤ c k n−r/2 ≤ c n1−r/2. (43)

Let gij = ∂2g(m
˜

)/(∂xi∂xj), and g∗ = max{|gij |}. Then

P y{|V
˜

t
n∇2g(m

˜
)V
˜ n+k| > nδ}

≤
∑

i

∑
j

(P y{g∗I2|V i
n|2 > nδ} + P y{g∗I2|V j

n+k − V j
n |2 > nδ})

<
∑

i

∑
j

(cin n−r/2 + c′jk n−r/2) ≤ c n1−r/2 for all k ≤ n, (44)

where ci and c′j > 0 are suitable constants with
∑

ij(ci +c′j) ≤ c. Combining (40)
and (41)-(44) in conjunction with the fact that r > 4 and 1/2 < p ≤ 1 gives

∑
1≤k≤ρnp

P y{|ξn − ξn+k| > 4δ} ≤ c
ρnp∑
k=1

{ n1−2r/3 + 2 n1−r/2 + n1−r/2 }

≤ 4c ρ np+1−r/2 → 0 as n → ∞
This completes the proof of Proposition 1.
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