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Abstract: The estimation of quadratic functions of a multivariate normal mean is

an inferential problem which, while being simple to state and often encountered

in practice, leads to surprising complications both from frequentist and Bayesian

points of view. The drawbacks of Bayesian inference using the constant noninfor-

mative prior are now well established and we consider in this paper the advantages

and the shortcomings of alternative noninformative priors. We take into account

frequentist coverage probability of confidence sets arising from these priors. Lastly,

we derive some optimality properties of the associated Bayes estimators in the

special case of independent components under quadratic loss.
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1. Introduction

Given a normal vector x ∼ N (θ,Σ), with a known covariance matrix Σ, the
estimation of η = ‖θ‖2 is a situation for which the determination of a nonin-
formative prior is troublesome, as pointed out by Stein (1959). For instance,
the constant prior on θ (which is the Jeffreys prior here) leads to the definitely
suboptimal estimator of η,

δ0(x) = ‖x‖2 + tr(Σ),

which is uniformly dominated in terms of frequentist risk under squared error loss
by ‖x‖2 − tr(Σ). Several authors have addressed this estimation problem (under
weighted squared error loss) from a classical point of view, including Perlman
and Rassmussen (1975), Neff and Strawderman (1976), Saxena and Alam (1982),
Gelfand (1983), Chow (1987) and Kubokawa, Robert and Saleh (1993).

Following the reference prior approach proposed in Bernardo (1979), which
is designed to deal with nuisance parameters in noninformative settings, we con-
struct, in Section 2, two explicit (and competing) noninformative priors when η is
the parameter of interest. The particular case Σ = I was alluded to in Bernardo
(1979) (see also Fernandez (1982)) as an example where reference priors could
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provide reasonable answers in situations where marginalization paradoxes occur.
We compare, in Section 3, the behavior of these two reference priors with each
other and with the more naive prior, π(η) = 1/

√
η, which is the reference prior

when Σ = I. The appendix establishes the validity of these priors in terms of
posterior propriety. In the particular case when Σ = I, we study in Section 5 the
Bayes estimators associated with π(η) = ηc and show that the reference prior
estimator, which corresponds to c = −1/2, has certain optimality properties.

Sections 3 and 4 consider the frequentist confidence behavior of credible sets
arising from these reference priors. Starting with Welch and Peers (1963) and
Peers (1965), this has become a common way to study the properties of nonin-
formative priors. For Σ = I, Stein (1985) and Tibshirani (1989) (see also Ghosh
and Mukerjee (1992, 1993) and Datta and Ghosh (1995)) showed that the refer-
ence prior, π(η) = 1/

√
η, is a frequentist probability matching prior, in the sense

of yielding one-sided credible sets for η (of posterior probability 1 − α) which
have frequentist coverage of 1 − α up to O(n−1). For Σ �= I, we show that the
reference priors from Section 2 are not probability matching. However, obtaining
any probability matching priors for which the resulting posterior is proper is a
formidable task when p = 2, and a nearly impossible task for p ≥ 3. And, even
when one can be found, its coverage properties for small n are suspect, as we
show in a numerical example. Hence we feel that the practical advantages remain
with the reference priors.

The estimation of quadratic functions is of importance in many areas. In
astronomy, ‖θ‖2 arises in the measurement of a celestial object or as an indicator
of the accuracy of a measure. Kariya, Giri and Perron (1988) give examples
where the norm of the mean appears in the variance of the distribution. Finally,
let us mention the following predictive application: if xtθ is to be predicted, with
E[x] = µ and E[(x− µ)(x− µ)t] = Σ, we have E[xtθ] = µtθ and var(xtθ) = θtΣθ,
which involves a quadratic function of θ. Berger, Smith and Andrews (1995)
address this inferential problem in a car fuel economy study.

2. The Direct and Reverse Reference Priors

2.1. Preliminaries

Let x ∼ Np(θ,Σ). Of interest is inference concerning the parameter η = ‖θ‖2.
First, we can assume without loss of generality that Σ is a diagonal matrix,
diag(λ1, . . . , λp), even when we estimate θtQθ for any p.d. matrix Q. A repa-
rameterization of θ in polar coordinates (η, ϕ1, . . . , ϕp−1), i.e.

θ1 =
√
η cosϕ1,

θ2 =
√
η cosϕ2 sinϕ1,
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... (2.1)
θp−1 =

√
η cosϕp−1 sinϕp−2 · · · sinϕ1,

θp =
√
η sinϕp−1 · · · sinϕ1,

will be used to define the nuisance parameter ϕ = (ϕ1, ϕ2, . . . , ϕp−1). For this
set of parameters, the information matrix is given by

I(η, ϕ) = HΣ−1Ht =
[
i11 It

12

I12 I22

]
,

where i11 is a scalar and H is the Jacobian matrix

H =
D(θ1, . . . , θp)

D(η, ϕ1, . . . , ϕp−1)

=




cosϕ1/2
√
η cosϕ2 sinϕ1/2

√
η . . . sinϕp−1 . . . sinϕ1/2

√
η

−√
η sinϕ1

√
η cosϕ1 cosϕ2

√
η sinϕp−1 . . . cosϕ1

0 −√
η sinϕ2 sinϕ1 . . .

. . .

0 0
√
η cosϕp−1 . . . sinϕ1



.

Note also that H can be written

H =
[
At/

√
η√

ηB

]
,

where A ∈ R
p and B, a (p − 1) × p matrix, are both functions of ϕ only. By

convention, we denote by |H| the absolute value of the determinant of H.

2.2. The direct reference prior

The construction of the reference prior proceeds as follows, using the algo-
rithm in Berger and Bernardo (1992 a,b). First, the conditional distribution of
ϕ given η is πd(ϕ|η) ∝ |I22|1/2. Since Σ is diagonal, we get

I =

[
Ct/

√
η√

ηD

]
[A/

√
η

√
ηBt]

=

[
CtA/η (BC)t

DA ηDBt

]
, (2.2)

with obvious notations; thus, I22 = ηDBt and πd(ϕ|η) does not depend on η
(and, indeed, is a proper distribution). The marginal distribution of η is given
by

πd(η) ∝ exp
{

E

[
1
2

log
( |I|
|I22|

) ∣∣∣∣η
]}

,
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where E stands for expectation w.r.t. πd(ϕ|n). Clearly

|I| = CtA|DBt|ηp−2 +
p∑

i=1

(DA)iωiη
p−2,

|I22| = ηp−1|DBt|,

as shown by (2.2). Thus
|I|
|I22| ∝

1
η
.

Because πd(ϕ|η) is proper and does not depend on η, the following proposition
is immediate.

Proposition 2.1. The direct reference prior on (η, ϕ) is

πd(η, ϕ) =
|I22|1/2

η=1

η1/2
=

|I22|1/2

ηp/2
.

The reference posterior is

πd(η, ϕ|x) ∝ |I22|1/2

ηp/2
exp{−(x− θ)tΣ−1(x− θ)/2}, (2.3)

where θ = (θ1, . . . , θp) is given by (2.1).

The prior πn(η, ϕ) = η−1/2|H|η=1, i.e. πn(θ) = ‖θ‖−(p−1), which corresponds
to the case Σ = I, will be called the naive prior.

2.3. The reverse reference prior

Another reference prior, πr, can be constructed for this model; πr is called
the reverse reference prior because it considers the parameter of interest, η, and
the nuisance parameter, ϕ, in the reverse order during the derivation. We thus
condition first on the nuisance parameters in order to derive the distribution of
the parameter of interest. In this case, we have

I(ϕ, η) =
[
I22 I12
It
12 i11

]

and

i11 =
1
4η

(λ−1
1 cos2 ϕ1 + λ−1

2 sin2 ϕ1 cos2 ϕ2 + · · · + λ−1
p sin2 ϕ1 · · · sin2 ϕp−1).

Therefore, the distribution of η, conditional on ϕ and on any compact of R
∗
+, is

πr(η|ϕ) ∝ √
i11 ∝ 1/

√
η.
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The marginal reference distribution of ϕ is then

πr(ϕ) ∝ exp{E[(1/2) log(|I|/i11)|ϕ]},
where E stands for expectation w.r.t. πr(η|ϕ) on the compact. Noting that

|I|
i11

= ηp−1(
|I|
i11

)
∣∣∣
η=1

,

this marginal distribution is given by

πr(ϕ) ∝ exp
{
(1/2) log(|I|/i11)

∣∣∣
η=1

}
=
√
|I|/i11

∣∣∣
η=1

.

The following proposition follows directly.

Proposition 2.2. The reverse reference prior on (η, ϕ) is

πr(η, ϕ) =
|I|1/2

η=1√
η
√
i11
∣∣∣
η=1

and the associated posterior is

πr(η, ϕ|x) ∝ |I|1/2

√
i11ηp/2

exp{−(x− θ)tΣ−1(x− θ)/2}. (2.4)

Obviously, the two priors (direct and reverse) coincide when I12 = 0. In
particular, this is the case when Σ = Ip. We show in the appendix that the three
priors lead to proper posterior distributions.

3. Computational Issues

The reference priors, πd and πr, as well as the naive prior, πn, allow for
a rather straightforward numerical computation of the posterior distributions
through Gibbs and importance sampling. In fact, as distributions of θ (in the
natural parameterization), these three posteriors involve the expression

e−(x−θ)tΣ−1(x−θ)/2

‖θ‖p−1
, (3.1)

since

πd(θ|x) ∝
|I22|1/2

‖θ‖=1

‖θ‖
e−(x−θ)tΣ−1(x−θ)/2

|H|

=
|I22|1/2

‖θ‖=1

|H|‖θ‖=1

e−(x−θ)tΣ−1(x−θ)/2

‖θ‖p−1
,
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πr(θ|x) ∝ |I|1/2

|H|√i11
e−(x−θ)tΣ−1(x−θ)/2

‖θ‖p

∝ 1
√
i11
∣∣∣‖θ‖=1

e−(x−θ)tΣ−1(x−θ)/2

‖θ‖p−1
,

πn(θ|x) ∝ e−(x−θ)tΣ−1(x−θ)/2

‖θ‖p−1
,

and |I| = |H|2/|Σ|. This decomposition suggests the following simulation lemma.

Lemma 3.1. Posterior expectations E
π[h(θ)|x] with respect to one of the three

reference priors can be approximated by providing a simulated sample from (3.1)
and using, as importance sampling weights, the quantities

ωd(θ) =
|I22|1/2

‖θ‖=1

|H|‖θ‖=1
, ωr(θ) =

‖θ‖√
i11

=
1√

i11
∣∣‖θ‖=1

and ωn(θ) = 1.

Proof. Usual importance-sampling arguments can indeed be invoked in this case
since the weights are bounded. For the reverse reference prior, we have from (2.5)( √

i11
∣∣∣‖θ|=1

)−1 ≤ 2 sup
i

√
λi.

The case of the direct reference prior is slightly more intricate. Following the
representation I = HΣ−1Ht, note that we can write I22 under the form I22 =
H1Σ−1Ht

1, where H1 is a (p−1)×p matrix such that Ht = (ht
0,H

t
1). Now, for η =

1, |H| = | sinp−2 ϕ1 · · · sinϕp−2| = |∆|, where ∆ = diag(1, | sinϕ1|, | sinϕ1 sinϕ2|,
. . . , | sinϕ1 sinϕ2 · · · sinϕp−2|). Hence, for η = 1,

∆−1H1

=



− sinϕ1 cosϕ1 cosϕ2 cosϕ1 · · · cosϕp−1 cosϕ1 · · · sinϕp−1

0 ∓ sinϕ2 ± cosϕ2 · · · cosϕp−1 ± cosϕ2 · · · sinϕp−1

. . .

0 0 ∓ sinϕp−1 ± cosϕp−1


 .

Therefore, |I22|1/2/|H| = |(∆−1H1)Σ−1(Ht
1∆

−1)|1/2 is indeed bounded.

For later reference, note that, when λ2 = · · · = λp = 1, the weights are

ωd =
√

cos2 ϕ1 + λ−1
1 sin2 ϕ1, ωr =

{
λ−1

1 cos2 ϕ1 + sin2 ϕ1

}−1/2
,

since

I22 =




cos2 ϕ1 + λ−1
1 sin2 ϕ1 0 0

0 sin2 ϕ1 0
. . .

0 sin2 ϕ1 · · · sin2 ϕp−2


 .
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One incentive for using importance sampling is that the three posterior distribu-
tions can be evaluated from the same sample, generated from (3.1). Note that
the Metropolis algorithm could also be used in this setup with (3.1) as a pro-
posal distribution, since the weights are bounded and this property guarantees
geometric convergence (see Mengersen and Tweedie (1996)).

A sample θ1, . . . , θm from (3.1) can be obtained by Gibbs sampling using the
following ‘hidden mixture’ representation:

π(θ|x) =
∫ +∞

0
π(θ, z|x)dz,

with

π(θ, z|x) ∝ e−(x−θ)tΣ−1(x−θ)/2e−‖θ‖2zz(p−1)/2−1

∝ exp
{
− 1

2
(θ−(Σ−1+2zI)−1Σ−1x)t(Σ−1+2zI)(θ−(Σ−1+2zI)−1Σ−1x)

}
z

p−1
2

−1.

The full conditional distributions are then easily available; indeed

π(z|θ, x) is Ga((p − 1)/2, ‖θ‖2), (3.2)

π(θ|z, x) is N
(
(Σ−1 + 2zI)−1Σ−1x, (Σ−1 + 2zI)−1

)
, (3.3)

and simulation from both distributions is straightforward, especially when Σ
is diagonal. The Gibbs sampler then produces a sample (θ1, z1), . . . , (θt, zt) by
successive simulations from (3.2) and (3.3), and the chain (θt) converges to (3.1)
in distribution (see, e.g., Robert (1994)).

Lemma 3.1 provides the correction weights ωd and ωr for both reference
priors and allows us to use the same sample θ1, θ2, . . . from the naive prior. One-
sided α–credible regions for η are then easily constructed for the three priors and
their frequentist coverage can be evaluated by regular Monte Carlo simulation.
For instance, Figure 3.1 illustrates the behavior of the different priors when p = 2
and λ2 = 1, for different values of θ1, θ2, and λ1. Small values of the θi and λ1

show a clear domination of both reference priors over the naive prior for most
values of α. It is only when α gets close to 1 that the reference credible regions are
less satisfactory, the nominal coverage probability being too pessimistic. When
the θi and λ1 are large enough, the coverage properties of both reference priors are
uniformly very good and slightly dominate those of the naive prior. In addition,
comparison between the direct and reverse reference priors turns slightly in favor
of the reverse prior. There are, however, cases where the frequentist coverage
properties of the three priors are very poor: this occurs for small values of the
θi when λ1 is large. In these cases, the three priors behave similarly and the
nominal coverage probability is too optimistic.
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Figure 3.1. Nominal versus true coverage probabilities of the one-sided α

credible set for η when p = 2 and λ2 = 1, for different values of (θ1, θ2, λ1).
(The frequentist probability matching prior is discussed at the end of Section
4.) The Gibbs sample is of size 5000 and the Monte Carlo evaluation of the
coverage is based on 2000 replications.
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4. Asymptotically Optimal Coverage

Recent developments in the noninformative prior literature have considered
the frequentist coverage properties of various classes of improper priors in or-
der to determine priors such that one-sided posterior α credible sets for η have
also approximately α frequentist coverage; such priors are often called frequentist
probability matching priors. References for this approach are Welch and Peers
(1963), Peers (1965), Stein (1985), Tibshirani (1989), Ghosh and Mukerjee (1992,
1993), and Datta and Ghosh (1995) (see also Berger and Bernardo (1992b)). In
particular, from Peers (1965) (see also Stein (1985), and Tibshirani (1989)) it
immediately follows that, if θ = (η, ω) corresponds to an orthogonal parameter-
ization of θ (in the sense that the Fisher information matrix is block diagonal),
with η a scalar, then priors in the class

π(η, ω) ∝ g(ω)|Iηη(η, ω)|1/2 (4.1)

lead (asymptotically in the sample size) to the proper frequentist coverage be-
havior for one-sided credible sets for η. In (4.1), Iηη denotes the sub-matrix
of I(η, ω), the Fisher information matrix, which corresponds to the parameter
of interest, η. Note that, under the orthogonality assumption, I(η, ω) can be
written

I(η, ω) =

[
Iηη(η, ω) 0

0 Iωω(η, ω)

]
. (4.2)

It is easy to see from (4.2) why the reference prior approach does not necessar-
ily lead to a distribution satisfying (4.1). Note that the Jeffreys prior associated
with (4.2) is

πJ(η, ω) ∝ |Iηη(η, ω)|1/2 |Iωω(η, ω)|1/2 ,

which satisfies (4.1) only if Iωω does not depend on η. A very interesting fact,
however, is that a reference prior considering the order η–ω, i.e. a reverse reference
prior, leads to

πr(η, ω) ∝ πr(ω) |Iηη(η, ω)|1/2 , (4.3)

which satisfies (4.1).
Unfortunately, the use of priors satisfying (4.1) calls for an orthogonal pa-

rameterization of θ in (η, ω). This is not always possible (see Cox and Reid
(1987)) and, moreover, when ω is multidimensional, the solution of Iηω = 0, i.e.
of several partial differential equations, is typically infeasible. In the following,
we consider only the case p = 2 and show that the reference priors do not qual-
ify as frequentist matching priors, although their coverage properties are usually
acceptable, as shown by the earlier simulation.
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Let (η, ω) be in one-to-one correspondence with (θ1, θ2). If ω(i) denotes
∂ω/∂θi (i = 1, 2), the Jacobian matrix is

D(η, ω)
D(θ1, θ2)

=
[

2θ1 2θ2
ω(1) ω(2)

]

and the Fisher information is given by

I(η, ω) =

[
ω(2) −ω(1)

−2θ2 2θ1

]
Σ−1

4(ω(2)θ1 − ω(1)θ2)2

[
ω(2) −2θ2
−ω(1) 2θ1

]

=
1

4(ω(2)θ1 − ω(1)θ2)2

[
ω2

(2)λ
−1
1 + ω2

(1)λ
−1
2 −2(ω(2)θ2λ

−1
1 +ω(1)θ1λ

−1
2 )

−2(ω(2)θ2λ
−1
1 + ω(1)θ1λ

−1
2 ) 4(θ2

2λ
−1
1 + θ2

1λ
−1
2 )

]
.

Moreover, the orthogonality requirement leads to the partial differential equation

λ2ω(2)θ2 + λ1ω(1)θ1 = 0, (4.4)

which is satisfied only by functions of the form

ω = ψ

(
|θ1|λ2

|θ2|λ1

)
(4.5)

in each quadrant of R
2.

Note that (4.5) implies

ω(1) = ψ′( |θ1|λ2

|θ2|λ1

) |θ1|λ2

|θ2|λ1

λ2

θ1
and ω(2) = ψ′( |θ1|λ2

|θ2|λ1

) |θ1|λ2

|θ2|λ1

−λ1

θ2
.

Therefore, the prior distributions in (4.1) are of the form

πo(η, ω) ∝ g(ω) |Iηη(η, ω)|1/2 ∝
√
λ2ω2

(2) + λ1ω2
(1)

2|ω(2)θ1 − ω(1)θ2|
g(ω)

∝ g(ω)

√
λ2λ2

1/θ
2
1 + λ1λ2

2/θ
2
2

|λ2θ2/θ1 + λ1θ1/θ2| ∝ g(ω)√
λ1θ2

1 + λ2θ2
2

.

In terms of (θ1, θ2), this gives the following family of priors:

πo(θ1, θ2) ∝ g(ω(θ1, θ2))
1√

λ1θ2
1 + λ2θ2

2

|ω(2)θ1 − ω(1)θ2|

∝ g(ω(θ1, θ2))
1√

λ1θ2
1 + λ2θ2

2

∣∣∣ψ′( |θ1|λ2

|θ2|λ1

)∣∣∣ |θ1|λ2

|θ2|λ1

∣∣∣λ1
θ1
θ2

+ λ2
θ2
θ1

∣∣∣

∝ h(ω(θ1, θ2))

√
λ1θ2

1 + λ2θ2
2

|θ1θ2| . (4.6)
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The reference priors developed in §2.2 and §2.3 do not satisfy (4.6) and,
therefore, are not “acceptable” under the frequentist probability matching crite-
rion.

Lemma 4.1. The direct and reference priors cannot be written in the form (4.6),
unless Σ ∝ I.

Proof. (a) The direct reference prior is given by

πd(θ1, θ2) = |I22|1/2 /‖θ‖2 =
√
λ−1

1 θ2
2 + λ−1

2 θ2
1/‖θ‖2.

Were πd of the form (4.6), there would exist a function h such that
√
λ1θ

2
1 + λ2θ

2
2 h
(
|θ1|λ2/|θ2|λ1

)
/|θ1θ2| =

√
λ−1

1 θ2
2 + λ−1

2 θ2
1/‖θ‖2,

i.e.

h
( |θ1|λ2

|θ2|λ1

)
=

|θ1θ2|
‖θ‖2

=
( |θ1|
|θ2| +

|θ2|
|θ1|

)−1
= t
( |θ1|
|θ2|

)
.

This is impossible, unless λ1 = λ2.
(b) In the same way, if (4.6) was satisfied by πr, there would exist a function

h such that√
λ1θ2

1 + λ2θ2
2 h
(
|θ1|λ2/|θ2|λ1

)
/|θ1θ2| =

1√
λ−1

1 θ2
1 + λ−1

2 θ2
2

,

i.e.

h
( |θ1|λ2

|θ2|λ1

)
=

|θ1θ2|√
λ1θ2

2 + λ2θ2
1

√
λ1θ2

1 + λ2θ2
2

= t
( |θ1|
|θ2|

)
. (4.7)

Again, (4.7) cannot be satisfied unless λ1 = λ2.

When λ1 �= λ2, it is difficult to find a prior of the form (4.6) for which the
posterior is proper. A lengthy search uncovered the following solution. Choose
ψ to be the identity function in (4.5), so that w = |θ1|λ2/|θ2|λ1 . Then, in the
second line of (4.6), choose

g(w) = w
( 1

λ2
−1)

/[(1 + w
1

λ2 )(1 + (log w
1

λ2 )2)],

where we assume, w.l.o.g., that λ1 ≤ λ2. Then the last line of (4.6) can be
written (defining γ = λ1/λ2)

π0(θ1, θ2) ∝ [1 + γθ2
1/θ

2
2]

1/2

(|θ1| + |θ2|γ)[1 + (log |θ1| − γlog |θ2|)2] . (4.8)
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As proved in Appendix A.3, this frequentist probability matching prior leads
to a proper posterior distribution. Figure 3.1 shows, however, that the perfor-
mance of this prior is inferior to that of the reference priors for the cases con-
sidered. Given this poor small sample (n = 1) performance and the difficulty of
finding a usable probability matching prior, even for p = 2, the clear edge would
seem to lie with the reference prior methodology here.

5. The Particular Case of the Identity Matrix

When Σ is the identity matrix, Ip, it is possible to provide a closed form
expression for the Bayes estimator, E

π[η|x]. In this case, the three reference priors
discussed above (naive, direct and reverse) are identical and equal to πr(η, ϕ) =
η−1/2|H|η=1.

Proposition 5.1. The Bayes estimator associated with the prior πc(η, ϕ) =
|H|η=1η

−c (c < 1) under squared error loss is

δπ
c (x) = 2(1 − c)1F1(2 − c; p/2; ‖x‖2/2)

1F1(1 − c; p/2; ‖x‖2/2)
, (5.1)

where 1F1 is the confluent hypergeometric function.

Proof. Denote z = ‖x‖2. Then, z ∼ χ2
p(η) and

δπ
c (z) =

∫ +∞
0 η(z/η)(p−2)/4e−(z+η)/2I p−2

2
(
√
zη)η−cdη∫ +∞

0 (z/η)(p−2)/4e−(z+η)/2I p−2
2

(
√
zη)η−cdη

,

where Iν denotes the modified Bessel function (see Abramowitz and Stegun
(1964), or Gradshteyn and Ryzhik (1980)). We have∫ +∞

0
(z/η)(p−2)/4e−(z+η)/2I p−2

2
(
√
zη)η−cdη

∝
∫ +∞

0
η−qe−η/2I p−2

2
(
√
zη)dη where q = (p− 2 + 4c)/4

∝
∫ +∞

0

u−2q

z−q
e−u2/2zI p−2

2
(u)udu

= zq
∫ +∞

0
u1−2qe−u2/2zI p−2

2
(u)du

= zq
Γ
(

p−2
4 + 1 − q

)
Γ(p/2)2p/2

(
1/
√

2z
)2−2q+(p−2)/2 1F1

(
p− 2 + 4 − 4q

2
; p/2; z/2

)

(Gradshteyn and Ryzhik (1980))

= z(p+2)/4 Γ(1 − c)
Γ(p/2)2p/2(1/2)1−c 1F1 (1 − c; p/2; z/2) .
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Therefore,

δπ
c (z) =

z(p+2)/4Γ(2 − c)21−(c−1)

z(p+2)/4Γ(1 − c)21−c

1F1(2 − c; p/2; z/2)
1F1(1 − c; p/2; z/2)

= 2(1 − c)1F1(2 − c; p/2; z/2)
1F1(1 − c; p/2; z/2)

.

We are thus able to directly compute the Bayes estimator in this case. (Note
that the confluent hypergeometric function is now implemented in most packages,
including Mathematica and Maple. For instance, Figure 5.1, which gives δπ

c for
several values of c, is obtained by Maple.) The expression (5.1) also leads to the
following asymptotic approximation to δπ

c :

00
00

10

10

20

20

30

30

40

40 50

c=−0.1

c=0.9

p = 10

Figure 5.1. Graphs of δπ
c for c = −0.1, 0, · · · , 0.9 and p = 10.

Corollary 5.2. As z = ‖x‖2 goes to infinity, δπ
c (z) = z − (p+ 4c− 4) + o(1).

Proof. It follows from Abramowitz and Stegun (1964) that

1F1(d; p/2; z/2) � Γ(p/2)
Γ(d)

ez/2(z/2)d−(p/2)
(
1 +

(1 − d)(p/2 − d)
(z/2)

)
.

Thus,

1F1(2 − c; p/2; z/2)
1F1(1 − c; p/2; z/2)

� Γ(1 − c)
Γ(2 − c)

(z/2)2−c−(1−c) 1 + (2(c− 1)(p/2 + c− 2)/z)
1 + (2c(p/2 + c− 1)/z)

and

δπ
c (z) � z

(
1 + 2

(c− 1)(c − 2 + (p/2))
z

)(
1 − 2

c(c − 1 + (p/2))
z

)
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� z
(
1 + 2

(c− 1)(c − 2 + (p/2)) − c(c− 1 + (p/2))
z

)
= z − 2(2c− 2 + (p/2)).

It is of interest to consider the frequentist risk of δπ
c under squared error loss

and for large values of η. Indeed, using Corollary 5.2 it can be shown that, for
large η,

Eη(δπ
c (x) − η)2 � 2p+ 4η + 16(c − 1)2.

Hence it would appear that c = 1 is an attractive choice. However, the posterior
resulting from this choice is not proper, so that δπ

1 is not even defined. Further-
more, it is natural here to consider a weighted loss such as (δ(x)− η)2/(2p+ 4η),
and for this loss it can be shown that π0(η, ϕ) = 1 (i.e., c = 0) is optimal for
large η. Not only is the reference prior (c = 1/2) intermediate between these two
extremes, but the resulting Bayes rule can be shown to be optimal for large η
under the “intermediate” loss (δ(x) − η)2/

√
2p+ 4η.
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Appendix

A.1. The naive prior results in a proper posterior

According to (3.1), the posterior for the naive prior is proportional to

g(θ) = ‖θ‖1−p exp
{
− (x− θ)tΣ−1(x− θ)/2

}
.

Consider the polar coordinates of θ as in §2.1; then θ =
√
η α = r α with α

= (α1(ϕ), . . . , αp(ϕ)) = (α1, . . . , αp). The associated Jacobian is ∆p = rp−1

· sinp−2(ϕ1) · · · sin(ϕp−2). Therefore,∫
Rp
g(θ)dθ =

∫
Φ

∫
R+

∆p exp
{
− (x− rα)′Σ−1(x− rα)

}
r1−p dr dϕ

=
∫
Φ

sinp−2(ϕ1) · · · sin(ϕp−2)
∫

R+
exp

{
−(x− rα)′Σ−1(x− rα)

}
dr dϕ.

Denoting < α, x >= α′Σ−1x and N(α) =< α,α >, we get∫
R+

exp
{
− (x− rα)′Σ−1(x− rα)/2

}
dr
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=
∫

R+
exp

{
− (N(x) − 2r < α, x > +r2N(α))/2

}
dr

= exp{−N(x)/2}
∫

R+
exp

{
− N(α)

2
(−2r

< α, x >

N(α)
+ r2)

}
dr

= exp{−N(x)/2} exp
{< α, x >2

2N(α)

} ∫
R+

exp
{
−N(α)(r − < α, x >

N(α)
)2
}
dr

≤ exp{−N(x)/2} exp{< α, x >2 /2N(α)}
√

2π
N(α)

,

which implies

∫
Rp
g(θ)dθ≤Ie−N(x)

∫
Φ

sinp−2(ϕ1) · · · sin(ϕp−2) exp
{< α, x >2

N(α)

}
(N(α))−1/2dϕ,

(A.1)
where I is a constant. Since α is on the unit sphere,

0 < inf
i≤p

λ−1
i ≤ N(α) ≤ sup

i≤p
λ−1

i <∞.

Therefore (A.1) is bounded and the posterior is proper.

A.2. The reverse and direct reference priors result in proper posteriors

Since, according to Lemma 3.1,

πd(θ|x) ∝ ωd(θ)g(θ) and πr(θ|x) ∝ ωr(θ)g(θ),

with ωr(θ) and ωd(θ) bounded, the posterior distributions associated with both
direct and reverse reference priors are proper.

A.3. The frequentist probability matching prior results in a proper
posterior

We want to prove that
∫ +∞

−∞

∫ +∞

−∞
exp{−1

2
[λ−1

1 (x1 − θ1)2 + λ−1
2 (x2 − θ2)2]} π0(θ1, θ2)dθ1dθ2 <∞.

For simplicity, we only integrate over θ1 > 0 and θ2 > 0. Note that, since λ1 ≤ λ2,

[λ1θ
−2
2 + λ2θ

−2
1 ]

1
2 ≤ λ2[θ−1

1 + θ−1
2 ]. (A.2)

It is immediate that π0(θ1, θ2) ≤ λ2 for θ2 > 1, so the integral is clearly finite
over this region. For θ2 < 1,

(θ1 + θγ
2 )−1 ≤ (θ1 + θ2)−1,
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which together with (A.2) implies that

π0(θ1, θ2) ≤ λ2

θ2[1 + (log θ1 − γ log θ2)2]
.

Thus ∫ ∞

0

∫ 1

0
exp

{−1
2λ1

(x1 − θ1)2 − 1
2λ2

(x2 − θ2)2
}
π0(θ1, θ2)dθ1dθ2

≤ λ2

∫ ∞

0

∫ 1

0
e−(x1−θ1)2/2λ1

1
θ2[1 + (log θ1 − γ log θ2)2]

dθ2dθ1.

Defining ξ = log θ2 and changing variables yields the equivalent integral

λ2

∫ ∞

0

∫ 0

−∞
e−(x1−θ1)2/2λ1

1
[1 + (log θ1 − γξ)2]

dξdθ1,

which is clearly finite.
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France.

E-mail: philipe@alea.univ-lille1.fr

Laboratoire de Statistique, CREST-ENSAE, Timbre J340, 92241 Malakoff Cedex-France.

E-mail: robert@ensae.fr

(Received April 1996; accepted May 1997)


