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1. Introduction

Consider the following signal model

y(m,n) =
p∑

k=1

xke
j(mµk+nνk)+w(m,n), m = 0, 1, . . . ,M−1, n = 0, 1, . . . , N−1,

where y(m,n) consists of p distinct noise contaminated 2-D sinusoids in the
(µ, ν)-plane and w(m,n)’s are independent and identically distributed random
variables with zero mean and variance σ2. This signal model can be found in
synthetic aperture radar imaging, frequency and wave number estimation in array
signal processing and nuclear magnetic resonance imaging and so on. To recover
the p 2-D sinusoids, the techniques often used are periodogram, autoregressive
spectral estimation and maximum entropy spectral estimation etc. (See, say
Dudgeon and Merseresau (1984).) But all these methods require an exhaustive
search in a 2-D space to obtain the estimates of the 2-D angular frequencies and
need plenty of data. In the paper by Kung, Arun and Rao (1993) and Shaw
and Kumaresan (1986), two sets of 1-D frequencies {µk} and {νk} are estimated
separately instead of one set of 2-D frequencies {(µk, νk)}. Hua (1992) proposed
a new algorithm by a matrix enhancement and matrix pencil (MEMP) approach.
However, in the set {µk} (or {νk}), two or more components may be equal, but
they are treated as different parameters in the estimation of the set {µk} (or
{νk}). This concludes that the number of parameters estimated by MEMP may
be larger than is necessary. In pairing the components in the sets {µk} and {νk},
the computation cost by MEMP in an optimum pairing process is proportional
to p!. In order to reduce the cost, Hua (1992) suggested a pairing process with
the computation cost proportional to p2 but its performance is not clear. As
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pointed out by Hua (1992), it is desirable to have some a priori information
about {µk} (or {νk}) in order to get the best mate. Rao, Zhao and Zhou (1993)
developed an algorithm for 2-D frequency estimation. This approach does not
need a priori information on {µk} (or {νk}) for the pairing. The pairing process
is consistent and its computational cost is only proportional to q1q2, where q1 and
q2 are the numbers of distinct components in the set {µk} and {νk}, respectively.
Besides, this approach has the inherent capability of determining the number of
signals and can be easily extended to estimate higher dimensional frequencies.
The simulation showed that the algorithm works well (see Rao, Zhao and Zhou
(1993)).

In this paper, the theoretical foundation for this algorithm will be estab-
lished. In Section 2, the algorithm is introduced briefly. In Section 3, it is proved
that the algorithm gives strongly consistent estimates of the 2-D frequencies.

2. Procedure of Frequency Estimation

The algorithm by Rao, Zhao and Zhou (1993) is divided into two stages.
First {µk} and {νk} are estimated separately, then they are paired together to
get the p 2-D frequencies. In the following

√−1 is denoted by j.
For fixed frequencies {νk}, y(m, i), 1 ≤ m ≤ M − 1, are observations of

frequencies µ1, . . . , µp. Its covariance matrix, say Γiq, is

Γiq = [γiq
�h],

γiq
�h = (1/(M − q))

M−1∑
m=q

y(m − �, i)y∗(m − h, i), �, h = 0, 1, . . . , q,

where i = 0, 1, . . . , N − 1, “*” denotes complex conjugate operator (or complex
conjugate transpose operator if y is a vector or matrix), and q ≤ T1 < M − 1.
Assume that there are q1 distinct angular frequencies of {µk}. Let

∏q1
t=1(1 −

ejµtz) = 1 + g1z + · · ·+ gq1z
q1 and denote

∑p
k=1 xke

j(mµk+nνk) by ξm,n. It can be
observed that for each fixed i,

ξq1+�,i + g1ξq1+�−1,i + · · · + gq1ξ�,i = 0, � = 0, . . . ,M − 1 − q1. (2.1)

Once g = (gq1 , . . . , g1, 1)′ is known, {µk} can be obtained by finding the roots
of the polynomial equation

∑q1
t=0 gtz

t = 0. Let yi = (y(0, i), . . . , y(M − 1, i))′

for each i and G be the (M − q1) × M matrix with each row containing the
row vector of g′ and a number of zeros, where the position of g′ is shifted by
one element when we go from one row to the next row. By (2.1), E(Gyi) = 0.
When g is unknown, it may be estimated by minimizing y∗

i G
∗Gyi/(M − q1).

It can be shown that miny∗
i G

∗Gyi/(M − q1) is the smallest eigenvalue of the
matrix Γiq1. Therefore, when q1 is unknown, it may be estimated by minimizing
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the log function of the smallest eigenvalue of Γiq plus the penalty term (see Bai,
Krishnaiah and Zhao (1986)). Since any single Γiq will not lead to satisfactory
estimation, it is natural to define their mean covariance:

Γq = (1/N)
N−1∑
i=0

Γiq.

Write the smallest eigenvalue of Γq as Sq and the corresponding unit eigenvector
as bq = (b0, b1, . . . , bq)′, where the prime is the matrix transpose operator. There
exists an integer q̂1 ≤ T1 such that

Rq = log Sq + qCN , q = 0, 1, . . . , T1, (2.2)

is minimized at q = q̂1, where we assume that M and N are of the same magni-
tude and CN is some sequence satisfying conditions:

lim
n→∞CN = 0, lim

n→∞NCN/
√

log log N = ∞. (2.3)

For estimating the number of distinct angular frequencies of {νk}, similar to
above, we can get an integer q̂2 ≤ T2 < N − 1 by replacing Sq with the smallest
eigenvalue S(q) of Γ(q) in (2.2), where

Γ(q) = (1/M)
M−1∑
k=0

Γ(k,q), Γ(k,q) = [γ(k,q)
�h ],

γ
(k,q)
�h = (1/(N − q))

N−1∑
n=q

y(k, n − �)y∗(k, n − h), �, h = 0, 1, . . . , q,

and q ≤ T2 < N − 1.
Now (q̂1, q̂2) is used as the estimate of (q1, q2), where q1 and q2 are the

numbers of distinct angular frequencies of {µk} and {νk}, respectively.

Theorem 2.1. Suppose that there exist two positive constants d1 and d2 such that
d1N ≤ M ≤ d2N and w(m,n), m,n = 1, 2, . . . are independent and identically
distributed random variables with mean zero and finite variance σ2 such that
E(|w(m,n)|4 log+ |w(m,n)|) < ∞. Take {CN} satisfying Equation (2.3); then
with probability one, we have (q̂1, q̂2) = (q1, q2) for large N .

In the following, we assume that q1 and q2 are estimated. In order to estimate
distinct angular frequencies of µk’s, say µ′

1, . . . , µ
′
q1

, solve the polynomial equation

H
bq̂1 (z) =

q̂1∑
k=0

bkz
k = 0.
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Let ρ̂ke
jµ̂′

k , k = 1, 2, . . . , q̂1, be the solutions, where ρ̂k > 0, µ̂′
k ∈ [0, 2π), and

take µ̂′
k as the estimates of µ′

k, k = 1, 2, . . . , q̂1. Note that on average the number
of distinct angular frequencies, q1, is less than p, the total number of 2-D angular
frequencies.

In a similar way the estimates of the distinct ν ′
1, . . . , ν

′
q̂2

can be obtained.
After q̂1, q̂2, {µ′

k} and {ν ′
k} are obtained, we choose two integers K(> q̂1)

and L(> q̂2), and define

Bk� =




y(k, �) · · · y(k, � + L − 1)
y(k + 1, �) · · · y(k + 1, � + L − 1)

· · ·
y(k + K − 1, �) · · · y(k + K − 1, � + L − 1)


 ,

W (k,�) =




w(k, �) · · · w(k, � + L − 1)
w(k + 1, �) · · · w(k + 1, � + L − 1)

· · ·
w(k + K − 1, �) · · · w(k + K − 1, � + L − 1)


 .

Set uI(τ) = (1, ejτ , . . . , ej(I−1)τ )′, X = diag(x1, . . . , xp), and F k
1 (η) = diag(ejkη1,

. . . , ejkηp), where η = (η1, . . . , ηp)′. It is easy to see that Bk� can be rewritten as

Bk� = (uK(µ1), . . . ,uK(µp))F k
1 (µ)XF �

1 (ν)(uL(ν1), . . . ,uL(νp))′ + W (k,�),

where µ = (µ1, . . . , µp)′ and ν = (ν1, . . . , νp)′. Define yk� = vec((Bk�)′), wk� =
vec((W (k,�))′), where vec(A) denotes the vector form of a matrix A. Let “⊗” denote
the Kronecker product operator. For B = diag(b1, . . . , bp), Am×p = (a1, . . . ,ap),
and Cn×p = (c1, . . . , cp), vec(ABC ′)= (c1 ⊗ a1, . . . , cp ⊗ ap)(b1, . . . , bp)′. There-
fore,

yk� = ((uK(µ1)⊗uL(ν1), . . . ,uK(µp)⊗uL(νp))(x1e
j(kµ1+�ν1), . . . , xpe

j(kµp+�νp))′

+wk�

=̂ A(µ,ν)Xf k�(µ,ν) + wk�, (2.4)

where

A(µ,ν) = (a(µ1, ν1), . . . ,a(µp, νp)), a(µi, νi) = uK(µi) ⊗ uL(νi),

fk�(µ,ν) = (ej(kµ1+�ν1), . . . , ej(kµp+�νp))′.

Set

R̂ = [(M − K + 1)(N − L + 1)]−1
M−K∑
k=0

N−L∑
�=1

yk�(yk�)∗. (2.5)

Write the eigenvalues and corresponding orthonormal (or unit) eigenvectors of
R̂ as λ1 ≥ · · · ≥ λKL and e1, . . . ,ep,ep+1, . . . ,eKL, respectively. Set En =
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[ep+1, . . . ,eKL] which is called the noise subspace. The p distinct 2-D angular
frequencies (µi, νi) may be obtained by minimizing

a∗(µ, ν)EnE∗
na(µ, ν) (2.6)

over {(µ̂k, ν̂�) : k = 1, . . . , q̂1, � = 1, . . . , q̂2}. We have the following theorem.

Theorem 2.2. Suppose that the assumptions made in Theorem 2.1 hold. If
(µ̃1, ν̃1), . . . , (µ̃p, ν̃p) are p pairs of {(µ̂k, ν̂�) : k = 1, . . . , q̂1, � = 1, . . . , q̂2},
which reach the first p minimum values of (2.6), then (µ̃k, ν̃k) → (µk, νk) a.s.
k = 1, 2, . . . , p.

Remark 2.1. When w(m,n), m,n = 1, 2, . . . are independent and identically
normally distributed with zero mean, the assumptions on w(m,n) made in The-
orem 2.1 are satisfied, which, jointly with other assumptions made in Theorem
2.1, will guarantee the results of Theorem 2.1 and Theorem 2.2.

3. Proofs

Let {xn : n ∈ Zd
+} be a sequence of independent random variables, where

Zd
+, d ≥ 2, is the positive integer d-dimensional set of lattice points with coor-

dinatewise partial ordering “<”. Set Sn =
∑

k≤n xk. For n = (n1, . . . , nd), write
|n| =

∏d
i=1 ni. In the following, n → ∞ means that ni → ∞ for all i, lim supn αn

is interpreted as limn supn<m αm and similarly for lim infn αn.
We need the following two lemmas.

Lemma 3.1. Let {xn, n ∈ Zd
+} be a sequence of independent and identically

distributed random variables with zero mean and finite variance σ2. Assume
that for any n ∈ Zd

+, E(x2
n(log+ |xn|)d−1/ log+ log+ |xn|) < ∞, where log+ |b| =

log(max{|b|, e}). If {cn, n ∈ Zd
+} is a sequence of constants with |cn| = 1, then

lim supn

∑
k≤n

ckxk/(2σ2|n| log log |n|)1/2 =
√

d a.s.

lim infn
∑
k≤n

ckxk/(2σ2|n| log log |n|)1/2 = −
√

d a.s.

Proof. By Theorem 5 and Lemma 5.1 of Wichura (1973), the lemma follows.

Lemma 3.2. Let {xn : n ∈ Zd
+} be independent random variables with zero

mean. Suppose that there exists a constant δ > 0 such that for any n ∈ Zd
+,

E(|xn|(log+ |xn|)d+δ) ≤ c < ∞ for a constant c. Then lim|n|↑∞ Sn/|n| = 0
a.s. where |n| ↑ ∞ means

∏d
i=1 ni ↑ ∞.

Proof. By the theorem of Section 3 of Smythe (1973), the result follows.
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It is easy to see that when xn, n ∈ Zd
+ are independent and identically

distributed normal variables with zero mean, the assumptions made in both
lemmas are satisfied.

The proofs of Theorem 2.1 and Theorem 2.2 are as follows:

Proof of Theorem 2.1. Assume that there are q1 different elements in the
set {µ1, . . . , µp}, say µ′

1, . . . , µ′
q1

. Write Ls = {k : 1 ≤ k ≤ p, µk = µ′
s}, s =

1, . . . , q1. For fixed � and h,

N−1
N−1∑
i=0

γiq
�h = N−1

N−1∑
i=0

(M − q)−1
M−1∑
t=q

y(t − �, i)y∗(t − h, i)

= N−1
N−1∑
i=0

(M − q)−1
p∑

k,m=1

xkx̄meji(νk−νm)
M−1∑
t=q

ej(t−�)µk−j(t−h)µm

+N−1
N−1∑
i=0

p∑
k=1

xke
jiνk(M − q)−1

M−1∑
t=q

ej(t−�)µk w̄(t − h, i)

+N−1
N−1∑
i=0

p∑
m=1

x̄me−jiνm(M − q)−1
M−1∑
t=q

e−j(t−h)µmw(t − �, i)

+N−1
N−1∑
i=0

(M − q)−1
M−1∑
t=q

w(t − �, i)w̄(t − h, i)

=̂ J1 + J2 + J3 + J4, (3.1)

and

J1 =
q1∑

s=1

∑
k,m∈Ls

xkx̄mN−1
N−1∑
i=0

eji(νk−νm)e−j(�−h)µ′
s

+
∑
s �=s1

∑
k∈Ls

∑
m∈Ls1

xkx̄mN−1
N−1∑
i=0

eji(νk−νm)
(
(M − q)−1

M−1∑
t=q

ej(t−�)µk−j(t−h)µm

)

=̂ J11 + J12.

Since for k 	= m, µk = µm implies νk 	= νm, |∑N−1
i=0 eji(νk−νm)−j(�−h)µ′

s | is a
bounded quantity. Thus,

J11 =
q1∑

s=1

∑
k∈Ls

|xk|2e−j(�−h)µ′
s +

q1∑
s=1

∑
k,m∈Ls,k �=m

xkx̄mN−1
N−1∑
i=0

eji(νk−νm)−j(�−h)µ′
s

=
q1∑

s=1

∑
k∈Ls

|xk|2e−j(�−h)µ′
s + O(N−1), as N → ∞.
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It is easy to see that J12 = O(M−1), as N → ∞. Noting that d1N ≤ M ≤ d2N ,
we have

J1 =
q1∑

s=1

∑
k∈Ls

|xk|2e−j(�−h)µ′
s + O(N−1), as N → ∞. (3.2)

By Lemma 3.1 and the fact that |e−j(t−h)µk−jiνk | = 1, we have

|J3| =
∣∣∣

p∑
m=1

x̄m(N(M − q))−1
N−1∑
i=0

M−1∑
t=q

e−j(t−h)µm−jiνmw(t − �, i)
∣∣∣

= O
(
(MN)−1/2(log log(MN))1/2

)

= O
(
N−1(log log N)1/2

)
a.s. (3.3)

In the same way, we have

|J2| = O
(
N−1(log log N)1/2

)
a.s. (3.4)

To estimate J4 for � = h, by Lemma 3.1 we have

J4 = (N(M − q))−1
N−1∑
i=0

M−1∑
t=q

|w(t − �, i)|2

= σ2 + O
(
(MN)−1/2(log log(MN))1/2

)

= σ2 + O
(
N−1(log log N)1/2

)
a.s. (3.5)

In order to estimate J4 for � 	= h, we divide the sum into two parts such that each
part is the sum of independent and identically distributed random variables. For
example, consider the case where � = 2 and h = 0. In this case, we have

J4 = (N(M − q))−1
N−1∑
i=0

M−1∑
t=q

w(t − 2, i)w̄(t, i)

=
[
(N(M − q))−1

k1∑
k=0

N−1∑
i=1

w(q + 4k − 2, i)w̄(q + 4k, i)

+(N(M − q))−1
k2∑

k=0

N−1∑
i=1

w(q + 4k − 1, i)w̄(q + 4k + 1, i)
]

+
[
(N(M − q))−1

k3∑
k=0

N−1∑
i=1

w(q + 4k, i)w̄(q + 4k + 2, i)

+N(M − q))−1
k4∑

k=0

N−1∑
i=1

w(q + 4k + 1, i)w̄(q + 4k + 3, i)
]

=̂ J41 + J42,



566 B. Q. MIAO, Y. WU AND L. C. ZHAO

where k1 = 
(M − q)/4�, the integer part of (M − q)/4, k2 = k3 = k4 = k1 − 1
if (M − q)/4 is an integer; k2 = k3 = k4 = k1 − 1 if M − q = 4k1 + 1; k2 = k1

and k3 = k4 = k1 − 1 if M − q = 4k1 + 2; k3 = k2 = k1 and k4 = k1 − 1 if
M − q = 4k1 + 3. Both J41 and J42 are sums of independent and identically
distributed random variables. By Lemma 3.1, it follows that

|J4| = |J41 + J42| = O
(
(MN)−1/2(log log(MN))1/2

)

= O
(
N−1(log log N)1/2

)
a.s. (3.6)

Write

ω(i) = (1, e−jµ′
i , . . . , e−jqµ′

i)′, i = 1, . . . , q1,

Ω(q + 1, q1) = [ω(1), . . . ,ω(q1)], (3.7)

Ψ = diag
( ∑

k∈L1

|xk|2, . . . ,
∑

k∈Lq1

|xk|2
)
. (3.8)

Combining (3.1) to (3.6), it follows that

Γq = σ2Iq+1 + Ω(q + 1, q1)ΨΩ∗(q + 1, q1) + O
(
N−1(log log N)1/2

)
a.s. (3.9)

which implies that
lim

N→∞
Sq > σ2 a.s. (3.10)

for q < q1 and
Sq = σ2 + O

(
N−1(log log N)1/2

)
a.s. (3.11)

for q ≥ q1.
Let us consider two cases.

Case 1. q > q1. For this case, we have, with probability one,

(Rq1 − Rq) = (log Sq1 − log Sq + (q1 − q)CN )

= O
(
N−1(log log N)1/2

)
− (q − q1)CN < 0 (3.12)

for large N by (3.11) and (2.3).
Case 2. q < q1. By (3.10) and (2.3), we have

lim
N→∞

(Rq1 − Rq) = lim
N→∞

(log Sq1 − log Sq + (q1 − q)CN )

= log σ2 − lim
N→∞

Sq < 0 a.s. (3.13)

In view of (3.12) and (3.13), we get tha t q̂1 =q1 with probability one for large N .
Similarly, it can be shown that q̂2 = q2 with probability one for large N .
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Proof of Theorem 2.2. Assume that q1 and q2 are known. By (3.9), we have

Γq1 = σ2Iq1+1 + Ω(q1 + 1, q1)ΨΩ∗(q1 + 1, q1) + O
(
N−1(log log N)1/2

)

→ σ2Iq1+1 + Ω(q1 + 1, q1)ΨΩ∗(q1 + 1, q1)=̂Γ0, (3.14)

where Ψ and Ω(q1 + 1, q1) are defined in (3.7) and (3.8). Note that the rank of
Ω(q1 + 1, q1)ΨΩ∗(q1 + 1, q1) is q1. Therefore, the equation (Γ0 − σ2Iq1+1)β = 0,
‖β‖ = 1 has a unique root b0 (up to a complex factor with module one). Now
let bq1 be a unit eigenvector corresponding to the smallest eigenvalue of Γq1.
By (3.14), with probability one, this smallest eigenvalue of Γq1 is strictly less
than other eigenvalues of Γq1 for large N . Hence, with appropriate choice of a
complex factor, limN→∞ bq1 = b0. Let z1, . . . , zq1 be the q1 roots of the polynomial
equation

Hd(z) =
q1∑

k=0

dkz
k = 0, (3.15)

where d = (d0, d1, . . . , dq1)
′. By the definition of Ω(q1 + 1, q1) and Γ0, µ′

1, . . . ,
µ′

q1
are solutions of the equation (3.15), when d = (b0

0, . . . , b
0
q1

)′ = b0. For
d = bq1, the unit eigenvector corresponding to the smalleast eigenvalue of Γq1,
write the solutions of (3.15) as ρ̂ke

jµ̂′
k , k = 1, . . . , q1. Note that bq1 → b0. The

relation between the roots and coefficients of a polynomial yields ρ̂ke
jµ̂′

k → ejµ′
k

a.s. k = 1, . . . , q1 and µ̂′
k → µ′

k a.s. k = 1, . . . , q1 with properly rearranged
subscripts of ρ̂ke

jµ̂′
k .

In the same way, it can be shown that ν̂ ′
k → ν ′

k a.s. k = 1, . . . , q2. By (2.4)
and (2.5),

R̂ = 1
(M−K+1)(N−L+1)

M−K∑
k=0

N−L∑
�=0

(AXfk� + wk�)((fk�)∗X∗A∗ + (wk�)∗)

=̂ Q1 + Q2 + Q3 + Q̄3, (3.16)

where

Q1 = A(µ,ν)X
{

1
(M−K+1)(N−L+1)

(M−K∑
k=0

N−L∑
�=0

fk�(µ,ν)(f k�(µ,ν))∗
)}

X∗A∗(µ,ν),

Q2 = 1
(M−K+1)(N−L+1)

M−K∑
k=0

N−L∑
�=0

wk�(wk�)∗,

Q3 = A(µ,ν)X
{

1
(M−K+1)(N−L+1)

M−K∑
k=0

N−L∑
�=0

fk�(µ,ν)(wk�)∗
}

=̂ A(µ,ν)XGMN .
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It is obvious that

Q1 → A(µ,ν)XX∗A∗(µ,ν) as N → ∞. (3.17)

By Lemma 3.2, we have

Q2 → σ2IKL a.s. as N → ∞. (3.18)

In order to show that Q3 → 0 a.s. as N → ∞, we take the (1,1) element of GMN

as an example. By Lemma 3.2, we have

GMN (1, 1) = 1
(M−K+1)(N−L+1)

M−K∑
k=0

N−L∑
�=0

ej(kµ1+�ν1)w̄(k, �) → 0 a.s.

as N → ∞. Therefore,

Q3 → 0 a.s. and Q̄3 → 0 a.s. (3.19)

as N → ∞. In view of (3.16) to (3.19), it follows that

R̂ → A(µ,ν)XX∗A∗(µ,ν) + σ2IKL=̂R0 a.s. (3.20)

as N → ∞. Let a spectral decomposition of R0 be R0 =
∑KL

i=1 λ0
i e

0
i (e

0
i )

∗, where
λ0

1 ≥ · · · ≥ λ0
p > λ0

p+1 = · · · = λ0
KL = σ2 are the eigenvalues of R0 and e0

i is
the eigenvector corresponding to the eigenvalue λ0

i for i = 1, . . . ,KL. Denote
the eigenvalues of R̂ by λ1, . . . , λKL and the eigenvector corresponding to the
eigenvalue λi by ei for i = 1, . . . ,KL. By (3.20), we have λi → λ0

i a.s. for i ≤ p

and λi → σ2 a.s. for i = p + 1, . . . ,KL, which implies that

EnE∗
n =

KL∑
k=p+1

eke
∗
k →

KL∑
k=p+1

e0
k(e

0
k)

∗=̂E0
n(E0

n)∗ a.s. (3.21)

By the definition of a(µk, νk) and E0
n, it follows that

a∗(µk, νk)E0
n(E0

n)∗a(µk, νk) = 0, k = 1, . . . , p,

and
a∗(µk, νk)EnE∗

na(µk, νk) → 0 a.s. k = 1, . . . , p. (3.22)

Therefore,

{µ1, . . . , µp} = {µ′
1, . . . , µ

′
q1
}, {ν1, . . . , νp} = {ν ′

1, . . . , ν
′
q2
},

µ̂k → µ′
k a.s. k = 1, . . . , q1, ν̂k → ν ′

k a.s. k = 1, . . . , q2.



ON STRONG CONSISTENCY OF A 2-DIMENSIONAL 569

For the nontrue match of (µ′
i, ν

′
k), say (µ′

t, ν
′
τ ) 	∈ {(µ1, ν1), . . . , (µp, νp)}=̂Θ, (3.21)

gives

lim
N→∞

a∗(µ′
t, ν

′
τ )EnE∗

na(µ′
t, ν

′
τ ) = a∗(µ′

t, ν
′
τ )E

0
n(E0

n)∗a(µ′
t, ν

′
τ ) > 0 a.s. (3.23)

Write D = {(i, k) : 1 ≤ i ≤ q1, 1 ≤ k ≤ q2; then there exists a pair, say
(µt, νt) ∈ Θ, such that (µ′

i, ν
′
k) = (µt, νt)}. By (3.22) and (3.23), with probability

one,

inf
(i,k)�∈D

a∗(µ′
i, ν

′
k)EnE∗

na(µ′
i, ν

′
k) > sup

(i,k)∈D
a∗(µ′

i, ν
′
k)EnE∗

na(µ′
i, ν

′
k),

for large N , which implies that with probability one, a∗(µ̂i, ν̂k)EnE∗
na(µ̂i, ν̂k),

(i, k) ∈ D, reach the first p minimum values among a∗(µ̂i, ν̂k)EnE∗
na(µ̂i, ν̂k), 1 ≤

i ≤ q1, 1 ≤ k ≤ q2 for large N . Write (µ̂i, ν̂k), (i, k) ∈ D, as (µ̃1, ν̃1), . . . , (µ̃p, ν̃p).
Then we have proved that (µ̃k, ν̃k) → (µk, νk) a.s. k = 1, . . . , p.
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