
Statistica Sinica 8(1998), 571-587

THE EDGEWORTH EXPANSIONS AND SMOOTHED

BOOTSTRAP APPROXIMATION FOR THE

STUDENTIZED KAPLAN-MEIER ESTIMATOR

Qihua Wang and Zhongguo Zheng

Peking University

Abstract: In this paper, the asymptotic accuracies of the one-term Edgeworth ex-

pansions and the smoothed bootstrap approximation for the studentized Kaplan-

Meier (KM) estimator are investigated, respectively. It is shown that the Edgeworth

expansions and the smoothed bootstrap approximation are asymptotically close to

the exact distribution of the KM estimator with a remainder o(n− 1
2 ) under some

mild conditions. A simulation study has been used to compare the asymptotic

performance of the Edgeworth expansion with that of smoothed bootstrap and

unsmoothed bootstrap.
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1. Introduction

Let T1, . . . , Tn be nonnegative independent random variables with common
continuous distribution function F . In the right random censoring model, as-
sociated with each Ti there is an independent nonnegative censoring time Ci,
and here C1, . . . , Cn are assumed to be i.i.d. random variables with continuous
distribution function G. The observations in this model are the pairs (Zi, δi),
where Zi = min(Ti, Ci) and δi = I[Ti ≤ Ci], i = 1, . . . , n. Clearly, the Z1, . . . , Zn

are i.i.d. with continuous distribution function H = 1 − (1 − F )(1 − G). Let
Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the ordered Z ′

is and δ(i) be the δ corresponding to
Z(i). The Kaplan-Meier (KM) estimator of the survival function F̄ (t) = 1−F (t)
is defined as ̂̄Fn(t) =

∏
i:Z(i)≤t

(
n− i

n− i+ 1

)δ(i)
I[Z(n) > t]. (1.1)

The asymptotic properties of ̂̄F n have been investigated by many authors, (see,
for example, Breslow and Crowley (1974), Földes and Rejtö (1981), Földes (1981),
Phadia and Van Ryzin (1980), Wang (1987), Zheng (1989)). Csörgö and Horváth
(1983) proved its strong uniform consistency and obtained the convergence rate.
Lo and Singh (1986) established the i.i.d. representation of the KM estimator
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with remainders, and gave a bootstrap version of the representation. Recently
Chang and Rao (1989) and Chang (1990) derived a Berry-Essen bound and
established an Edgeworth expression with a remainder o(n−

1
2 ), respectively, for

the standard Kaplan-Meier estimator
√
n( ̂̄F n− F̄ )/σ, where σ2 is the asymptotic

variance of
√
n( ̂̄Fn − F̄ ).

In the present paper, we pursue Edgeworth expansion of the distribution
of the studentized KM estimator

√
n( ̂̄Fn − F̄ )/σ̂nJ , where σ̂2

nJ is the Jackknife
estimator of the variance of

√
n ̂̄F derived by Singh and Liu (1990). This result is

used to investigate the asymptotic accuracy of the estimated Edgeworth expan-
sion and the smoothed bootstrap approximation. The main results are stated
in section 2 and are proved in section 4. A simulation study was performed to
compare their performances in Section 3. One will see that the results can be
used to construct point-wise confidence intervals of the survival function F̄ (t).

Let Q̄ = 1−Q,Q−1 = 1
Q for any function Q, and let us define H̄ = F̄ Ḡ, H̄n =

n−1 ∑n
i=1 I[Zi > t], H̃1 = P (Z1 > t, δ1 = 1), H̃n1(t) = n−1 ∑n

i=1 I[Zi > t, δi =
1], H̃2(t) = P (Z1 > t, δ1 = 0), H̃n2 = n−1 ∑n

i=1 I[Zi > t, δi = 0], σ2
0 = F̄−2σ2. By

Chang (1990) the asymptotic variance σ2 is given by σ2 = −F̄ 2(t)
∫ t
0 H̄

−2 dH̃1.

2. The Main Results

Throughout this paper, we suppose the supports of F and G are [0,∞).

Let ̂̄F (−i)

n be the Kaplan-Meier estimator based on {(Z1, δ1), . . . , (Zn, δn)} −
{(Zi, δi)}. The stochastic process of pseudo-values can be defined as

Jni = n ̂̄Fn(t) − (n− 1) ̂̄F (−i)

n (t), t ≥ 0, 1 ≤ i ≤ n. (2.1)

By Singh and Liu (1990), the Jackknife estimate for σ2 is

σ̂2
nJ = n−1

n∑
i=1

(Jni − J̄n)2, (2.2)

where J̄n = n−1 ∑n
i=1 Jni. The Edgeworth expansions for the studentized KM

estimator
√
n( ̂̄F n − F̄ )/σ̂nJ are established in the following Theorem 1 and The-

orem 2.

Theorem 1. Assuming that F and G are continuous, we have, as n→ +∞,

sup
x

|P
(√

nσ̂−1
nJ ( ̂̄F n(t) − F̄ (t)) ≤ x

)
−Kn(x)| = o(n−

1
2 ), (2.3)

for any t > 0, where

Kn(x) = Φ(x) − κ3

6
n−

1
2φ(x)(x2 +

1
2
), (2.4)

κ3 = −2σ−3
0

(∫ t

0
H̄−3 dH̃1 +

3
2
σ4

0

)
,
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Φ(x) is the standard normal distribution function,and φ(x) is its probability den-
sity.

The proof of Theorem 1 (cf. Section 4) depends heavily on the results of
Bickel, Götze and Van Zwet (1986) and Chang(1990).

When F is completely unknown, one does not know κ3 and σ0 appear-
ing in the expansion (2.3). We must estimate κ3 and σ2

0 from the observation
(Zi, δi), i = 1, . . . , n. One way of doing this is to replace H̄ and H̃1 in κ3 and σ2

0

by H̄n and H̃n1. The estimates of κ3 and σ2
0 are given by

κ3n = −2σ−3
0n

( ∫ t

0
H̄−3

n dH̃n1 +
3
2
σ4

0n

)

σ2
0n =

∫ t

0
H̄−2

n dH̃n1.

Denote
K̃n(x) = Φ(x) − κ3n

6
n−

1
2φ(x)(x2 +

1
2
).

In our second theorem, we shall show that we may replace Kn(x) in (2.3) by
K̃n(x) without affecting the asymptotic accuracy of the expansion.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Then,
with probability 1, as n→ +∞

sup
x

|P (
√
nσ̂−1

nJ ( ̂̄Fn(t) − F̄ (t)) ≤ x) − K̃n(x)| = o(n−
1
2 ),

for any t > 0.

Another way to obtain an approximation to the distribution of studentized
KM estimator is to employ the bootstrap method. Efron (1981) introduced two
different ways of bootstrapping ̂̄F . But, we do not apply his method directly
since the unsmoothed bootstrap by Efron (1981) can not be proved to be of the
same asymptotic accuracy as the Edgeworth expansions for technical reasons.
Motivated by Efron (1979)’s well known smoothed bootstrap method in the un-
censored case, we introduce the smoothed bootstrap to the censoring case. Now
let us state the method as follows. We construct the KM estimator of G

Ĝn(t) = 1 −
∏

i:Z(i)≤t

( n− i

n− i+ 1

)1−δ(i)
I[Z(n) > t].

Let

F̂n(t) = 1 − ̂̄Fn(t),

f̂nh(t) =
1
hn

∫ +∞

0
k
( t− s

hn

)
dF̂n,
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ĝnh(t) =
1
hn

∫ +∞

0
k
( t− s

hn

)
dĜn,

where hn is a constant sequence satisfying hn → 0 and k(·) is a probability
density kernel function. The estimated populations F̂nh and Ĝnh, correspond-
ing to f̂nh and ĝnh, are then treated as the true survival and censoring pop-
ulations for the purpose of drawing the second stage samples. Conditionally,
given (Z1, δ1), . . . , (Zn, δn), let (Z∗

1 , δ
∗
1), . . . , (Z∗

n, δ
∗
n) be n independent r.v.’s with

Z∗
i = T ∗

i ∧ C∗
i , δ∗i = I[T ∗

i ≤ C∗
i ] where T ∗

1 , . . . , T
∗
n follow the distribution F̂nh

independently, and C∗
1 , . . . , C

∗
n follow the distribution Ĝnh independently. The

smoothed bootstrapping studentized KM estimator is given by
√
nσ̂∗nJ( ̂̄F ∗

n− ̂̄Fnh),
where σ̂∗nJ and ̂̄F ∗

n are obtained from σ̂nJ and ̂̄Fn simply by replacing (Zi, δi) by
the (Z∗

i , δ
∗
i )in the formula (2.2) and (1.1), i = 1, . . . , n. Let us denote by P ∗ the

bootstrap probability below.

Theorem 3. Suppose that Ti and Ci have continuous and bounded probability
density f and g with respect to the Lebesgue measure on R1. If k(·) is a probability
density kernel function on [0,+∞) satisfying

∫ ∞
0 uk(u) du < +∞, then, with

probability 1, we have

sup
x

|P (
√
nσ̂−1

nJ ( ̂̄F n(t)−F̄ (t)) ≤ x)−P ∗(
√
nσ̂∗−1

nJ ( ̂̄F ∗
n(t)− ̂̄F nh(t)) ≤ x)| = o(n−

1
2 ),

for any t > 0.

Theorem 2 and Theorem 3 tell us that the Edgeworth expansion estimate
K̃n(x) and the smoothed bootstrap distribution function (df) are asymptotically
close to the exact df of studentized KM estimator with rate o(n−

1
2 ). The same

result is perhaps valid under proper conditions for the unsmoothed bootstrap.

3. Simulation Results

In this section, the three methods, including the unsmoothed bootstrap,
were investigated by simulation. All the simulation was carried out under the
assumptions of the model that F (t) = 1−e−t, G(t) = 1−e− t

2 , , t ≥ 0. The sample
size n was taken to be 10, 40 and 60 respectively. For the smoothed bootstrap,
hn was taken to be 0.1√

n
and 0.01√

n
respectively, and k(x) to be e−xI[x ≥ 0]. For

each combination of these parameters, we calculated the distribution curves of
studentized KM estimator, unsmoothed bootstrap and the smoothed bootstrap
counterparts at t = 1 by simulation, respectively, and the curves of the Edgeworth
expansion were obtained by calculating Kn(x) directly. All these curves are given
in the following Figures.
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Figure 1. n = 10, hn = 0.1/
√
n, t = 1. Figure 2. n = 10, hn = 0.01/

√
n, t = 1.
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Figure 3. n = 40, hn = 0.1/
√
n, t = 1. Figure 4. n = 40, hn = 0.01/

√
n, t = 1.
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Figure 5. n = 60, hn = 0.1/
√
n, t = 1.

From these figures, we see that all the curves are closer to each other as n
increases, and that the curve of the smoothed bootstrap is also closer to that of
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unsmoothed bootstrap when hn is chosen smaller. For small sample size (n = 10),
Figue 1 and Figure 2 show that all the three methods perform poorly. But
relatively speaking, the smoothed bootstrap with hn chosen appropriately may
perform better than the other two methods. Note that σ̂nJk and its smoothed
bootstrap and unsmoothed bootstrap versions take zero with positive probability
for small sample size (n = 10). This is why we see that the distribution curves
of the studentized KM estimator and its smoothed and unsmoothed bootstrap
versions in Figure 1 and Figure 2 are far lower than those of the Edgeworth
expansion even at the points at which the function values of the curves of the
Edgeworth expansion are close to 1. Such phenomenon can not be seen in Figure
3, Figure 4 and Figure 5 because σ̂nJk and its bootstrap versions, which tend
to σ > 0 with probability 1, take zero with negligible probability for n = 40 or
n = 60. Indeed, this is also the one of the reasons that smoothed bootstrap and
unsmooothed bootstrap perform better in Figure 3, Figure 4 and Figure 5 than
in Figure 1 and Figure 2. For large sample size(n = 40 or n = 60), closeness
of these curves in Figure 4 and Figure 5 vindicates our results in section 2, and
shows that the unsmoothed bootstrap perhaps works well for large sample in
some cases, for example, in the case that F and G are sufficiently smooth.

It is worthwhile pointing out that it is important and diffcult to choose ap-
propriate hn for the smoothed bootstrap. In what follows, we only discuss the
problem roughly. If hn is chosen too large, for example hn = n−

1
k for some large

k > 0, the smoothed bootstrap sample will contain less information provided by
F̂n and Ĝn and much more information provided by kernel density function k(·)
which is used in the smoothed bootstrap. In this case, the man-made factor k(·)
will affect the asymptotic performances of the smoothed bootstreap greatly. If we
choose hn close to zero, for example hn = n−k for some large k > 0, under some
conditions the difference between the smoothed bootstrap and the unsmoothed
bootstrap disappears. This implies that if the unsmoothed bootstrap has good
asymptotic accuracy we may choose small hn for the smoothed bootstrap, oth-
erwise we choose moderate hn (not too large and not too small). For example,
from Figure 1 and Figure 2 it is seen that unsmoothed bootstrap is consider-
ably worse, and in Figure 2 the curve of the smoothed bootstrap is closer to
that of unsmoothed bootstrap and hence further from that of the studentized
KM estimator. Therefore, we should choose a moderate hn in the case of small
sample size (n = 10). From Figure 3, Figure 4 and Figure 5, we see that the
unsmoothed bootstrap performs very well and the curves of the smoothed boot-
strap are closer to those of the studentized KM estimator and the unsmoothed
bootstrap in Figure 4 than in Figure 3. Hence, we may choose small hn for
the smoothed bootstrap in the case of large samples. Though the curve of the
smoothed bootstrap departs from that of the studentized KM estimator slightly
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in Figure 3, in Figure 5 they are close to each other very much because n in-
creases. This shows that if hn is chosen larger, the smoothed bootstrap also
performs fairly well as long as we increase n appropriately.

4. Proof of Theorems

For convenience, we adopt a convention that C may represent any constants
needed, even if C’s appear in the same formula they may represent different
constants.

As pointed out by Chang (1990), for any sample size n ̂̄Fn(t) = 0 and
log ̂̄Fn(t) = −∞ with positive probability. To overcome this diffculty, Chang
partitioned the sample space Ω into two parts: Ω(n)

0 and Ω(n)
1 = Ω− Ω(n)

0 , where
Ω(n)

0 is defined as in Chang (1990), and showed that P (Ω(n)
1 ) = o(n−k) for any

k > 0, and for ω ∈ Ω(n)
0 ,−∞ < log ̂̄Fn(t) < +∞. This implies that we can focus

our discussion on the sub-sample space Ω(n)
0

In what follows we engage in our studies on Ω(n)
0 as in Chang (1990).

Lemma 1. Assuming F and G are continuous, one can express

log ̂̄Fn(t) − log F̄ (t) = n−1
n∑

i=1

ϕ(Zi, δi; t) + rn1(t), (4.1)

̂̄Fn(t) − F̄ (t) = n−1
n∑

i=1

F̄ (t)ϕ(Zi, δi; t) + rn2(t), (4.2)

for any t > 0, where

ϕ(Z, δ; t) = −
( ∫ z∧t

0
[H̄(s)]−2 dH̃1(s) + H̄−1(z)I[z ≤ t, δ = 1]

)
and rn1(t), rn2(t) satisfy that

P (|rn1(t)| > εn) ≤ C(nεn)−k, (4.3)

P (|rn2(t)| > εn) ≤ C(nεn)−
k
2 , (4.4)

for any εn > 0, k > 0 and t > 0.

Proof. By Lo and Singh (1986), we have

P (|rn1| > εn) ≤ C P
(
|
∫ t

0
(H̄n − H̄)H̄−2 d(H̃n1 − H̃1)| > εn

2

)
+P

(
sup

0≤s≤t
|H̄n − H̄| > 1

2
H̄(t)

)

+CP
(
| log ¯̂

Fn(t) −
∫ t

0
[H̄n(s)]−1dH̃n1(s)| > εn

2

)
(4.5)
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for any t > 0 and εn > 0 as n is sufficiently large.
Using the Tchebyschev inequality and the Lemma in the appendix of Chang

(1989), it follows that

P (| �n | > εn) ≤ C(nεn)−k, (4.6)

for any t > 0, k > 0 and εn > 0. It is well known that

P
(

sup
0≤s≤t

|H̄n − H̄| > 1
2
H̄(t)

)
≤ exp{−1

2
nH̄2(t)}. (4.7)

Clearly

�′
n

�= log ¯̂
Fn −

∫ t

0
[H̄n(s)]−1dH̃n1(s)

=
n∑

i=1

I[Zi ≤ t, δi = 1]
{

log
(
1 − 1

1 + nH̄n(Zi)

)
+

1
nH̄n(Zi)

}
. (4.8)

Let Anε = ∩n
i=1{{ω : n(1 + H̄n(Zi))I[Zi ≤ t] ≥ 2} ∪ {Zi > t}}, and Ac

nε be
the complement of Anε. By (4.8) and the inequality | log(1 − x) + x| ≤ x2, for
0 ≤ x ≤ 1

2 , we have on Anε

�′
n ≤ 2

n∑
i=1

I[Zi ≤ t, δi = 1]
1

(nH̄n(Zi))2
, (4.9)

and

P (Ac
nε) ≤

n∑
i=1

P ((1 + nH̄n(Zi))I[Zi ≤ t] = 1) ≤ ne−(n−1)H̄(t). (4.10)

The inequality (4.3) is trival for any k > 0 if nεn < 16H̄−2(t). Hence, in the
following we need only consider the case that nεn ≥ 16H̄−2(t). In this case, we
have

P (| �′
n | > εn

2
) ≤ P

( 1
n

n∑
i=1

I[Zi ≤ t, δi = 1] >
nεnH̄

2(t)
16

)

+P (H̄n(t) <
1
2
H̄(t)) + P (Ac

nε)

≤ e−nH̄2(t) + ne−(n−1)H̄(t) (4.11)

by (4.9) and (4.10).
Combining(4.5), (4.6), (4.7) and (4.11), (4.3) is proved. To prove (4.4), at

first we prove that

P (| log ̂̄Fn(t) − log F̄ (t)| > εn) ≤ C(n
1
2 εn)−k, (4.12)
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for any t > 0, k > 0 and εn > 0. It is easy to prove (4.12) by (4.1), (4.3) and the
Tchebyschev inequality and the Dharmadhikari-Jodgeo (D-J) inequality (e.g.,
see, Rao (1987)).

By Taylor’s formula for F̂n(t) − F (t), (4.1) and (4.2), it is easily seen that

P (|rn2(t)| > εn) ≤ P (|rn1(t)| > εn
2F̄

)

+P
( F̄ (t)eθ(log ̂̄Fn−log F̄ )

2
(log ̂̄Fn(t) − log F̄ (t))2 >

εn
2

)
. (4.13)

Let Pn represent the second term in the right hand side of (4.13). From (4.12),
we have

Pn ≤ P (| log ̂̄Fn − log F̄ | > εn
1
2 ) + P (| log ̂̄Fn − log F̄ | > − log F̄ )

≤ C(nεn)−
k
2 . (4.14)

Hence, (4.4) is proved by combining (4.13), (4.14) and (4.3).
For the simplicity, let us denote ϕ(z, δ; t) by ϕ(z, δ) and rni(t) by rni, where

i = 1, 2.

Lemma 2. Under the assumptions of Lemma 1, we have

σ̂2
nJ = n−1

n∑
i=1

F̄ 2(ϕ(Zi, δi) − n−1
n∑

i=1

ϕ(Zi, δi))2 +Rn(t), (4.15)

with
P (|Rn(t)| > εn) ≤ Cn1− k

2 ε−k
n , (4.16)

for any t > 0, k > 0 and εn > 0.

The proof of Lemma 2 is based on a standard type of argument, and hence
is omitted.

Lemma 3. Under the assumptions of Lemma 1, we have P (|σ̂2
nJ − σ2| > εn) ≤

Cn1− k
2 εn

−k, for any t > 0, k > 0 and εn > 0.

By Lemma 2, it is easy to prove Lemma 3.

Lemma 4. If F and G are continuous, one can express log ̂̄F n − log F̄ = Un0 −
1
2n

−1σ2
0 + �n1 with P (

√
n| �n1 |>n− 1

2 log n−1) = o(n−
1
2 ), for any t > 0, where

Un0 = n−2
∑
i<j

h0(Zi, δi;Zj , δj),

h0(Z1, δ1;Z2, δ2) = g0(Z1, δ1) + g0(Z2, δ2) + ψ0(Z1, δ1;Z2, δ2),

g0(Z, δ) = −A10(Z)δ −A20(Z ∧ t),
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A10(s) = H̄−1(s)I[0 ≤ s ≤ t],

A20(s) =
∫ s

0
H̄−2 dH̃1,

ψ0(Z1, δ1;Z2, δ2) = η(Z1, δ1;Z2, δ2) + η(Z2, δ2;Z1, δ1),

η(Z1, δ1;Z2, δ2) = B1(Z1, Z2)δ1 +B2(Z1, Z2)

−E[B1(Z1, Z2)δ1 +B2(Z1, Z2)|Z1, δ1]

B1(s, u) = H̄−2(s)I[0 ≤ s ≤ t, s < u],

B2(s, u) =
∫ t∧s∧u

0
H̄−3 dH̃1

Proof. See Chang (1990).

Remark. h0(Z1, δ1;Z2, δ2), g0(Z1, δ1) and ψ0(Z1, δ1;Z2, δ2) here are the same
as −h(Z1, δ1;Z2, δ2), −g(Z1, δ1) and −ψ(Z1, δ1;Z2, δ2) in Chang (1990). In the
following, we will often make use of the facts directly.

Lemma 5. For any random variables X,Y and constant a > 0, there exists a
constant α such that

sup
x

|P (X + Y ≤ x) −Kn(x)| = sup
x

|P (X ≤ x) −Kn(x)| + αa+ P (|Y | > a),

where Kn(x) is defined as in Theorem 1.

The proof of Lemma 5 is similar to that of Lemma 2 in Chang (1989), hence
we omit it here.

Denote
Un = n−2

∑ ∑
i<j
h(Zi, δi;Zj , δj) (4.17)

where

h(Zi, δi;Zj , δj) = h0(Zi, δi;Zj , δj)

−ϕ
2(Zi, δi)ϕ(Zj , δj) + ϕ(Zi, δi)ϕ2(Zj , δj)

2σ2
0

+
ϕ(Zi, δi) + ϕ(Zj , δj)

2
+ ϕ(Zi, δi)ϕ(Zj , δj). (4.18)

Lemma 6. Let σ2
n be the variance of Un; then as n→ +∞ supx |P (

√
nσ−1

n Un ≤
x) −Kn0(x)| = o(n−

1
2 ), where

Kn0(x) = Φ(x) − κ3

6
n−

1
2φ(x)(x2 − 1),

κ3 = −2σ−3
0

(∫ t

0
H̄−3 dH̃1 +

3
2
σ4

0

)
.
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The same arguments as in the proof of Lemma 2 of Chang (1990) can be
employed to prove Lemma 6.

Lemma 7. Under the assumptions of Lemma 6, we have supx |P (
√
nσ−1

0 Un ≤
x) −Kn0(x)| = o(n−

1
2 ), as n −→ +∞.

The same method as that of proving Lemma 3 in Chang (1990) can be used
to prove Lemma 7 in virtue of Lemma 5 and Lemma 6.

Lemma 8. Under the assumptions of Lemma 6, we have supx |P (
√
nσ−1

0 Un −
νn−

1
2 ≤ x) − Kn(x)| = o(n−

1
2 ), as n → +∞, where Kn(x) is defined as in

Theorem 1, and ν = 1
2σ

−3
0 (

∫ t
0 H̄

−3 dH̃1 + 3
2σ

4
0).

The proof is similar to that of Theorem 2 in Chang (1990).
The proof of Theorem 1. In the following, we fix t such that t > 0. Let

Q(x) = 1
1+x − (1 − x). Then

√
nσ̂−1

nJ ( ̂̄F n − F̄ ) =
√
nσ−1( ̂̄Fn − F̄ )(1 − σ̂nJ − σ

σ
)

+
√
nσ−1( ̂̄F n − F̄ )Q(

σ̂nJ − σ

σ
)
�
= R1n +R2n. (4.19)

Clearly

P (|R2n| > (n log n)−
1
2 ) ≤ P (|√nσ−1( ̂̄F n − F̄ | > log−

1
2 n)

+P (|Q(
σ̂nJ − σ

σ
)| > n−

1
2 log−1 n)

�
= R21n +R22n. (4.20)

Denote

Ψn(x) = Φ(x) − κ̃3

6
n−

1
2φ(x)(x2 − 1),

where

κ̃3 = −σ0
−3( −

∫ t

0
H̄−3 dH̃1 +

3
2
σ4

0) + 3σ0.

It is easy to see that

R21n ≤ |P (
√
nσ−1( ̂̄F n − F̄ ) > log

1
2 n) − (1 − Ψn(log

1
2 n))|

+|P (
√
nσ−1( ̂̄Fn − F̄ ) < − log−

1
2 n) − Ψn(− log

1
2 n)|

+|1 − Ψn(log
1
2 n)| + |Ψn(− log

1
2 n)|. (4.21)

In virtue of Lemma 3 in Chang (1990) and Lemma 3 in page 49 of Chow and
Teicher (1978), it follows that

R21n ≤ C(n log n)−
1
2 . (4.22)
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Using the inequality |Q(x)| ≤ 2x2, for |x| < 1
2 , by Lemma 3 we have

R22n ≤ P (|σ̂2
nJ − σ2| > 3

2
√

2
σ2n−

1
4 log−

1
2 n, | σ̂nJ − σ

σ
| ≤ 1

2
)

+P (|σ̂2
nJ − σ2| > 1

2
σ2) ≤ C((n log n)−

1
2 + n1− k

4 log
k
2 n). (4.23)

Hence, by (4.20), (4.22), (4.23), it follows that

P (|R2n| > (n log n)−
1
2 ) ≤ C((n log n)−

1
2 + n1− k

4 log
k
2 n). (4.24)

By Taylor’s formula, we have

R1n =
√
nσ−1F̄

[
(log ̂̄Fn − log F̄ )(1 − σ̂nJ − σ

σ
) +

(log ̂̄Fn − log F̄ )2

2

]

−
√
nF̄ (σ̂nJ − σ)(log ̂̄Fn − log F̄ )2

2σ2

+
√
nσ−1F̄

eθ
′(log ̂̄F n−log F̄ )

6
(log ̂̄Fn − log F̄ )3

(
1 − σ̂nJ − σ

σ

)
�
= R11n +R12n +R13n. (4.25)

Using the same arguments as in the proof of (4.22) in virtue of Theorem 2 in
Chang (1990), it can be proved that

P (
√
nσ−1F̄ |(log ̂̄Fn − log F̄ )| > log

1
2 n) ≤ C(n log n)−

1
2 . (4.26)

Thus, by (4.12) and Lemma 3 we have

P (|R12n| > (n log n)−
1
2 )

≤ P (|σ̂2
nJ − σ2| > σn−

1
4 log−

1
2 n) + P (| log ̂̄Fn − log F̄ | > σn−

1
4 log−

1
2 n)

+P (σ̂nJ ≤ 1
2
σ) + P (|√nσ−1F̄ (log ̂̄Fn − log F̄ )| > log

1
2 n)

≤ C
(
n1− k

4 log
k
2 n+ (n log n)−

1
2

)
. (4.27)

Furthermore, we have by (4.12) and Lemma 3

P (|R13n| > (n log n)−
1
2 )

≤ P
(
| log ̂̄Fn − log F̄ | ≤ 1,

∣∣∣ σ̂nJ − σ

σ

∣∣∣ ≤ 1
2
, | log ̂̄Fn − log F̄ |3 > 4σ

e
(n log n)−1

)
+P (| log ̂̄Fn − log F̄ | > 1) + P

(∣∣∣ σ̂nJ − σ

σ

∣∣∣ > 1
2

)
≤ C(n−

k
6 log

k
3 n+ n1− k

2 ). (4.28)
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Since
σ̂nJ − σ

σ
=
σ̂2

nJ − σ2

2σ2

[
1 − σ̂nJ − σ

2σ
+Q

( σ̂nJ − σ

2σ

)]
,

we get

R11n =
√
nσ−1F̄

[
(log ̂̄Fn−log F̄ )−(log ̂̄Fn−log F̄ )

σ̂2
nJ−σ2

2σ2
+

(log ̂̄Fn−log F̄ )2

2

]

+
√
nσ−1F̄ (log ̂̄Fn − log F̄ )

[ σ̂nJ − σ

2σ
−Q

( σ̂nJ − σ

2σ

)] σ̂2
nJ − σ2

2σ2

�= R111n +R112n. (4.29)

Using the methods similar to proving (4.28) and (4.27), we can prove that

P (|R112n| > (n log n)−
1
2 ) ≤ C(n1− k

4 log
k
2 n+ (n log n)−

1
2 ). (4.30)

In virtue of Lemma 4 and Lemma 1, we have

R111n =
√
nσ−1

0

[
n−2

∑ ∑
i<j
h0(Zi, δi;Zj , δj) − n−1

n∑
i=1

ϕ(Zi, δi)
σ̂2

nJ − σ2

2σ2

+
1
2
n−2

n∑
i=1

n∑
j=1

ϕ(Zi, δi)ϕ(Zj , δj) − 1
2
σ0n

−1
]

+
√
nσ−1

0 �1n −√
nσ−1

0 rn1
σ̂2

nJ − σ2

2σ2

+
√
nσ−1

0 rn1
1
n

n∑
i=1

ϕ(Zi, δi) +
√
nσ−1

0 r2n1

2
�
= R

(1)
111n +R

(2)
111n +R

(3)
111n +R

(4)
111n +R

(5)
111n. (4.31)

From Lemma 4, it follows that

P (|R(2)
111n| > (n log n)−

1
2 ) = o(n−

1
2 ). (4.32)

Using Lemma 1 and Lemma 3, we get

P (|R(3)
111n| > (n log n)−

1
2 ) ≤ P (|rn1| > Cn−

3
4 (log n)−

1
2 )

+P (|σ̂2
nJ − σ2| > Cn−

1
4 ) ≤ C(n−

k
4 log

k
2 n+ n1− k

4 ). (4.33)

Analogously, we have by Lemma 1 and D-J inequality

P (|R(4)
111n| > (n log n)−

1
2 )

≤ P (|rn1|>Cn− 3
4 log−

1
2 n)+P (|n−1

n∑
i=1

ϕ(Zi, δi)|>Cn− 1
4 )≤Cn− k

4 log
k
2 n. (4.34)
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and

P (|R(5)
111n| > (n log n)−

1
2 ) ≤ P (|rn1| > Cn−

1
2 log−

1
4 n) ≤ Cn−

k
2 log

k
4 n. (4.35)

In virtue of Lemma 2, we get

(
n−1

n∑
i=1

ϕ(Zi, δi)
)
(σ̂2

nJ − σ2)

= n−2F̄ 2
∑ ∑

i<j

[
ϕ2(Zi, δi)ϕ(Zj , δj) + ϕ(Zi, δi)ϕ2(Zj , δj)

−(ϕ(Zi, δi) + ϕ(Zj , δj))σ2
0

]
+ n−2F̄ 2

n∑
i=1

ϕ3(Zi, δi)

− σ2

(n− 1)n2

∑ ∑
i<j

(ϕ(Zi, δi) + ϕ(Zj , δj))

−F̄ 2
(
n−1

n∑
i=1

ϕ(Zi, δi)
)3

+Rnn
−1

n∑
i=1

ϕ(Zi, δi). (4.36)

Recalling the definitions of R(1)
111n and Un in (4.31) and in (4.18), we have

R
(1)
111n =

√
nσ−1

0 Un − 1
2
n−

1
2σ−3

0 Eϕ3(Z1, δ1)

−(2σ3
0n

3
2 )−1

n∑
i=1

(
ϕ3(Zi, δi) − Eϕ3(Zi, δi)

)

+(2σ0n
3
2 )−1

n∑
i=1

ϕ(Zi, δi) +
√
n(2σ3

0)
−1

(
n−1

n∑
i=1

ϕ(Zi, δi)
)3

−√
n(2F̄ σ3

0)
−1Rnn

−1
n∑

i=1

ϕ(Zi, δi)

+(2n
3
2σ0)−1

n∑
i=1

(
ϕ2

0(Zi, δi) −Eϕ2
0(zi, δi)

)
�=
√
nσ−1

0 Un + e1n + e2n + e3n + e4n + e5n + e6n. (4.37)

Using the Tchebychev inequality, the D-J inequality and noting that ϕ(Zi, δi), 1 ≤
i ≤ n are bounded, independent and identically distributed random variables
with Eϕ(Z1, δ1) = 0, it is easy to prove that

P (|ein| > C(n log n)−
1
2 ) = o(n−

1
2 ), i = 2, 3, 4, 5, 6. (4.38)

Combining (4.19), (4.24),(4.25), (4.27), (4.28) – (4.35), (4.37), (4.38) and noting
that k is an arbitrary constant, we have

√
nσ̂−1

nJ ( ̂̄F n−F̄ ) =
√
nσ−1

0 Un−νn− 1
2 +En,
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with P (|En| > C(n log n)−
1
2 ) = o(n−

1
2 ), where ν is defined as in Lemma 8. By

Lemma 8 and Lemma 5, Theorem 1 is proved.
The proof of Theorem 2 is easy, so we omit it here. Indeed the method to

show Theorem 2 is included in the proof of Theorem 3. In the following we will
prove Theorem 3. In order to do this we need the following Lemma 9.

Lemma 9. Under the assumptions of Theorem 3, with probability 1, we have

sup
t≤s<∞

|F̂nh(s) − F (s)| −→ 0 (4.39)

sup
t≤s<∞

|Ĝnh(s) −G(s)| −→ 0 (4.40)

for any t > 0.

Proof. Now we prove (4.39) only; (4.40) can be proved analogously. Since F̂nh

is the probability distribution function corresponding to f̂n which is defined in
section 2, one can express F̂nh as follows:

F̂nh(t) =
∫ +∞

0
K

(
t− y

hn

)
dF̂n(y),

where K(x) =
∫ x
0 k(t) dt. Hence, we have for any t > 0

sup
t≤s<∞

|F̂nh(s) − F (s)|

≤ sup
t≤s<∞

∣∣∣∣
∫ +∞

0
K

(
s− y

hn

)
dF̂n(y) −

∫ +∞

0
K

(
s− y

hn

)
dF (y)

∣∣∣∣
+ sup

t≤s<∞

∣∣∣∣
∫ +∞

0
K

(
s− y

hn

)
dF (y) − F (y)

∣∣∣∣ �= I1 + I2. (4.41)

Integrating by parts and employing corrollary 2(ii) on strong uniform consistency
of F̂n in Csörgö and Horváth (1983), we have

I1 ≤ sup
t≤s<∞

|F̂n(s) − F (s)| a.s.−→ 0. (4.42)

Again integrating by parts, and applying the Mean Value Theorem and the
boundedness of f to the following proof, we get

I2 ≤ sup
t≤s<∞

∣∣∣ ∫ sh−1
n

0
F (s− hnu)k(u) du −

∫ +∞

0
k(u)F (s) du

∣∣∣
≤ sup

t≤s<∞

∣∣∣ ∫ sh−1
n

0
f(ζs(u))hnuk(u) du

∣∣∣ + sup
t≤s<∞

∫ +∞

sh−1
n

k(u) du

≤ Chn

∫ +∞

0
uk(u) du+ sup

t≤s<∞

[
s−1hn

∫ +∞

sh−1
n

uk(u) du
]
−→ 0, (4.43)
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where ςs(u) lies between s − hnu and u. Therefore, (4.39) follows from (4.41),
(4.42) and (4.43).

Proof of Theorem 3. By the continuity of F̂nh and Ĝnh (this is just why we
use the smoothed bootstrap method) and Theorem 1, we have

sup
x

|P (
√
nσ̂∗−1

nJ ( ̂̄F ∗
n(t) − ̂̄Fnh(t)) ≤ x) −K∗

n(x)| = o(n−
1
2 ), (4.44)

where

K∗
n(x) = Φ(x) − κ∗3

6
n−

1
2φ(x)(x2 +

1
2
)

κ∗3 = −2σ∗0
( ∫ t

0
H̄∗−3 dH̃∗

1 +
3
2
σ∗40

)

σ∗20 = F̄ 2
nh

∫ t

0
H̄∗−2 dH̃1

H̄∗ = P (Z∗
1 > t)

H̃1 = P (Z∗
1 > t, δ∗1 = 1).

In virtue of Lemma 9, we get

H̄∗ = (1 − F̂nh(t))(1 − Ĝnh(t)) a.s.−→ H̄, (4.45)

H̃∗
1 =

∫ τH∧τH∗

t
(1 − Ĝnh) dF̂nh(s) a.s.−→ H̃1, (4.46)

where τ∗H = inf{t : H̄∗(t) = 0}. By (4.45) and (4.46), it is easy to obtain
κ∗3

a.s.−→ κ3, σ
∗2
0

a.s.−→ σ2
0 , which yields supx |K∗

n(x) − Kn(x)| = o(n−
1
2 ), a.s. By

Theorem 1 and (4.44), Theorem 3 is proved.
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