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Abstract: An expected volume coefficient (EV ) is defined and proposed to displace

volume and selectivity as criteria for the evaluation of confidence sets, and a pro-

posal for evaluation is given. This proposal addresses anomolies that occur with

sets based on discrete probability distributions; for example, that classical exact

confidence intervals are wider than approximate ones. Options for the other key

criterion, coverage, range from attaining average coverage, a liberal (i.e., leading to

smaller sets) criterion, to attaining coverage for all values of the unknown param-

eter and all sample sizes, a very conservative criterion for sets based on discrete

distributions. Use of EV is demonstrated with two-sided confidence intervals for

the binomial probability parameter, leading to new recommendations; in particular,

a Wald logit interval with negative continuity correction.
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1. Introduction

The problem of constructing a confidence interval based on a (binomial) pro-
portion would seem at first consideration to be a relatively simple matter. Many
textbooks have given that impression. The topic is actually quite controversial
and has generated much literature. One is led to believe that the exact confi-
dence interval, that is, the one based directly on binomial probabilities, is the
gold standard against which all approximate intervals are to be judged. How-
ever, there are at least four alternative exact binomial confidence intervals, and
they can be very different. For example, Blyth and Still (1983) report that the
Clopper-Pearson (1934) exact interval can be 12.6% longer than their exact in-
terval. Different good properties of intervals are enforced in the construction of
alternative exact intervals. These properties, such as equal probability tails and
monotonicity in sample size, go beyond the definition of a confidence interval.
Evaluation is usually attempted on the basis of the definition. However, the
requirement of attaining coverage in the standard definition is controversial for
binomial intervals.

The success of a given confidence set is usually judged by its being in some
sense the smallest set that attains a given probability of including the true value
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of the parameter of interest. Ghosh (1979) evaluated binomial confidence inter-
vals using three basic criteria: coverage, width and Neyman shortness. Neyman
shortness, known also as selectivity, is the propensity of a confidence set to cover
all false values of the parameter with relatively small probabilities. Adequate
coverage is to selectivity as Type I error is to Type II error. If selectivity is ig-
nored, confidence intervals may be chosen that are too wide in probability. Due
to the Ghosh-Pratt identity (Ghosh (1961), Pratt (1961)) for a given true param-
eter value, the probability of false coverage by a set equals the expected volume
of the set. This fact was used by Cohen and Strawderman (1973) in proposing
admissibility criteria and by Brown, Casella and Hwang (1995) in optimizing
confidence sets. Selectivity is usually ignored in confidence interval proposals
and evaluations; for example, by Blyth and Still (1983) and Vollset (1993). This
may be partly due to the fact that when it is considered, it is shown awkwardly
as a table of a few selected probabilities of false coverage, as in Ghosh (1979)
and Edwardes (1994). A coefficient (EV ), which is a weighted average over ex-
act expected volumes, is introduced below in order to summarize in one number
what is incompletely shown in separate tables or graphs of volume (width) and
Neyman shortness (selectivity).

In §3, a proposal for the evaluation of confidence sets is given, based on
average coverage, expected volume (EV ) and, for discrete intervals, minimum
coverage. In §4, the proposal is applied to previously recommended and new
binomial confidence intervals and the exact interval properties are discussed.

2. Definitions

It is possible for a confidence set to be disjoint, even when the parameter
space is not. As discussed by Blyth and Still (1983), it is possible for a disjoint set
to attain coverage and have smaller volume than the shortest binomial interval
that attains coverage. Non-disjointness is not required for our arguments, but is
assumed for the binomial application.

For simplicity, all confidence set bounds are assumed to be either within Θ,
the parameter space for the vector θ, or at limits of infinite sequences within
Θ. In the evaluation of confidence sets, therefore, the criteria that I propose are
to be applied to the sets after having been truncated so that they lie (almost)
within Θ.

Let X have distribution function F (·|θ). Say that a 100 × (1 − α)% non-
randomized confidence set C(x) is required for θ, given X= x is observed. The
corresponding inclusion probability is P (θεC(x)|x), which is simply I(θεC(x)),
an indicator function equal to one or zero, for a nonrandomized set. The volume
of C(x) with respect to Lebesgue measure is given by vol(C(x)) =

∫
Θ I(tεC(x))dt.

The expected volume is

Eθ(vol(C(X))) =
∫
Ω

vol(C(x))dF (x|θ), (1)
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given θ as the true value, where Ω is the sample space of X. This is an obvious
measure of size, given θ. The coverage probability of C(X) is

Pθ(θεC(X)) =
∫
Ω

I(θεC(x))dF (x|θ). (2)

Applying the Ghosh-Pratt identity, the expected volume (1) may be re-
expressed as

Eθ(vol(C(X))) =
∫
Θ

Pθ(θ′εC(X))dθ′. (3)

As an example, consider the problem of forming a confidence interval C(X)
for the binomial parameter p, the fixed probability of an event with parameter
space [0, 1], given a random sample of size n with x observed events. Then C(x)
is a formula in terms of x and n for the upper and lower limits of the interval,
U(x, n) and L(x, n), respectively. (For a one-sided interval, either U = 1 or
L = 0.) The volume is the width of the interval, and so the expected volume is

n∑
x=0

[U(x, n) − L(x, n)]
(

n
x

)
px(1 − p)n−x, (4)

given n and p. The coverage probability is

Pp[L(X, n) ≤ p ≤ U(X, n)] =
∑

x:pεC(x)

(
n
x

)
px(1 − p)n−x.

Applying the Ghosh-Pratt identity, the expected volume (4) may be re-expressed
as ∫ 1

0

∑
x:p′εC(x)

(
n
x

)
px(1 − p)n−xdp′ ,

thus illustrating the correspondence between expected volume and selectivity. Of
course, formula (4) is computationally easier.

The standard definition is that C(X) be the smallest interval satisfying the
standard requirement minθ Pθ(θεC(X)) ≥ 1−α, called attaining coverage. Given
Pθ(θεC(X)) ≥ 1 − α, Brown, Casella and Hwang (1995) seek to minimize (1) at
a selected value of θ, but their application is an unusual situation where such
a value is selected a priori. A problem with ordinary confidence sets with F
discrete is that the standard requirement leads to the ideal confidence interval
being selected on the basis of an unknown parameter. That is, for each θ, there is
a shortest C(X). An alternative coverage requirement (Santner and Duffy (1989))
is to attain average coverage

AC(C(X)) =
∫
Θ

Pθ(θεC(X))dH(θ) ≥ 1 − α,
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where H is a somewhat arbitrary d.f. (distribution function) that gives equitable
weight to all values θ. If Θ is bounded, H may be the uniform d.f. over Θ.

The solution for expected volume and selectivity proposed here is to integrate
(1) or (3) over Θ to obtain an Expected Volume coefficient (EV ):

EV (C(X)) =
∫
Θ

∫
Θ

Pθ(θ′εC(X))dθ′dH(θ),

where H is as described for AC. Although EV (C(X)) is an improvement in
summarizing, it still varies with fixed parameters such as sample size and α. For
the binomial parameter, it is more precisely written EV (C(X), α, n). (I write
EV (C(X), n) and AC(C(X), n) below for a specific n.) Thus, any evaluation of
binomial confidence intervals must still consider alternative values of n and α.
Unlike p, however, these are known parameters.

Choice of H. The expected volume criterion suggested by Brown, Casella and
Hwang (1995), formula 16 is EV (C(X)), described as a Bayesian criterion since
H can be an a priori parameter distribution. It is proposed here that H can be
simply a device to give equitable weight to all θ. Whenever H can be the uniform
d.f. over Θ (i.e., when Θ is completely bounded or compact), it should be. For
example, I use dH(p) = dp for the binomial p.

When Θ is not completely bounded, H should still somehow be equivalent
to uniform. My initial preference is to choose bounds within Θ in order to cre-
ate a bounded, compact sub-space and have AC and EV based on H uniform
in the sub-space. The criteria AC and EV may then be calculated at different
boundary values as the sub-space converges to Θ, in order to show either con-
vergence towards a limit or else the relationship between diverging criteria and
the changing boundary values.

The choice of H here has much in common with the on-going search for the
perfect non-informative prior (Bernardo and Smith (1994)), except that in this
application it is not sensible to require H to be invariant to transformation. If θ
is transformed, then a different confidence interval is the goal.

3. Proposal

Proposal for Confidence Set Evaluation: Over a family of alternative for-
mulas C(X) for sets C(x) in Θ, the most accurate confidence set formula is the one
with smallest EV (C(X)) for which AC(C(X)) ≥ 1 − α and minθ Pθ(θεC(X)) ≥
1 − α − kα, with k = 1/2.

Since the most accurate C(X) can be different when fixed parameters (e.g.,
α and n) differ, a thorough tabulation should be done of all three criteria by fixed
parameters. For example, I calculate the binomial MC(n) = minp Pp(pεC(X))
for α = 0.01, 0.05, 0.1 and ranges of n from 1 to 10, 000. Calculations are done for
every n in that range because F is discrete. This contrasts with the idea explored
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in Blyth and Still (1983) of just looking for limn→∞ MC(n) (which they show
does not converge to 1 − α, contrary to previous opinions). That just may not
be relevant when 30 < n < 100. The criteria AC and EV change smoothly as n
varies for the binomial problem, so these need not be calculated for every n. The
most accurate approximate C(X) for large n may well be different from that for
small n. A recommended interval, if it is to be the same C(X) over α = 0.01,
0.05, 0.1, may have to be a compromise, one whose properties are close to those
of the most accurate interval as α and n vary.

For F binomial or Poisson, I regard the requirement k = 1/2 to be conserva-
tive. Choosing k = 1 is liberal, though certainly not as liberal as simply attaining
average coverage. Choosing k = 0 is very conservative, and works against the
desirable minimization of expected volume. The value of k > 0 is irrelevant when
Pθ(θεC(X)) = 1 − α is always achievable, as when F is continuous, since then
AC(C(X)) = 1 − α.

For a thorough and definitive evaluation, the calculations should be exact.
When Pθ(θεC(X)) is difficult to compute, however, the average coverage and the
average volume over (uniform or H-based) simulations will likely be accurate
estimates of AC and EV , respectively. For discrete F , minθ Pθ(θεC(X)) is re-
quired, but the minimum based on monte-carlo i.e., randomly selected values of
θ and of fixed parameters can over-estimate the true minimum. For a rough com-
parison of confidence sets a monte-carlo minimum may suffice, but I cannot say
at this point what conditions are required for a simulation to yield an acceptable
estimate.

4. Applications to Binomial Intervals

4.1. Four exact intervals–with discussion

The current standard for an exact, two-sided nonrandomized binomial con-
fidence interval is Blyth and Still’s (1983) shortest exact interval. This is the
interval of minimum sum of n + 1 widths (i.e., from x = 0 to x = n) that attains
coverage for all values p, while satisfying four “desirable” properties (below).
Minimizing expected width seems a more pragmatic criterion, since it would give
less weight to less likely binomial data. Nevertheless, an interval which minimizes
the sum of widths will likely have a relatively small expected width. The reason
that the shortest exact interval is a notable improvement in being shorter than
the previous standard—the ubiquitous Clopper-Pearson (1934) exact interval—
is that it avoids the imposition of an extra requirement; stated roughly, equal
probability above and below the acceptance interval. That extra but unnecessary
requirement made the mathematics easier.

Another requirement avoided by Blyth and Still is unbiasedness, which is the
property Pp(p′εC(X)) ≤ Pp(pεC(X)) for all p, p′. Diagonal entries in a selectivity
table, such as ‘ Table 1, where p = p′, may be used to detect departure from
unbiasedness.
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Table 1. Neyman shortness (selectivity) comparison of three confidence in-
tervals: exact Binomial probabilities for 1 − α = 0.99 and n = 100

True p

0.05 0.1 0.3 0.5

False p′ β∗
L βS βS1 βL βS βS1 βL βS βS1 βL βS βS1

0.001 .0371 .0371 .0371 .0003 .0003 .0003 .0000 .0000 .0000 .0000 .0000 .0000

0.01 .4360 .4360 .4360 .0237 .0237 .0237 .0000 .0000 .0000 .0000 .0000 .0000

0.05 .9957 .9957 .9957 .7030 .7030 .7030 .0000 .0000 .0000 .0000 .0000 .0000

0.1 .9941 .9629 .9629 .9954 .9951 .9951 .0045 .0045 .0045 .0000 .0000 .0000

0.15 .4152 .3840 .5640 .9427 .9424 .9763 .1136 .1136 .1631 .0000 .0000 .0000

0.2 .0282 .0631 .0631 .5487 .6791 .6791 .5491 .6331 .6331 .0000 .0001 .0001

0.25 .0005 .0005 .0015 .1239 .1239 .1982 .9201 .9201 .9469 .0033 .0033 .0060

0.3 .0000 .0000 .0000 .0046 .0100 .0100 .9915 .9939 .9939 .0666 .0666 .0666

0.35 .0000 .0000 .0000 .0001 .0003 .0003 .9520 .9711 .9711 .3086 .3822 .3822

0.4 .0000 .0000 .0000 .0000 .0000 .0000 .7036 .7756 .7756 .6913 .7579 .7579

0.5 .0000 .0000 .0000 .0000 .0000 .0000 .0530 .0799 .0799 .9880 .9934 .9934

0.6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0003 .6913 .7579 .7579

* βL = Pp(p′εWL(−0.57)), βS = Pp(p′εSBS(r)), where 0.72 ≤ r ≤ 0.78 and βS1 = Pp(p′εSBS(0.86)).

Results for p = 0.5 and p′ = 0.5 + d are equal to the results for p′ = 0.5 − d.

I propose that two of Blyth and Still’s four “desirable” properties should be
enforced for binomial intervals and the other two should not be enforced. The
first two are (1) that the interval be equivariant and (2) not be disjoint. The de-
batable two are (3) that the interval have monotonicity in n and (4) monotonicity
in x. The first property retains the symmetry of the binomial problem. Equivari-
ance means that any joint substitution p → 1−p and x → n−x changes no values
or formulas. To not do so would be to give differential weight to different values
of p since the binomial F is unchanged with this substitution. The second prop-
erty I accept because it is an interval that is required, not just any type of region.
Monotonicity in n means that U(C(x), n+1) < U(C(x), n) and L(C(x), n+1) <
L(C(x), n). Monotonicity in x means that U(C(x), n) < U(C(x + 1), n) and
L(C(x), n) < L(C(x + 1), n). Although both of these properties are attractive,
their enforcement restricts the choice of formulas C(X) so that a most accurate
C(X) may be excluded. Casella’s (1986) algorithm for creating exact confidence
intervals will not work if inequality is not strict for properties (3) and (4). Is it
more important that C(X) be accurate over all p and x or that it be beautiful for
every p and x? Blyth and Still (1983) chose to impose (3) and (4), but not unbi-
asedness or equal probability tails. They state that their shortest exact interval
is approximately unbiased and the tails have approximately equal probability. I
propose that (3) and (4), as well as unbiasedness and equal property tails, be
regarded as attractive properties rather than necessary requirements. They will
tend to be satisfied anyway for more accurate C(X). It is useful to enforce such
properties when forming exact intervals, in order to reduce the choice of solutions
based on a set of requirements, as in Blyth and Still (1983) and Casella (1986).
Evaluation is another matter, however, which should be done on the basis of
overall accuracy.
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Despite the preceding, the most accurate (0.58 > k ≥ 0) binomial confidence
interval shown in this paper is Blyth and Still’s shortest exact interval (labelled
BSEXACT). This may be because the other intervals are all based on symmetric
tails. Unfortunately, this interval is not available at the 90% level or for n > 30.

Also shown are results for the Clopper-Pearson interval, labelled CPEXACT,
and the mid-P exact interval (Stone (1969), Miettinen (1985), Vollset (1993)), la-
belled MPEXACT. The interval usually labelled the exact binomial interval and
found in tables such as Fisher and Yates (1948) and Lentner (1982) is CPEX-
ACT. The interval herein labelled MPCXACT is MPEXACT for 0 < x < n and
CPEXACT when x = 0 or x = n, as advocated by Vollset (1993). The MPCX-
ACT interval is recommended specifically for α = 0.01 by Vollset (1994). Except
at x = 0, 1 or x = n − 1, n, these three intervals cannot be expressed in closed
form. The bound L is the minimum p ≤ x/n for which cpx +

∑n
j=x+1 pj ≥ α/2

and the bound U is the maximum p ≥ x/n for which cpx + 1−∑n
j=x pj ≥ α/2 ,

where pj = (n!/[j!(n − j)!])p j(1− p)n−j, j = 0, 1, . . . , n. For CPEXACT, c = 1.
For MPEXACT, c = 1/2. The computations can be done easily with software
that computes F distribution tails (Ling (1992)).

Thus, we have four “exact” intervals! This is an anomoly that is due to
imposing differing requirements on the tails which are not part of the definition
of a confidence interval. The MPEXACT and MPCXACT intervals actually
violate the standard requirement, as seen in Table 2. By the standard confidence
set definition MPEXACT and MPCXACT are not confidence sets!

Table 2. Minimum coverages ∗ for 99% Binomial intervals listed in order of
overall minimum

99% intervals MCm0 MCm1 MCm2 MCm3 MCm4 n at min MC(1000)% MC(10000)%

SBS(0.5) 96.61 97.60 97.59 97.56 97.55 1 97.55 97.55

WL(−0.3) 97.72 97.63 97.63 97.62 97.62 275 97.62 97.62

SBS(0.60) 97.80 98.08 98.07 98.05 98.04 1 98.04 98.04

SBS(0.62) 98.01 98.17 98.16 98.14 98.13 1 98.13 98.13

WL(−0.39) 98.04 98.03 98.04 98.04 98.05 14 98.06 98.06

MPEXACT 98.40 98.25 98.36 98.25 98.27 16 98.66 98.61

MPCXACT 98.62 98.34 98.37 98.38 98.40 16 98.66 98.63

WL(−0.5) 98.44 98.44 98.47 98.49 98.51 8 98.51 98.52

WL(−0.52) 98.51 98.51 98.55 98.56 98.58 8 98.58 98.59

SBS(0.72) 98.62 98.57 98.56 98.54 98.54 10000 98.54 98.54

WL(−0.57) 98.66 98.66 98.72 98.61 98.65 45 98.65 98.64

WL(−0.95) 99.00 98.77 98.77 98.67 98.74 43 98.86 98.86

SBS(0.78) 98.83 98.79 98.77 98.76 98.75 10000 98.75 98.75

SBS(0.86) 99.00 99.00 99.00 99.00 99.00 10000 99.00 98.99

BSEXACT 99.00 99.00 99.00

CPEXACT 99.19 99.03 99.02 99.00 99.00 67 99.00 99.00

* Minima found by search through values of p near confidence bounds, confirmed by systematic search at 5

decimal places. The n at min(imum) is over 10001 > n > 0, but some values of p > 0.12 were not checked

for n > 3000. MC(n)% = minp Pp(pεC(X)) × 100. MCmi = minnεAi
MC(n)% for i = 0, 1, 2, 3, 4, with

A0 = {n : 0 < n < 10}, A1 = {n : 9 < n < 21}, A2 = {n : 20 < n < 31}, A3 = {n : 30 < n < 101} and

A4 = {n : 100 < n < 1001}.
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4.2. Approximate binomial intervals

I describe here two very good formulas for the nonrandomized two-sided
binomial confidence interval: a score interval and a logit interval, both based on
a Normal approximation with corrections for continuity. The simplistic binomial
interval x/n ± z(p̂(1 − p̂)/n)1/2 has been shown by several authors, including
Ghosh (1979) and Vollset (1993) to be extremely inaccurate, even with continuity
correction (Blyth and Still (1983)). It is not even uniformly robust (Lehmann
and Loh (1990)). Therefore, I mention it no further except to say that usually
AC < 1 − α, k > 1 and it is still the most widely taught and used binomial
interval.

The score (or test-based) interval (Wilson (1927)) has been recommended
often over all alternative approximate intervals for the binomial parameter p.
Blyth and Still (1983), Santner and Duffy (1989) and Vollset (1993) specifically
recommend a modified score interval with continuity correction 1/2. The mod-
ification is the substitution of exact limits at x = 0, n and (Blyth and Still) at
x = 1, n − 1. The modified score interval proposed by Vollset differs from that
proposed by Blyth and Still in the limits for x = 0, 1, n − 1 and n. Edwardes
(1994) shows that these intervals do not come close to attaining coverage for
α = 0.01, even though they do so for α = 0.05 and 0.1. Because of that prob-
lem, Blyth and Still proposed for α = 0.01 the substitution of exact limits for
x = 0, 1, . . . , 14, n− 14, n− 13, . . . , n. However, the exact limits, if they are to be
from the shortest exact interval, have not been tabulated for n > 30. Some exact
lower limits have a simple, closed form at x = 0, 1, n − 1, n, and so I incorporate
those.

A modified score 100×(1−α)% confidence interval with continuity correction
cc and Normal critical point z is:

SBS(cc) :
(x ± cc) + z2

2 ± z
[
(x ± cc) − (x±cc)2

n + z2

4

]1/2

n + z2
,

except that for x = 0, the lower limit is zero; for x = n, the upper limit is one;
for x = 1, the lower limit is 1 − (1 − α)1/n and for x = n − 1, the upper limit
is (1 − α)1/n . The value z is the usual point exceeded by α/2 of the standard
Normal probability (e.g., z = 2.5758 for α = 0.01). The modified score interval
as defined by Blyth and Still is SBS(0.5). I consider alternative values for cc.

A Wald logit interval (Rubin and Schenker (1987), Vollset (1993)) has been
used to date either with or without a continuity correction cc = 1/2. The modified
Wald logit 100× (1−α)% confidence interval with continuity correction cc > −1
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and Normal critical point z is:

WL(cc) : 1 −
[
1 +

( x + cc

n − x + cc

)
exp

{
± z

( n + 2cc

(x + cc)(n − x + cc)

)1/2}]−1
,

for 0 < x < n, except that the lower limit is 1 − (1 − α)1/n for x = 1 and the
upper limit is (1 − α)1/n for x = n − 1. For x = 0, the lower limit is zero and
the upper limit is 1 − (α/2)1/n. For x = n, the upper limit is one and the lower
limit is (α/2)1/n. Thus, the Clopper-Pearson exact limits are used for x = 0 and
x = n, as suggested by Vollset.

All modified logit and score intervals for values of cc examined in this paper
satisfy Blyth and Still’s list of four desirable properties, with one exception: the
99% upper limits for WL(cc) with −0.6 < cc < −0.2 at x = 1 are larger than the
upper limits at x = 2, which violates the monotonicity in x property. This also
happens for WL(−0.95), for which also the 99% upper limit at x = 2 is larger
than the upper limit at x = 3 for n > 30, with the consequence of a longer than
desirable interval for x = 1, 2, n − 2, n − 1.

Computing the width of the score interval reveals that a larger value of cc

yields a wider confidence interval, a property not shared by the logit intervals.
For score intervals, therefore, minimizing the continuity correction minimizes the
width.

4.3. Computation

All calculations in Tables 1 to 5 are exact, not based on monte-carlo, and
computation is double precision (i.e., 16 digit accuracy). For both AC and EV ,
numerical quadrature of curves with very uneven surfaces is involved. Four digit
accuracy was accomplished for sample sizes up to 1,000 using subroutine NDIMRI
of Davis and Rabinowitz (1984) by integrating over formula (2) for AC with [0, 1]
divided into 1113 sub-intervals and over formula (4) for EV with 4 sub-intervals.
Computation time for EV at n = 1000 varied from 10 seconds to 68 seconds for
logit and the score intervals, using Micro-Soft Fortran, version 4.10 on a 66 MHz.
IBM 486 clone. Computation time of AC at n = 1000 varied from 36 seconds to
20 minutes, but did not exceed 44 seconds for three digit accuracy.

Tables 2 and 4 give MC(n) = minp Pp(pεC(X)) for value ranges of n up to
10, 000. Finding MC(n) is done quickly by taking advantage of the fact, pointed
out indirectly by Blyth and Still, that the Binomial coverage minima must be
found near p = U(X, n), L(X, n). For the intervals in our examples, the minima
for each n occur specifically at one of p = U + ε or p = L − ε for ε = 0 or a very
small number. I used ε = 10−9.
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Table 3. Average coverage and expected volume for 99% Binomial confidence
intervals∗

Sample size
99% intervals 10 18 19 20 30 45 100 200 1000
MPEXACT 0.995 0.993 0.993 0.993 0.992 0.992 0.991 0.990 0.990

0.581 0.452 0.441 0.431 0.358 0.295 0.200 0.142 0.0639
MPCXACT 0.996 0.994 0.994 0.994 0.993 0.992 0.991 0.991 0.990

0.589 0.455 0.444 0.434 0.359 0.296 0.200 0.142 0.0639
BSEXACT 0.995 0.994 0.994 0.994 0.993

0.578 0.458 0.448 0.439 0.363
WL(−0.30) 0.996 0.994 0.994 0.994 0.993 0.993 0.992 0.991 0.990

0.618 0.481 0.469 0.458 0.376 0.307 0.204 0.144 0.0640
WL(−0.50) 0.997 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990

0.632 0.490 0.478 0.466 0.381 0.310 0.205 0.144 0.0640
WL(−0.52) 0.997 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990

0.634 0.491 0.479 0.467 0.382 0.310 0.205 0.144 0.0640
WL(−0.57) 0.997 0.995 0.995 0.995 0.994 0.993 0.992 0.991 0.990

0.639 0.495 0.481 0.470 0.384 0.311 0.205 0.144 0.0640
CPEXACT 0.998 0.996 0.996 0.996 0.995 0.995 0.993 0.993 0.991

0.617 0.480 0.468 0.457 0.378 0.310 0.208 0.147 0.0648
SBS(0.5) 0.996 0.995 0.995 0.995 0.994 0.994 0.993 0.992 0.991

0.602 0.476 0.464 0.454 0.377 0.311 0.209 0.147 0.0649
SBS(0.72) 0.997 0.997 0.996 0.996 0.996 0.995 0.994 0.993 0.992

0.625 0.492 0.480 0.470 0.389 0.319 0.213 0.149 0.0653
SBS(0.86) 0.998 0.997 0.997 0.997 0.997 0.996 0.995 0.994 0.992

0.639 0.502 0.491 0.479 0.396 0.324 0.216 0.150 0.0656
WL(−0.95) 0.998 0.996 0.996 0.996 0.995 0.994 0.992 0.991 0.990

0.700 0.546 0.532 0.519 0.423 0.341 0.221 0.153 0.0657

* Each double line is a row of average coverages, AC(C(X), n), where C(X) is the confidence interval, followed
by a row of EV (C(X), n). BSEXACT is Blyth & Still’s shortest exact interval as given in Table 2.1.3 of
Santner & Duffy (1989). The intervals are listed in order of EV (C(X), 1000) (except by EV (C(X), 30) for
BSEXACT ). Shown ties in EV are only due to rounding, thus EV (WL(−0.52), n) > EV (WL(−0.5), n) at
n = 1000.

Table 4. Minimum coverages ∗ listed in order of minimum over all n > 5
90% intervals MCm0 MCm1 MCm2 MCm3 MCm4 n at min MC(1000)% MC(10000)%
MPEXACT 83.4 84.1 83.3 82.5 85.8 58 85.8 85.7
MPCXACT 83.4 84.7 84.2 85.7 85.8 9 85.8 85.7
WL(−0.5) 87.0 84.2 85.4 85.9 86.6 13 87.2 87.1
SBS(0.14) 79.9 84.8 86.4 86.7 86.6 1 86.6 86.6
SBS(0.15) 80.4 85.1 86.5 86.8 86.7 1 86.7 86.6
WL(0.11) 85.6 85.3 85.2 85.1 85.1 3138 85.1 85.1
WL(−0.43) 86.9 85.2 85.5 86.0 86.7 18 87.7 87.6
WL(−0.12) 86.6 85.7 86.1 86.5 86.8 17 87.5 87.7
WL(0.0) 86.5 86.0 86.2 86.6 86.3 17 86.3 86.3
SBS(0.27) 85.3 87.4 88.2 88.1 88.7 1 89.0 89.0
SBS(0.5) 90.0 90.0 90.0 90.0 90.0 2 90.0 90.0
CPEXACT 91.1 90.1 90.0 90.0 90.0 10000 90.0 90.0
95% intervals
MPEXACT 91.2 91.3 92.5 92.1 91.7 6 91.7 91.7
MPCXACT 92.8 92.1 92.5 92.1 92.6 35 92.8 92.7
SBS(0.24) 87.9 92.5 92.5 92.5 92.5 1 92.5 92.5
WL(−0.13) 92.6 92.5 92.5 92.5 92.6 25 92.6 92.6
WL(−0.62) 94.6 92.7 92.8 92.8 93.5 16 93.8 94.0
WL(−0.5) 94.6 92.9 92.8 92.8 93.6 21 94.1 93.9
WL(−0.27) 93.8 93.3 93.1 93.2 93.7 25 93.7 93.7
SBS(0.29) 89.4 93.1 93.1 93.1 93.1 1 93.1 93.1
WL(−0.25) 93.6 93.3 93.2 93.4 93.7 22 93.7 93.7
SBS(0.31) 89.9 93.3 93.3 93.3 93.3 1 93.3 93.3
SBS(0.41) 92.5 94.5 94.4 94.4 94.4 1 94.4 94.4
SBS(0.5) 94.5 95.0 95.0 95.0 95.0 1 95.0 95.0
BSEXACT 95.0 95.0 95.0
CPEXACT 95.3 95.1 95.1 95.0 95.0 10000 95.0 95.0

* See footnote of Table 2. Order is for n > 5 since SBS coverage is minimized at n = 1 and is low for 90%
intervals at n = 5. For listed 95% SBS intervals, the minimum over 1 < n < 10001 is at n = 10000.
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Table 5. Average coverage and expected volume ∗

Sample size

90% intervals 10 20 30 100 200 1000

MPEXACT 0.929 0.917 0.913 0.905 0.902 0.901

0.393 0.283 0.233 0.129 0.0912 0.0408

MPCXACT 0.937 0.922 0.916 0.906 0.903 0.901

0.403 0.286 0.234 0.129 0.0912 0.0408

WL(−0.50) 0.943 0.926 0.919 0.906 0.903 0.901

0.412 0.290 0.236 0.129 0.0912 0.0408

WL(−0.43) 0.942 0.926 0.919 0.907 0.904 0.901

0.410 0.289 0.236 0.129 0.0912 0.0408

WL(0.0) 0.935 0.922 0.916 0.907 0.904 0.901

0.402 0.287 0.235 0.129 0.0913 0.0408

WL(0.11) 0.933 0.920 0.915 0.906 0.904 0.901

0.400 0.287 0.235 0.129 0.0914 0.0409

SBS(0.15) 0.932 0.924 0.919 0.911 0.908 0.903

0.396 0.289 0.238 0.131 0.0924 0.0411

SBS(0.27) 0.944 0.934 0.929 0.917 0.912 0.906

0.414 0.299 0.245 0.133 0.0936 0.0413

CPEXACT 0.963 0.950 0.943 0.926 0.920 0.909

0.448 0.317 0.257 0.137 0.0957 0.0418

SBS(0.5) 0.962 0.950 0.943 0.927 0.920 0.910

0.446 0.318 0.258 0.138 0.0958 0.0418

95% intervals

MPEXACT 0.968 0.961 0.958 0.953 0.952 0.950

0.461 0.335 0.276 0.153 0.109 0.0486

MPCXACT 0.972 0.963 0.960 0.953 0.952 0.950

0.470 0.338 0.277 0.153 0.109 0.0486

WL(−0.13) 0.972 0.965 0.961 0.955 0.953 0.951

0.477 0.344 0.282 0.154 0.109 0.0487

BSEXACT 0.972 0.967 0.962

0.474 0.345 0.283

WL(−0.50) 0.977 0.968 0.964 0.955 0.953 0.951

0.492 0.349 0.284 0.154 0.109 0.0487

WL(−0.62) 0.979 0.969 0.964 0.955 0.953 0.951

0.501 0.353 0.286 0.154 0.109 0.0487

SBS(0.24) 0.971 0.966 0.964 0.958 0.956 0.953

0.470 0.346 0.285 0.157 0.111 0.0491

SBS(0.41) 0.979 0.973 0.970 0.963 0.959 0.955

0.493 0.359 0.295 0.160 0.112 0.0494

CPEXACT 0.984 0.977 0.973 0.965 0.961 0.955

0.508 0.366 0.299 0.161 0.113 0.0496

SBS(0.5) 0.982 0.976 0.973 0.965 0.961 0.955

0.504 0.366 0.300 0.162 0.113 0.0496

* See footnote of Table 3. The 95% WL results are in reverse order: EV (WL(−0.62), n) <

EV (WL(−0.5), n) < EV (WL(−0.13), n) for n > 199.

4.4. Comparison of evaluation tools

For illustration, in Figure 1 and Tables 1 to 3 are results for 99% binomial
intervals (α = 0.01). In Table 1 and Figure 1 are tools conventionally used for
comparison of intervals. Note that Table 1 is computed only for n = 100 and
most of Figure 1 is also for n = 100. In Tables 2 and 3 is the proposed evaluation.
Table 2 deals with all n up to 10,000. Table 3 is based on 9 values of n from 10
to 1,000.
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A good use of coverages graphs is illustrated in the comparisons among
WL(cc) of Figure 1. As cc varies, clearly the variation in coverage is for small p

in a region that gets smaller for larger n. The value cc = −0.57 is the point of
compromise at n = 100 where the minimum for very small p equals the minimum
at p = 0.05 and at p = 0.3, so that the bottom level of coverage is levelled
across the entire range of p. For SBS(cc), clearly the bottom level of coverage
moves up for most of the range of p as cc increases. This is likely true for all n

since, as Vollset (1993) demonstrates, rough coverage patterns hold as n varies;
but leveling coverage at n = 100 certainly does not lead to level coverage for
WL(−0.57) at n = 10.

Although coverage graphs can be compelling, it is not convenient to show
these for a variety of n. The shortcomings of the Neyman Shortness table are
worse, since it can only include a few values of θ and θ′, as in Table 1. A table of
volume (or width) is also awkward for evaluation. One way to summarize volume
calculations is to sum over all volumes, but this disregards unequal probabilities
of outcomes. The expected volume, (1), weights the sum by probability, but then
a value of θ must be selected. The EV summarizes expected volume by averaging
over all θ.

From a Bayesian point of view, EV (C(X)) is the expected volume assuming
θ has distribution H. From a non-Bayesian viewpoint, with H uniform, it is
a weighted average of all possible expected volumes, where weight is uniformly
applied over the entire range of Θ. Given no prior idea of the value of θ, this is
a fair summary measure. A possible competitor which does not require H is the
MS (Maximum Selectivity criterion):

MS(C(X)) = max
θ

∫
Θ

Pθ(θ′εC(X))dθ′ .

This may seem like a fair criterion at first glance. When applied to the binomial
parameter, however, it is quite useless. This is because most binomial confidence
intervals (cf. Figure 1) are highly erratic in their coverage behaviour for extreme
values of θ = p. The maximum (and the minimum) is usually found at p near 0
or 1, so that MS(C(X)) gives little weight to all moderate values of p.

An important point is illustrated in the comparison of WL(−0.95) to
SBS(0.86) in Table 3. Usually, as EV = EV (C(X), n) increases or decreases
then AC = AC(C(X), n) increases or decreases. Consequently, minimizing AC is
a potential replacement for minimizing EV in the evaluation proposal. However,
in Table 3 is shown AC(WL(−0.95)) < AC(SBS(0.86)) but EV (WL(−0.95)) >

EV (SBS(0.86)) for most values of n, illustrating that AC is no substitute for
EV . Furthermore, given the choice between a smaller AC and a smaller EV , the
latter choice is clearly preferable, given AC ≥ 1 − α.
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minimum minimum

WL(−.57) WL(−.57) for n = 10

p p

minimum minimum

SBS(.72) SBS(.72) for n = 10

p p

SBS(0.5) WL(−.30)

minimum minimum

p p

minimum

SBS(.86) WL(−.95)

p p

Figure 1. Coverage probability Pp(pεC(X)) for 99% binomial confidence in-
tervals with n = 100, except as indicated.



406 MICHAEL D. deB. EDWARDES

4.5. Results

Tables 2 and 3 are results for 99% binomial intervals (α = 0.01). Tables
4 and 5 are results for 90% and 95% intervals. Given the proposal, it is quite
possible that an exact interval based on a discrete F can be less accurate than
an approximate interval.

Looking at the exact intervals first, BSEXACT is clearly superior when avail-
able. For 0 ≤ k < 0.58, BSEXACT is the most accurate interval for n < 31 at the
95% and 99% levels. Tables 3 and 5 show MPEXACT and MPCXACT to be often
slightly shorter than BSEXACT, but Tables 2 and 4 show that neither interval
satisfies the k = 1/2 minimum coverage criterion, though they both satisfy the
liberal (k = 1) criterion. Both BSEXACT and CPEXACT satisfy the very con-
servative k = 0 criterion, but the EV of BSEXACT is smaller, and seems likely
to be closer to that of MPCXACT than that of CPEXACT for n > 30, and even
at n = 1000, the average length of CPEXACT is (.0418 − .0408)/.0408 = 2.5%
wider than that of MPCXACT at α = 0.1. Blyth and Still’s recommendation of
SBS(0.5) for n > 30 as a replacement for BSEXACT is questionable, now that
we can average expected width. A closer replacement appears to be WL(−0.5).

For the approximate intervals, continuity correction values cc chosen for logit
and score intervals in Tables 3 and 5 include those, to the closest hundreth, that
minimize EV at n = 10, 100 or 1, 000 while Pp(pεC(X)) ≥ 1−α−α/2 holds (i.e.
k = 1/2) for all n. For 99% WL (logit) intervals, the latter property is satisfied for
−1.0 < cc ≤ −0.52. For 99% SBS (score) intervals, it is satisfied for 0.72 ≤ cc.
Table 2 shows that WL(−0.52) and SBS(0.72) satisfy the k = 1/2 minimum
coverage criterion and that WL(−0.57) satisfies a more conservative k = 2/5
criterion, but SBS(0.5) does not even satisfy the liberal k = 1 criterion. Only
SBS(0.5) satisfies the k = 0 criterion at the 90% and 95% levels, but cc > 0.86 is
required at the 99% level. These k = 0 score intervals are clearly wider than the
competition, however. Roughly speaking, when cc = c1, c2 are chosen so that
minn MC(n) is about the same for SBS(c1) and WL(c2), WL(c2) is shorter for
n > 17 and SBS(c1) is shorter for n < 11. (Two alternative versions of SBS

are S and SC in Edwardes (1994). Vollset favoured S(0.5). By the evaluation
proposal, these are inferior to SBS, except at the 90% level.)

For the logit intervals, AC and EV converge quickly as n increases, so that,
for example, WL(0.11) is the most accurate 90% interval overall, but WL(−0.5)
becomes as accurate quickly. If one simple value need be chosen for all three
levels, WL(−0.5) will do. It satisfies the k = 1/2 minimum coverage criterion for
all n at the 95% level, for n > 18 at the 90% level and n > 60 at the 99% level.
Table 2 shows that it satisfies k = 0.56 for all n at the 99% level, and WL(−0.5)
is very close to WL(−0.52), the most accurate 99% logit interval.
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5. Conclusions and Discussion

Tables such as Tables 2 and 3, with EV in particular, are useful for evalu-
ating confidence intervals or sets. These summarize succinctly the information
conventionally obtained from coverage graphs and Neyman shortness tables and
they can consider the entire range of levels and sample sizes. They are therefore
less subject to omission bias due to editing. For F continuous, calculating min-
imum coverage is not required and estimates of AC and EV from simulations
suffice, which is what is usually done.

When a confidence set is based on a discrete distribution, choosing the very
conservative point of view (from the standard definition, in fact, of a confidence
set) that the minimum confidence coefficient should attain the desired coverage
level should be tempered by the knowledge that coverage could be excessive for
most of the range of θ. Indeed, the minimum could occur at such a sharp spike
in the coverage that it is virtually a point, and coverage can be much higher
for all other values of θ, as suggested by Figure 1. Does a confidence set which
attains coverage for all but a few points of Θ merit no consideration even when
AC(C(X)) ≥ 1−α and its expected volume is smaller than its competitors? The
view of several authors, such as Vollset (1993), is that such a confidence set can
be recommended, which contrasts sharply from the traditional view of Blyth and
Still (1983), who enforce the standard requirement. After all, Pθ(θεC(X)) = 1−α

is the ideal requirement, usually attainable when F is continuous. No direction
is implicit in the ideal. The direction of inequality in Pθ(θεC(X)) ≥ 1−α may be
acceptable to those who assume that one should be conservative to be safe when
uncertain. The classical (Clopper-Pearson 1934) exact binomial and Poisson
confidence intervals are larger on average than approximate intervals, because
they are required to attain coverage everywhere but attaining coverage is never
enforced for approximate intervals. Is a larger confidence set necessarily the safe
solution for all applications? Surely, a too-large interval may result in decision
inaction in applications. Is inaction correlated with safety? No!

Table 3 shows the values of AC to be high for small n. As long as AC ≥ 1−α,
lowering AC has smaller priority than lowering EV . Within the framework of
our evaluation proposal, however, there seems to be room for a better exact in-
terval. One way is to ignore minimum coverage altogether, in which case the
arbitrary choice of k would not be required, thus replacing consideration of min-
imum coverage with AC(C(X)) ≥ 1 − α. This may be too liberal. What if
Pp1(p1εC(X)) < 0.5 with α < 0.2 for one or more binomial values p1? This can
easily happen when AC ≥ 1 − α. Some statisticians would not be perturbed by
this, but many would. Since Pp(pεC(X)) = 1 − α is intended, departure from
that ideal should be minimized. The proposal k = 1/2 of §3 is a compromise.
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Two ideas that require further development are: (1) The choice of a non-
uniform H when Θ is not bounded may be avoided by having H uniform for
progressively receding imposed bounds. (2) In the presence of nuisance parame-
ters, one has the choice of computing AC and EV for various nuisance values or
of computing new coefficients by averaging AC and EV over the entire nuisance
range.

If one has an idea in advance that some values of θ are more likely than
others, a Bayesian approach (Bernardo and Smith (1994)) should be considered
for an interval based on a posterior distribution, as done by Rubin and Schenker
(1987). Of course, AC and EV can accomodate any prior distribution H(θ),
such as when greater weight should be given to, say, smaller values of θ = p, in
the evaluation of a C(X).

For a Binomial confidence interval, giving equal weight to all p, the most
accurate (0 ≤ k < 0.58) exact interval for n < 31 is Blyth and Still’s. Regret-
tably, it is presently unavailable for n > 30 or at the 90% level. Vollset (1994)
stated that the problem is the lack of an unambiguous algorithm for its com-
putation. Casella (1986) showed an explicit algorithm which yields a family of
exact intervals, including BSEXACT, which Casella recommends as the solution
that best corresponds to no a priori information. If one is prepared to accept
k = 1, then MPEXACT is the most accurate exact interval (except that BSEX-
ACT is still shorter at n < 5 for α = 0.05 and n < 11 for α = 0.01). The easily
computed approximate interval WL(−0.5) is a good compromise choice at all
levels for n > 18, and compares favourably to score intervals such as SBS(0.0)
or SBS(0.5) which previous authors have chosen as a best closed form interval.

Computer programs written in FORTRAN for computing coefficients are
available from the author, for a nominal fee. The coverage graphs were done
with the GAUSS computer package.
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